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This study investigates solutions to the fractional (2+1)-dimensional coupled
Konopelchenko-Dubrovsky (FKD) equation using the beta fractional
derivative method. The main goal is to find exact analytical solutions by
applying the modified (w/g)-expansion technique. Several types of solutions
with unknown parameters are obtained. To illustrate the results, graphs
based on selected parameter values are provided. The results confirm that
the modified (w/g)-expansion method is an effective and reliable tool for
solving the fractional FKD equation.
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1. Introduction

Nonlinear partial differential equations (NLPDEs)
are crucial for modeling complex phenomena across
various disciplines. They have been extensively
employed to represent sophisticated systems, with
applications spanning fluid mechanics, material
science, environmental studies, biomedical
engineering, physics-informed artificial intelligence,
and developments in quantum theory (Debnath,
2012; Wazwaz, 2009; He et al, 2024). Various
techniques have been employed to obtain exact
solutions to NLPDEs, including the Jacobi elliptic
function expansion method (Chen and Wang, 2005),
(G'/G ) —expansion method (Hassaballa et al,
2024), Tanh-function method (Malfliet, 1992), and
the modified (w/g)-expansion method (Wen-An et
al., 2009). This study employs the modified (w/g)-
expansion method to obtain exact analytical
solutions for the fractional Konopelchenko-
Dubrovsky (KD) equation. The coupled (2+1)-
dimensional KD equation, as described by
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Konopelchenko and Dubrovsky (1984), is
mathematically represented as:

v _%v_ W 3 2 200 ,0u o _

o0 ows Onvo ot mvoo 3ay+3muax—0, (@9
9v _ ou

5 ~ ox’ (2)

where, v and u are functions in x, y (spatial
variables) and t (time). Additionally, m and n are
real-valued parameters. In space-time variables, the
coupled fractional KD (FKD) equation is formulated
as (Zheng and Feng, 2014):

4Py = ApPPEy _ 6nvaDfy + %mzvz‘éva - 3‘3Dfu +
3mu4Dlv, (3)
3D5v =4phy, (4)

The fractional coupled FKD equation is relevant
in studying nonlinear waves, particularly solitons
and integrable systems. The equation can also be
used to model the behaviors of light in optical Fibers.
In superfluidity, the fractional coupled (2+1)-
dimensional FKD can be used to model the behaviors
of superfluids, such as helium. The solutions of the
equation can describe the propagation of vortices
and solitons in these systems. In biology, the FKD
equation can model processes such as signal
transmission in cellular networks or wave
propagation in neural activity (Aslam et al., 2023;
Wang and Li, 2024). This study focuses on obtaining
exact wave solutions for Eq. 3 and Eq. 4 using the
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beta fractional derivative (BFD). First proposed by
Atangana and Goufo (2014), the BFD represents a
groundbreaking advancement in fractional calculus,
offering key properties that have far-reaching
applications across various fields, including
mathematics, engineering, and physics. In Eq. 3 and
Eq. 4, the BFD concerning ¢, x, and y is denoted by

‘3Dtﬁ , 4DPand éDf , respectively. Furthermore,
higher-order operations are defined as ‘E}fovz
4p# (E‘va) for the second-order and 4DFFFy =

xXxXx
4DF(4D%Pv) for the third-order BFDs. BFD is
recognized for its properties in effectively
characterizing soliton wave behaviors, making it
highly suitable for finding solitary solutions. Its
advantage lies in its capacity to generate exact
solutions while providing profound physical insights
into the underlying dynamics. This study takes
advantage of these properties by applying the
modified (w/g)-expansion method to derive
traveling wave solutions for Eq. 3 and Eq. 4, thereby
offering a deeper understanding of the wave
phenomena described by these equations.

The application of the modified (w/g)-expansion
method in deriving exact solutions for NPDEs has
been explored in studies such as Gepreel (2016;
2020), while its fractional version has been studied
by Deniz et al. (2024). Consequently, its application
in fractional NDPES has not been extensively
researched. This study addresses this gap by
applying the modified (w/g)-expansion method
precisely to the FKD equation, a context where this
method has not been widely utilized. This approach
primarily aims to obtain analytical solutions for the
FKD equation. The paper is organized as follows:
Section 2 covers the properties of BFD. Section 3
introduces the modified (w/g)-expansion method,
while Section 4 applies this method to obtain
solutions for the FKD equation. Section 5 presents
graphical representations illustrating the physical
properties of the derived solutions. Finally, Section 6
concludes the study and offers recommendations for
future research.

2. The beta fractional derivative (BFD)
The beta fractional derivative presents distinct

benefits compared to traditional fractional
derivatives, such as Caputo and Riemann-Liouville.

F(v, f,‘Df v, éva, ’3D5U, ﬁDﬁﬁv, ﬁDgf v, ‘O‘nyﬁ v, f}fov, ﬁfov, ﬁfo V...

Its extra parameters enhance the ability to model
memory and hereditary traits of complex systems.
Unlike Caputo, which mandates integer-order initial
conditions, or Riemann-Liouville, which can result in
unrealistic initial conditions, the beta derivative
facilitates more natural and physically relevant
formulations. Additionally, it improves both
analytical and numerical handling in specific
scenarios, making it a practical option for real-world
use in areas like anomalous diffusion, viscoelasticity,
and control theory (Wang et al., 2022; Nadeem et al,,
2024).

According to Atangana and Goufo (2014), the
BFD of a function v(x) is defined as:

v(x+e(x+%ﬂ))l_ﬁ)—v(x)

4pPy(x) = lim : x> 0,8 € (0,1].
This definition broadens the idea of
differentiation to include non-integer orders,

allowing it to describe the behavior of functions over
a fractional range. Now, suppose v(x) and g(x) are
p-differentiable functions, V f € (0,1], then the
following properties are satisfied:

o 4DE {bov(x) + byg(x)} = byDE (v(x)) +
b1 4DF (g(x)),V by, by € R.

« 4D (by) = 0, where b, is constant.

« 4D (w()g(x)) = g(x)4DE (w(x)) +

v(2)4Df (9(x)). . ;
AnB (Y@ _ 9(x)4Ds @x)-v(x)§Dk (9(x))
* oDx (g(x)) - g(x)? '

One significant benefit of the Beta derivative is
that it follows the basic principles of classical
calculus, such as the product, quotient, and chain
rules (Atangana and Goufo, 2014).

3. Description of the modified (w/g)-expansion
method

In the following, the key steps of the (w/g)-
expansion method are outlined:

e Step 1: The nonlinear fractional partial differential
equation involving the variables x, y, and t is
assumed to be of the form:

where, v(x,y,t) and F is a polynomial in v and its
various partial derivatives.

e Step 2: Solutions to Eq. 5 are obtained by

considering the following traveling wave
transformation:
v =v($), {=x+y—kt (6)
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(5)

where, k is a constant. Substituting Eq. 6 into Eq. 5
yields:
F(v,v'v",....) =0. (7)

Eq. 7 can be expressed as a polynomial in the
form of:

v =2y (2), ®)
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where, a; (i=0,%1,%2,..,£N) are arbitrary
constants and w(¢§),g(§) satisfy the following
relation:

w w 2
w/g) = a+b(;)+c(;) . (9)
Thus,
w'g—wg' = ag?+ bwg + cw?, (10)

where, a, b, ¢ are arbitrary constants.

e Step 3: The positive integer N is determined from
Eq. 8 by matching the highest power of (w/g)
found in the nonlinear terms with the highest
power of (w/g)" in the highest-order derivatives of
Eq. 7.

e Step 4: Eq. 8 is substituted into Eq. 7, along with
Eq. 9. The terms are then grouped according to
identical powers of (w/g)’, where
0,+1,%2,...,£N. The coefficients of each power of
(w/g)! are set to zero, resulting in a system of
algebraic equations for a;.

e Step 5: The resulting overdetermined system of
nonlinear algebraic equations is solved using
computational tools such as Maple to determine q;.

e Step 6: Solutions obtained from the previous steps
are then used to construct a series of fundamental
solutions for Eq. 5.

i =

By selecting w = gg', variations of the g’'-
expansion method can be derived, leading to an
exact solution expressed in the modified form:

v(§) = XiL-vai (9" (11

where, g satisfies the nonlinear second-order
ordinary differential equation:
g’ =a+bg +c(g)? (12)

where, a, b, and c are arbitrary constants.

Based on the general solution of Eq. 12, the exact
solutions can be classified into the following three
families:

e Family 1: If QO = 4ac — b? > 0, the solutions are;

(13)
(14)

9(§) =-[in (ln(l + tan? G\/ﬁf)) — be|
g' =5 [VatanGVag - o]

e Family 2: If O = 4ac — b? < 0, the solutions are;

9 = 2—1c[ln (tanh2 (%\/—_Qf) — 1) _ bf].
g = —2—10[\/—_Qtanh(%\/—_ﬂf) + b]_

(15)
(16)

e Family 3: If O = 4ac — b? = 0, the solutions are;

(7)
(18)

9(§) == [Im© +3¢]
v =2+

4. Solutions to the coupled FKD equations

The modified (w/g)-expansion method is applied
to construct the exact solution for the FKD equation
based on Eq. 3 and Eq. 4. Consider the following
traveling wave transformations v(x,y,t) = v(¢) and
u(x,y,t) = u(§), where,

_P
B

u A

& (x+i)ﬁ+ (y+i)ﬁ_ (t+L)B
Iy B r'(p) B re)y” -

here, p, u, A are constants and S represents the beta
fractional order.
Applying the above transformations to Egs. 3-4
results in the following equations:
W' —p3v"" — 6pnvv’ + %mzpvzv’ —3uu’ + 3mpuv’ =
0. (19)
uv' = pu'. (20)
Integrating Eq. 20 with respect to ¢ and setting
the constant of integration to zero yields;

uv = pu, leading to

u= %v. (21)
Substituting Eq. 21 into Eq. 19 gives:

' — p3v" — 6pnvv’ + gmzpvzv’ - 3%217’ +

3muvv' = 0. (22)
Integrating Eq. 22 results in:

-1+ 3%2)v+;(mu— 6pn)v? — p3v"” +%mzpv3 =0. (23)

Applying the balance principle between the terms
v3and v" in Eq. 23 determines N = 1. Thus, the
solution of the FKD equation takes the form

v(§) =Xie1ai (@) =a1(g) T +ag+arg'. (24)

Substituting Eq. 24 with Eq. 10 in Eq. 23 and
setting the coefficients of g’ to zero results in a
system of algebraic equations. This leads to a system
of nonlinear algebraic equations for
a_q,ay,aq,p, 14 a,band c which can be solved using
Maple. The resulting sets of equations are as follows:

_ 2pa 6pn

pb
° 1: = —_— 1=, = —, =
Setzzzaoz"zn,alzm# m 4
p(m?p?b%*—4m?p?ac-216n?) _ _
7m2 ,a,=0,p=p (25)
-pb -2 6,
e Set2: a, =—:L ,a_q =—T:a, U =%, A=
p(m?p?b?-4am?p?ac-216n?) _ _
o ,a; =0,p =p. (26)
e Set 3: ao:@, p=2" 7=
2 2b2 4 2 2"’ 216 2;"'
p(m?*p?b*—4m?p?ac—-216n
om? ,a1 = ,a_;=0,p=p (27)
e Set 4: a0=—_:lb, u=6p7n, A=
p(m?p?b?—am?p?ac-216n?) _ —2cp _ _
Py 4 =——,a1=0p=p (28)
2pb 6pn—p?mb
e Set5: a0=%,u=%, A=
(—4m?p3b?+36p%bn+am?piac—108n?p) __ 2pa
m?2 a1 = m’
2cp
G =—-p=p. (29)
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—2pb 6 Zmb -1
e Set6: ay= T: ,H=%. A= v(f)=a_1(21—c[\/ﬂtan(%\/ﬂf)—b]) +ag+
—am23p2_ 2 2,3, 2 _
Canp o soplomuintylec 0D) = 2o (3= [VAtan (3v05) ~ b)), u(@ = Lv. (1)
-2
a==2p=p. (30)

Based on the above sets, the following solutions
e Family 1: For Q = 4ac — b? > 0, the solutions in are obtained:
Eq. 24 take the form:

For set 1:

-1
[sicen - W [‘/—t n<_\/—(%( i HE0 ) T ﬁ)) - b] :

-1
_bu acu La(e 5 _2 B\ —pl - (32)
w (x,y,t) = 28 4 2 [Jﬁtan(zx/ﬁ(ﬁ(x+r(m) Lo+ -5 )) b]
6pn p(m?p?b?—4m?p?ac-216n?)
A_ 2m? '
For set 2:
-1
— Zpb_ fpac Lya(t B BY)) -
vy (x,y,8) =+ ~ [\/ﬁtan(zx/ﬁ(ﬁ(x+r(ﬁ)) +£ (y+r(ﬂ) (t+r(ﬁ) )) b] ,
-1
e 1a(t B _2 AR (33)
U (x,y,t) = — [Vﬁtan(zm( (x+l_(ﬁ)) +£ (Y+r(ﬁ) (t+r(ﬁ) )) b] ,
_ 6pn 1= p(m?p?b?—am?p?ac— 216n2)
T m T 2m?
For set 3:

1’3(X,y,t)=’:n—b+%<[\/ﬁtan(%\/ﬁ(%(x+r(ﬁ))ﬁ —(y F(ﬂ))B__( F(ﬁ))ﬁ)> ])

6nbp 4 tuac 1 P B B_2t B (34)
us(%,y,8) = <[‘/_tan< VA e+ ) + 50+ ) — 5+ ) )> ])
_ 6pn _ p(m?p2b?—4m?p2ac—-216n?)
n= m’ A= 2m? :
For set 4:
va(x,y,t) = [ftan(—\/_(%(x+r(m)ﬁ +£ (y+r([;) __(t+r([;) B))—b],
—THb_ 1a(r B _2 B)) — (35)
Uy (x,y,t) = - m[\/ﬁtan<2\/ﬁ(ﬁ(x+r(ﬁ)) + = (y+F(B) (+F(B) )) b],
_ 6pn 1= p(m?p?b%-4m?p2ac-216n?)
T m T 2m? '
For set 5:
-1
4 !
v, y, 1) = 222 4 220 [W tan (—f Got! +50 +5)" —E(t+r(ﬁ))ﬁ)> ] +

%[mtan <§\/ﬁ(§( R A e (G B)> - b]’
-1
us(x,y,t) = % + A“:ni [\/ﬁtan (%\/ﬁ (% (x+ I‘(,B))B + £ (_’V 4+ — l"(/?) — _( 4+ — I‘(ﬂ) B)) _ b] (36)
Jﬁ[mtan <§\/§(§ G+ F(ﬁ))ﬁ FO+ F(ﬁ))ﬁ __( I‘(B))ﬂ)> ]

__ (6pn—p?mb) 1= (-4m?p3b?+36p%bn+4m?piac—108n?p)
- m A m2 ’

For set 6:
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-1
voley D) == = [\/ﬁ wan (%\/5 Go+mp) 50+ -5+ F(B))ﬁ)) ]
_%[mtan (ém(g () 5O+ ) =S+ F(B))ﬁ)> ]
-1
ug(x,y,t) = _in_”b _ 4;::C [\/ﬁ tan <%\/ﬁ (% (x+ F(B))B + £ (y 4 — F(ﬁ) -z (t + F(ﬁ) ﬁ)) _ b] (37)

—i[\/ﬁtan(lm(ﬂ(x+m)) +4 (y+r(ﬁ) —%(t+r(ﬁ))ﬁ)> ]

(6pn+p mb) A= (—4m?p3b?-36p?bmn+4am?p3ac—108n?p)
m m2 ’

e Family 2: For Q = 4ac — b? < 0, the solutions in
Eq. 24 are given by: From the given sets, the following solutions are
derived:

v() =—-a_, (i [\/_tanh(lx/_g‘) b])_l +ay,—

ay = [Vatanh (3vA¢) + ], u(®) = Lo, (38)
For set 1:
-1
b 4pac
[v7(x,y,t)=p;— £ <[\/_tanh< \/_(g(x+m))ﬁ —(y F(ﬁ)),;__( F(ﬁ))ﬁ)>+b]> ,
- (39)
|0 == %([\mtanh (ém(ﬂ CHi +50+ ) 5 ﬁ)> ’ b]) '
_ 6pn 1= p(m?p?b?—am?p?ac— 216n2)
T m’ 2m?
For set 2:
-1
[ 4"‘” P B4 E B _Z B
vg(%,7,t) <[\/_tanh< VA G+ ) + 50+ ) — 5+ ) )) +b]> ,
-1
_ —ub | 4pac 1 p (40)
ug(x,y, ) = ==+ T([x/ﬁtanh (;\/ﬁ(—(x + r([5,))3 +Ey+ F(m)ﬁ L+ F(ﬂ) B)) + b]) )
6pn p(m?p?b?— 4mzpzac 216n2)

p=-—, A=

2m?

For set 3:

ve(ny,t) = %_%<mtanh(im(%(x+r(m) 0+ 5 s B))“’)’

— Hb_ R 1a(” _2 B (41)
Iug(x,y,t)— - m(\/ﬁtanh z‘/ﬁ(;;(“m;)) += (y+F(B) (+F(B) ) +b|,
6pn p(m?p?b?-4m?p?ac-216n?)
l W= A= 2 -
For set 4:
( =pb | ) Bk B_tery 138
ivlo(xy,t)— \/_tanh \/_(B(x-l-l"(ﬁ)) (y+r(p) B(t+r‘(ﬁ) ) + b,
—THb B 1a(r B p_2 B (42)
Iulo(x,y,t) - +m[\/!_1tanh<2\/§(ﬁ(x+r(ﬁ)) += (y+r(ﬁ)) (t+l‘(ﬁ)) )>+b],
6pn p(m?p?b?-am?p?ac-216n?)
l W=t A= 2 :
For set 5:
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-1
vn ) =2 - %([‘/ﬁtanh (%‘/ﬁ(ﬂ (x + F(ﬁ))ﬁ FOt F(ﬁ))ﬁ _‘( r(,;))ﬁ)> D
_ﬁ[\/—tanh( vae ((x+F(B))5 +& (y+r(ﬁ) B _ B( +TB> ))er],
-1
Uy (e, y,t) =222 — ‘““”([\/_ tanh( A+ +5 0+ ) — 5+ r(lﬁ))ﬁ)) + b]) (43)
— 5 [VR@nhGVAG G+ ) + 50+ ) — 5 (e + ) + o).

(6pn—p?mb) 1= (- 4m2p3b2+36p2bn+4m piac-108n?p)

u=

m ’ m2
For set 6:
-1
_ _2pb 4pac B _ A
v1(x,y,t) <[\/_tanh< ( (x+F(B)) += (y+r(ﬁ) ( +F(B) )>+b]>
B4+ E p_Z B
[\/_ta“h( o) 50+ ) 5 ) )> ]
-1
= 2 e 8 -2 p ()
Uy, (x,y,t) = + ([\/_tanh< ( (x +F(ﬂ)) +£ (y+l_(ﬁ) ﬁ(t+r(ﬂ)) )) D
B _Z
[\/—tanh( x+ i) HE 0+ ) 5+ )>+b],
(6pn+p?mb) A= (—4m?p3b2-36p2bmn+4m?p3ac—108n?p)
m m2 :

e Family 3: For: Q = 4ac — b? = 0, the solutions in

Eq. 24 are expressed as: The following solutions are derived from the
given sets:
v(f):—a_l(%[%+§])‘1+a0—a1%[%+§],u:%v. (45)
For set 1:

-1
pb 2pac 1 b
) ;t = 1)
vi3(x,y, 1) == — = <[ e e o X ))3+ D

e T(B
-1 ( 242H2 2,2 2) (46)
2 pac 1 b 6pn p(m“p“b“—4m“p“ac—216n
wiz(x, ,t)——— +3) ou=—r A=
ey " ([ R e (ol ZD " 2m?
For set 2:
-1
—-pb = 2pac 1 b
1714,(X,y,t) = _+_([p 2 1 +_]> ’
mom \| g 0P E )
-1
_ —ub | 2pac 1 b _ 6pn (47)
u (x; rt)_i-l_ ([ +_]> U=,
14Xy m m (X+Tﬁ))ﬁ+ﬁ(y+%ﬁ))ﬁ_£( %B))B 2 m
1= p(m?p?b2—4m?p?ac— 216n2)
2m?
For set 3:
pb 2p 1 b
( U15(x,y,f) =___<[ 1 1 7 1 +_]>r
m o m\|ferp) o) )’ 2 (48)
ub  2u 1 b 6pn p(m?p?b?—4m?p?ac-216n?)
sl ) = Z_qu(“ )P+ ( +—)F - (t+—)B+ D' K= A= 2m2 '
AN Vi )
For set 4:
1 b
( Ulé(x’y't) = __+ ([ + ])l
e R i ek (49)
u16(x,y, t) _ _E_l_ 2u 1 + b = 6,»;71‘ 1= p(m?p?p?— 4m22p ac— 216n2)
m - m \[ferm 50 ) 5 ) " zm
For set 5:
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2cpa
m

2pb
v17(x,y,t) = e

2w ( ! b
m \ |2 ] A TRV L
[Fot )P+ 50 ) ( MU ]

Zub 2cua

U7 (x,y,t) =

m

2u ( 1 + b
m \ |2c+—)B+E(y+— B2+ 2]’
) e ) R ) Y
(6pn—p?mb) (- 4m2p3b2+36p2bn+4m2p3ac 108n? p)
= ’)1

m m2
For set 6:
-1
2cpa 1 b
v18(x, y,t) = -
1800 ==, ([ L) P+ P 5t )ﬁ+2]>
B T(B) T(B)
2pb + 2p 1 + b]
m m |2 B L yp_ 1 2|’
O+ G0 ) (“r(ﬁ))
-1
2cua 1 b
ulS(x'y' t) = ([ 2 1 + _]>
m N B rps 1B ' 2
S+ 50 5t
_wb 2 1 +2]
m m |2 B ESRY 1 2|’
) 0 R (“r(ﬁ))
__ (6pn+p?mb) 1= (—4m?p3b%-36p?bmn+4m?p3ac-108n?p)
- m e m2 '

-1
1 b
A 1
([ SO PP 5 _F(ﬁ))B 2

-1
1 b
<[p +_B+ + p- + ; B+E:|)
Ot T rw)) ( W

5. Graphical illustrations

This study presents a graphical analysis of the
FKD equation to examine how variations in
fractional order influence the solutions v;(x,y,t),
vs(x,y,t), v13(x,y,t) and vy, (x, y, t). The analysis is
performed using fixed parameter values ¢ =m =
n =p =1 over the domain =5 < x,t < 5. Results
are visualized in 3D for fractional orders f = 1,5 =
0.75, = 0.5, and B = 0.25 in panels (a-d), while
panel (e) presents a corresponding 2D plotaty = 2.

Fig. 1 displays 3D plots of the solutions v, (x, y, t)
in panels (a-d) with parameters a =4,b =2,u =
6,4 = —114. Panels (a-d) illustrate the impact of the
fractional order of solution v, (x, y, t). Panels (a) and
(b) show strong localized peaks, while panels (c) and
(d) display oscillatory behavior and damping effects.
Panel (e) presents a 2D slice at t = 1, showing the
propagation of traveling wave solutions. Similar
wave behaviors are observed in the solutions
uy (x,y,t), uy(x,y,t) and v,(x,y,t) confirming the
consistency of nonlinear dynamics across the
system. These visualizations highlight the formation
and movement of nonlinear waves, demonstrating
the influence of system parameters on wave
evolution. Fig. 2 presents a series of visualizations
illustrating the behavior of the solution vg(x,y,t)
under specific parameter values a =4,b=2,u =
6,1 =—114. Panels (a-d) display 3D
representations, while panel (e) provides a 2D plot
att = 1, depicting traveling wave solutions. Panel (a)
shows multiple sharp peaks, indicating strong
localized singularities and high sensitivity to
fractional effects. Panel (b) exhibits pronounced
negative spikes, suggesting significant damping.
Panel (c) features a single dominant downward
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spike, representing a highly localized. Panel (d)
presents a mix of positive and negative peaks,
demonstrating a balance between fractional
damping and non-local interactions. The 2D graph
shows that when § = 1, the soliton looks smooth
with a few oscillations. However, as § decreases, the
oscillatory behavior becomes more noticeable. This
pattern is characteristic of nonlinear wave dynamics,
where soliton structures evolve based on parameter
variations. Additionally, similar wave behavior is
observed in the solutions us(x,y,t), ve(x,y,t), and
ug(x,y,t), as demonstrated in their respective 3D
visualizations, reinforcing the consistent impact of
parameter changes on wave evolution.

Fig. 3 illustrates the shock soliton solution for
vi3(x,y,t) through 3D and 2D visualizations,
highlighting its dynamic behavior under the given
parameter settings a=—4,b=4,u=6,1=-10.
The physical difference between panels (a) and (b) is
minimal, as both exhibit smooth decay. Panel (c)
shows a slight reduction in the overall magnitude of
the surface values. Panel (d) exhibits a decrease in
values, suggesting a stronger damping effect or a
greater influence of diffusion. 2D representation in
panel (e) further emphasizes that, as the parameter
B increases, the magnitude of v;3(x,y,t) also
increases, indicating a direct proportional
relationship.

Fig. 4 provides a detailed visualization of the
shock soliton solution for v;,(x,y,t) under various
conditions. Panels (a-d) offer 3D plots illustrating the
evolution of the shock soliton for fixed parameters
a=b=4,c=1u=2,A=-12. In panel (a), the
surface exhibits strong curvature and steep
gradients near the boundary, indicating significant
variations in the system's behavior.
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Fig. 1: Panels (A)-(D) illustrate 3D of v, (x, y, t) corresponding to 8 = 1,0.75, 0.5, and 0.25 respectively. Panel (E) depicts the
2D of v;(x, y,t) at a fixed time t = 1
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Fig. 2: Panels (A)-(D) illustrate 3D of v5(x, y, t) corresponding to 8 = 1,0.75, 0.5, and 0.25 respectively. Panel (E) depicts the
2D of v1(x, y, t) at a fixed time t = 1
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Fig. 3: Panels (A)-(D) illustrate 3D of v,3(x, y, t) corresponding to 8 = 1,0.75, 0.5, and 0.25 respectively. Panel (E) depicts the
2D of v;(x, y,t) at a fixed time t = 1

Fig. 4: Panels (A)-(D) illustrate 3D of v;5(x, v, t) corresponding to § = 1,0.75,0.5, and 0.25 respectively. Panel (E) depicts the
2D of v1(x, y, t) at a fixed time t = 1

In panel (b), the curvature decreases, suggesting transition to a smoother state. The domain expands
the dissipation of initial disturbances and the further in panel (c), and the surface becomes
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increasingly flatter, implying a reduction in transient
effects. In panel (d), the surface appears nearly
uniform over a large domain, indicating a stabilized
system with minimal variations. Panel (e) presents
2D plots at time t = 1 with the same parameters,
showing the effect of varying £ on the shape of the
curve. Specifically, an increase in £ is inversely
related to the magnitude of v;,(x,y,t), indicating
that higher values of § reduce the amplitude of the
shock soliton. Physically, this suggests that § plays a
key role in modulating the intensity of the shock
wave or soliton, where higher values of § lead to a
more dampened or weaker wave. This could be
interpreted in contexts such as fluid dynamics or
nonlinear wave phenomena, where the soliton
represents a stable, localized wave solution, and f8
may control energy dissipation or the extent of
nonlinearity in the system.

6. Conclusion

In this study, the modified (w/g)-expansion
method was successfully employed to derive
analytical solutions for the FKD equation, including
the beta fractional derivative. Various categories of
solutions, including periodic, shock, and traveling
wave  solutions, were obtained. Graphical
representations were provided to visualize and
interpret the characteristics of these solutions,
offering insights into their behavior. The solutions
obtained are consistent with those presented in
Wang and Li (2024) when [ is set to 1. All
calculations in this study were carried out via
MAPLE software. Future studies could explore the
numerical solution of the FKD equation.
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