International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 13, Issue 1 (January 2026), Pages: 115-124

----------------------------------------------

 Original Research Paper

Analytical solutions of the fractional coupled Konopelchenko-Dubrovsky equation via the modified (w/g)-expansion method

 Author(s): 

 Elzain A. E. Gumma 1, Abaker A. Hassaballa 1, 2, *, Ahmed M. A. Adam 1, Faroug A. Abdalla 3, Ashraf F. A. Mahmoud 3, 4, Gamal Saad Mohamed Khamis 3, Omer M. A. Hamed 5, Zakariya M. S. Mohammed 1, 2

 Affiliation(s):

  1Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
  2Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, Saudi Arabia
  3Department of Computer Science, College of Science, Northern Border University, Arar, Saudi Arabia
  4Translation, Authorship and Publication Center, Northern Border University, Arar, Saudi Arabia
  5Department of Finance and Insurance, College of Business Administration, Northern Border University, Arar, Saudi Arabia

 Full text

    Full Text - PDF

 * Corresponding Author. 

   Corresponding author's ORCID profile:  https://orcid.org/0009-0001-7809-353X

 Digital Object Identifier (DOI)

  https://doi.org/10.21833/ijaas.2026.01.012

 Abstract

This study investigates solutions to the fractional (2+1)-dimensional coupled Konopelchenko-Dubrovsky (FKD) equation using the beta fractional derivative method. The main goal is to find exact analytical solutions by applying the modified (w/g)-expansion technique. Several types of solutions with unknown parameters are obtained. To illustrate the results, graphs based on selected parameter values are provided. The results confirm that the modified (w/g)-expansion method is an effective and reliable tool for solving the fractional FKD equation.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Fractional calculus, FKD equation, Beta derivative, Analytical solutions, Expansion method

 Article history

 Received 12 February 2025, Received in revised form 5 August 2025, Accepted 17 December 2025

 Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA, for funding this research work through the project number "NBU-FFR-2025-3023-01." 

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Gumma EAE, Hassaballa AA, Adam AMA, Abdalla FA, Mahmoud AFA, Khamis GSM, Hamed OMA, and Mohammed ZMS (2026). Analytical solutions of the fractional coupled Konopelchenko-Dubrovsky equation via the modified (w/g)-expansion method. International Journal of Advanced and Applied Sciences, 13(1): 115-124

  Permanent Link to this page

 Figures

  Fig. 1  Fig. 2  Fig. 3  Fig. 4 

 Tables

 No Table   

----------------------------------------------   

 References (17)

  1. Aslam A, Majeed A, Kamran M, Inc M, and Alqahtani RT (2023). Dynamical behavior of the fractional coupled Konopelchenko–Dubrovsky and (3+1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznestsov equations. Optical and Quantum Electronics, 55: 543.  https://doi.org/10.1007/s11082-023-04704-0    [Google Scholar]
  2. Atangana A and Goufo EFD (2014). Extension of matched asymptotic method to fractional boundary layers problems. Mathematical Problems in Engineering, 2014: 107535.  https://doi.org/10.1155/2014/107535    [Google Scholar]
  3. Chen Y and Wang Q (2005). Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation. Chaos Solitons & Fractals, 24(3): 745–757.  https://doi.org/10.1016/j.chaos.2004.09.014    [Google Scholar]
  4. Debnath L (2012). Nonlinear partial differential equations for scientists and engineers. 3rd Edition, Birkhäuser, Boston, USA.  https://doi.org/10.1007/978-0-8176-8265-1    [Google Scholar]
  5. Deniz HA, Özkan EM, and Özkan A (2024). A study on analytical solutions of one of the important shallow water wave equations and its stability analysis. Physica Scripta, 99: 125211.  https://doi.org/10.1088/1402-4896/ad88b7    [Google Scholar]
  6. Gepreel KA (2016). Exact solutions for nonlinear integral member of Kadomtsev–Petviashvili hierarchy differential equations using the modified (w/g)-expansion method. Computers & Mathematics with Applications, 72(9): 2072-2083.  https://doi.org/10.1016/j.camwa.2016.08.005    [Google Scholar]
  7. Gepreel KA (2020). Analytical methods for nonlinear evolution equations in mathematical physics. Mathematics, 8(12): 2211.  https://doi.org/10.3390/math8122211    [Google Scholar]
  8. Hassaballa A, Salih M, Khamis GSM, Gumma E, Adam AMA, and Satty A (2024). Analytical solutions of the space–time fractional Kadomtsev–Petviashvili equation using the (G'/G)-expansion method. Frontiers in Applied Mathematics and Statistics, 10: 1379937.  https://doi.org/10.3389/fams.2024.1379937    [Google Scholar]
  9. He W, Li J, Kong X, and Deng L (2024). Multi-level physics informed deep learning for solving partial differential equations in computational structural mechanics. Communications Engineering, 3: 151.  https://doi.org/10.1038/s44172-024-00303-3    [Google Scholar] PMid:39487342 PMCid:PMC11530524
  10. Konopelchenko BG and Dubrovsky VG (1984). Some new integrable nonlinear evolution equations in 2+1 dimensions. Physics Letters A, 102(1-2): 15-17.  https://doi.org/10.1016/0375-9601(84)90442-0    [Google Scholar]
  11. Malfliet W (1992). Solitary wave solutions of nonlinear wave equations. American Journal of Physics, 60(7): 650-654.  https://doi.org/10.1119/1.17120    [Google Scholar]
  12. Nadeem M, Liu F, and Alsayaad Y (2024). Analyzing the dynamical sensitivity and soliton solutions of time-fractional Schrödinger model with beta derivative. Scientific Reports, 14: 8301.  https://doi.org/10.1038/s41598-024-58796-z    [Google Scholar] PMid:38594393 PMCid:PMC11372137
  13. Wang J and Li Z (2024). A dynamical analysis and new traveling wave solution of the fractional coupled Konopelchenko–Dubrovsky model. Fractal and Fractional, 8(6): 341.  https://doi.org/10.3390/fractalfract8060341    [Google Scholar]
  14. Wang X, Akram G, Sadaf M, Mariyam H, and Abbas M (2022). Soliton solution of the Peyrard–Bishop–Dauxois model of DNA dynamics with M-truncated and β-fractional derivatives using Kudryashov's R function method. Fractal and Fractional, 6(10): 616.  https://doi.org/10.3390/fractalfract6100616    [Google Scholar]
  15. Wazwaz AM (2009). Partial differential equations and solitary waves theory. Springer, Berlin, Germany.  https://doi.org/10.1007/978-3-642-00251-9    [Google Scholar]
  16. Wen-An L, Hao C, and Guo-Cai Z (2009). The (ω/g)-expansion method and its application to Vakhnenko equation. Chinese Physics B, 18: 400.  https://doi.org/10.1088/1674-1056/18/2/004    [Google Scholar]
  17. Zheng B and Feng Q (2014). The Jacobi elliptic equation method for solving fractional partial differential equations. Abstract and Applied Analysis, 2014: 249071.  https://doi.org/10.1155/2014/249071    [Google Scholar]