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This study investigates solutions to the fractional (2+1)-dimensional coupled 
Konopelchenko-Dubrovsky (FKD) equation using the beta fractional 
derivative method. The main goal is to find exact analytical solutions by 
applying the modified (w/g)-expansion technique. Several types of solutions 
with unknown parameters are obtained. To illustrate the results, graphs 
based on selected parameter values are provided. The results confirm that 
the modified (w/g)-expansion method is an effective and reliable tool for 
solving the fractional FKD equation. 
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1. Introduction 

*Nonlinear partial differential equations (NLPDEs) 
are crucial for modeling complex phenomena across 
various disciplines. They have been extensively 
employed to represent sophisticated systems, with 
applications spanning fluid mechanics, material 
science, environmental studies, biomedical 
engineering, physics-informed artificial intelligence, 
and developments in quantum theory (Debnath, 
2012; Wazwaz, 2009; He et al., 2024). Various 
techniques have been employed to obtain exact 
solutions to NLPDEs, including the Jacobi elliptic 
function expansion method (Chen and Wang, 2005), 
(𝐺′/𝐺 ) −expansion method (Hassaballa et al., 
2024), Tanh-function method (Malfliet, 1992), and 
the modified (w/g)-expansion method (Wen-An et 
al., 2009). This study employs the modified (w/g)-
expansion method to obtain exact analytical 
solutions for the fractional Konopelchenko-
Dubrovsky (KD) equation. The coupled (2+1)-
dimensional KD equation, as described by 
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Konopelchenko and Dubrovsky (1984), is 
mathematically represented as: 
 
𝜕𝑣

𝜕𝑡
−

𝜕3𝑣

𝜕𝑥3
− 6𝑛𝑣

𝜕𝑣

𝜕𝑥
+
3

2
𝑚2𝑣2

𝜕𝑣

𝜕𝑥
− 3

𝜕𝑢

𝜕𝑦
+ 3𝑚𝑢

𝜕𝑣

𝜕𝑥
= 0,          (1) 

 
𝜕𝑣

𝜕𝑦
=

𝜕𝑢

𝜕𝑥
,                                                                                            (2) 

 

where, 𝑣 and 𝑢 are functions in 𝑥, 𝑦 (spatial 
variables) and 𝑡 (time). Additionally, 𝑚 and 𝑛 are 
real-valued parameters. In space-time variables, the 
coupled fractional KD (FKD) equation is formulated 
as (Zheng and Feng, 2014): 
 

𝐷𝑡
𝛽
𝑣0

𝐴 = 𝐷𝑥𝑥𝑥
𝛽𝛽𝛽

𝑣0
𝐴 − 6𝑛𝑣 𝐷𝑥

𝛽
0
𝐴 𝑣 +

3

2
𝑚2𝑣2 𝐷𝑥

𝛽
𝑣0

𝐴 − 3 𝐷𝑦
𝛽

0
𝐴 𝑢 +

3𝑚𝑢 𝐷𝑥
𝛽

0
𝐴 𝑣,                                                                                       (3) 

𝐷𝑦
𝛽

0
𝐴 𝑣 = 𝐷𝑥

𝛽
0
𝐴 𝑢.                                                                               (4) 

 

The fractional coupled FKD equation is relevant 
in studying nonlinear waves, particularly solitons 
and integrable systems. The equation can also be 
used to model the behaviors of light in optical Fibers. 
In superfluidity, the fractional coupled (2+1)-
dimensional FKD can be used to model the behaviors 
of superfluids, such as helium. The solutions of the 
equation can describe the propagation of vortices 
and solitons in these systems. In biology, the FKD 
equation can model processes such as signal 
transmission in cellular networks or wave 
propagation in neural activity (Aslam et al., 2023; 
Wang and Li, 2024). This study focuses on obtaining 
exact wave solutions for Eq. 3 and Eq. 4 using the 
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beta fractional derivative (BFD). First proposed by 
Atangana and Goufo (2014), the BFD represents a 
groundbreaking advancement in fractional calculus, 
offering key properties that have far-reaching 
applications across various fields, including 
mathematics, engineering, and physics. In Eq. 3 and 
Eq. 4, the BFD concerning 𝑡, 𝑥, and 𝑦 is denoted by 

𝐷𝑡
𝛽

0
𝐴 , 𝐷𝑥

𝛽
0
𝐴 and 𝐷𝑦

𝛽
0
𝐴 , respectively. Furthermore, 

higher-order operations are defined as 𝐷𝑥𝑥
𝛽𝛽

0
𝐴 𝑣 =

𝐷𝑥
𝛽

0
𝐴 ( 𝐷𝑥

𝛽
0
𝐴 𝑣) for the second-order and 𝐷𝑥𝑥𝑥

𝛽𝛽𝛽
𝑣0

𝐴 =

𝐷𝑥
𝛽

0
𝐴 ( 𝐷𝑥𝑥

𝛽𝛽
0
𝐴 𝑣) for the third-order BFDs. BFD is 

recognized for its properties in effectively 
characterizing soliton wave behaviors, making it 
highly suitable for finding solitary solutions. Its 
advantage lies in its capacity to generate exact 
solutions while providing profound physical insights 
into the underlying dynamics. This study takes 
advantage of these properties by applying the 
modified (w/g)-expansion method to derive 
traveling wave solutions for Eq. 3 and Eq. 4, thereby 
offering a deeper understanding of the wave 
phenomena described by these equations. 

The application of the modified (w/g)-expansion 
method in deriving exact solutions for NPDEs has 
been explored in studies such as Gepreel (2016; 
2020), while its fractional version has been studied 
by Deniz et al. (2024). Consequently, its application 
in fractional NDPES has not been extensively 
researched. This study addresses this gap by 
applying the modified (w/g)-expansion method 
precisely to the FKD equation, a context where this 
method has not been widely utilized. This approach 
primarily aims to obtain analytical solutions for the 
FKD equation. The paper is organized as follows: 
Section 2 covers the properties of BFD. Section 3 
introduces the modified (w/g)-expansion method, 
while Section 4 applies this method to obtain 
solutions for the FKD equation. Section 5 presents 
graphical representations illustrating the physical 
properties of the derived solutions. Finally, Section 6 
concludes the study and offers recommendations for 
future research. 

2. The beta fractional derivative (BFD) 

The beta fractional derivative presents distinct 
benefits compared to traditional fractional 
derivatives, such as Caputo and Riemann-Liouville. 

Its extra parameters enhance the ability to model 
memory and hereditary traits of complex systems. 
Unlike Caputo, which mandates integer-order initial 
conditions, or Riemann-Liouville, which can result in 
unrealistic initial conditions, the beta derivative 
facilitates more natural and physically relevant 
formulations. Additionally, it improves both 
analytical and numerical handling in specific 
scenarios, making it a practical option for real-world 
use in areas like anomalous diffusion, viscoelasticity, 
and control theory (Wang et al., 2022; Nadeem et al., 
2024). 

According to Atangana and Goufo (2014), the 
BFD of a function 𝑣(𝑥) is defined as: 
 

𝐷𝑥
𝛽
𝑣(𝑥)0

𝐴 = lim
𝜖→0

𝑣(𝑥+𝜖(𝑥+
1

Γ(𝛽)
)
1−𝛽

)−𝑣(𝑥)

𝜖
,  𝑥 > 0, 𝛽 ∈ (0,1]. 

 

This definition broadens the idea of 
differentiation to include non-integer orders, 
allowing it to describe the behavior of functions over 
a fractional range. Now, suppose 𝑣(𝑥) and 𝑔(𝑥) are 
𝛽-differentiable functions, ∀ 𝛽 ∈ (0,1], then the 
following properties  are satisfied: 
 

• 𝐷𝑥
𝛽

0
𝐴 {𝑏0𝑣(𝑥) + 𝑏1𝑔(𝑥)} = 𝑏0 𝐷𝑥

𝛽
0
𝐴 (𝑣(𝑥)) +

𝑏1 𝐷𝑥
𝛽

0
𝐴 (𝑔(𝑥)), ∀ 𝑏0, 𝑏1 ∈ ℝ. 

• 𝐷𝑥
𝛽

0
𝐴 (𝑏0) = 0, where 𝑏0 is constant. 

• 𝐷𝑥
𝛽

0
𝐴 (𝑣(𝑥)𝑔(𝑥)) = 𝑔(𝑥) 𝐷𝑥

𝛽
0
𝐴 (𝑣(𝑥)) +

𝑣(𝑥) 𝐷𝑥
𝛽

0
𝐴 (𝑔(𝑥)). 

• 𝐷𝑥
𝛽

0
𝐴 (

𝑣(𝑥)

𝑔(𝑥)
) =

𝑔(𝑥) 𝐷𝑥
𝛽

0
𝐴 (𝑣(𝑥))−𝑣(𝑥) 𝐷𝑥

𝛽
0
𝐴 (𝑔(𝑥))

𝑔(𝑥)2
. 

 
One significant benefit of the Beta derivative is 

that it follows the basic principles of classical 
calculus, such as the product, quotient, and chain 
rules (Atangana and Goufo, 2014). 

3. Description of the modified (w/g)-expansion 
method 

In the following, the key steps of the (w/g)-
expansion method are outlined: 
 
• Step 1: The nonlinear fractional partial differential 

equation involving the variables 𝑥, 𝑦, and 𝑡 is 
assumed to be of the form: 

  

𝐹(𝑣, 𝐷𝑡
𝛽
𝑣0

𝐴 , 𝐷𝑥
𝛽
𝑣0

𝐴 , 𝐷𝑦
𝛽
𝑣0

𝐴 , 𝐷𝑡𝑡
𝛽𝛽

0
𝐴 𝑣, 𝐷𝑡𝑥

𝛽𝛽
0
𝐴 𝑣, 𝐷𝑡𝑦

𝛽𝛽
0
𝐴 𝑣, 𝐷𝑥𝑦

𝛽𝛽
0
𝐴 𝑣, 𝐷𝑥𝑥

𝛽𝛽
0
𝐴 𝑣, 𝐷𝑦𝑦

𝛽𝛽
0
𝐴 𝑣, . . . . ) = 0,                                                                                    (5) 

  
 

where, 𝑣(𝑥, 𝑦, 𝑡) and 𝐹 is a polynomial in 𝑣 and its 
various partial derivatives. 
 
• Step 2: Solutions to Eq. 5 are obtained by 

considering the following traveling wave 
transformation: 

 
𝑣 = 𝑣(𝜉),                           𝜉 = 𝑥 + 𝑦 − 𝑘𝑡,                                 (6) 
 

where, 𝑘 is a constant. Substituting Eq. 6 into Eq. 5 
yields: 
 
𝐹(𝑣, 𝑣′,𝑣′′, . . . . ) = 0.                                                                     (7) 
 

Eq. 7 can be expressed as a polynomial in the 
form of: 
 

𝑣(𝜉) = ∑ 𝑎𝑖
𝑁
𝑖=−𝑁 (

𝑤

𝑔
)
𝑖
,                                                                  (8) 



Gumma et al/International Journal of Advanced and Applied Sciences, 13(1) 2026, Pages: 115-124 

117 

 

where, 𝑎𝑖  (𝑖 = 0, ±1,±2,… ,±𝑁) are arbitrary 
constants and 𝑤(𝜉), 𝑔(𝜉) satisfy the following 
relation: 
 

(𝑤/𝑔)′ = 𝑎 + 𝑏 (
𝑤

𝑔
) + 𝑐 (

𝑤

𝑔
)
2
.                                                   (9) 

 

Thus, 
 
𝑤′𝑔 − 𝑤𝑔′ = 𝑎𝑔2 + 𝑏𝑤𝑔 + 𝑐𝑤2,                                           (10) 
 

where, 𝑎, 𝑏, 𝑐  are arbitrary constants. 
 
• Step 3: The positive integer 𝑁 is determined from 

Eq. 8 by matching the highest power of (𝑤/𝑔)𝑖  
found in the nonlinear terms with the highest 
power of (𝑤/𝑔)𝑖  in the highest-order derivatives of 
Eq. 7. 

• Step 4: Eq. 8 is substituted into Eq. 7, along with 
Eq. 9. The terms are then grouped according to 
identical powers of (𝑤/𝑔)𝑖 , where  𝑖 =
0, ±1,±2,… ,±𝑁. The coefficients of each power of 
(𝑤/𝑔)𝑖 are set to zero, resulting in a system of 
algebraic equations for 𝑎𝑖 . 

• Step 5: The resulting overdetermined system of 
nonlinear algebraic equations is solved using 
computational tools such as Maple to determine 𝑎𝑖 . 

• Step 6: Solutions obtained from the previous steps 
are then used to construct a series of fundamental 
solutions for Eq. 5. 

 
By selecting 𝑤 = 𝑔𝑔′, variations of the 𝑔′-

expansion method can be derived, leading to an 
exact solution expressed in the modified form: 
 
𝑣(𝜉) = ∑ 𝑎𝑖

𝑁
𝑖=−𝑁 (𝑔′)𝑖 .                                                               (11) 

 

where, 𝑔 satisfies the nonlinear second-order 
ordinary differential equation: 
 
𝑔′′ = 𝑎 + 𝑏𝑔′ + 𝑐(𝑔′)2,                                                             (12) 
 

where, 𝑎, 𝑏, and 𝑐 are arbitrary constants. 
Based on the general solution of Eq. 12, the exact 

solutions can be classified into the following three 
families: 
 
• Family 1: If Ω = 4𝑎𝑐 − 𝑏2 > 0, the solutions are; 
 

𝑔(𝜉) =
1

2𝑐
[𝑙𝑛 (ln(1 + 𝑡𝑎𝑛2 (

1

2
√Ω𝜉)) − 𝑏𝜉].                       (13) 

𝑔′ =
1

2𝑐
[√Ω tan(

1

2
√Ω𝜉) − 𝑏].                                                   (14) 

 

• Family 2: If Ω = 4𝑎𝑐 − 𝑏2 < 0, the solutions are; 
 

𝑔(𝜉) =
1

2𝑐
[ln (tanh2 (

1

2
√−Ω 𝜉) − 1) − 𝑏𝜉].                       (15) 

𝑔′ = −
1

2𝑐
[√−Ω tanh(

1

2
√−Ω𝜉) + 𝑏].                                     (16) 

 

• Family 3: If Ω = 4𝑎𝑐 − 𝑏2 = 0, the solutions are; 
 

𝑔(𝜉) = −
1

𝑐
[ln(𝜉) +

𝑏

2
𝜉].                                                           (17) 

𝑔′ = −
1

𝑐
[
1

𝜉
+
𝑏

2
].                                                                           (18) 

4. Solutions to the coupled FKD equations 

The modified (w/g)-expansion method is applied 
to construct the exact solution for the FKD equation 
based on Eq. 3 and Eq. 4. Consider the following 
traveling wave transformations 𝑣(𝑥, 𝑦, 𝑡) = 𝑣(𝜉) and 
𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉), where, 
 

𝜉 =
𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽 . 

 

here, 𝜌, 𝜇, 𝜆 are constants and 𝛽 represents the beta 
fractional order. 

Applying the above transformations to Eqs. 3-4 
results in the following equations: 
 

−𝜆𝑣′ − 𝜌3𝑣′′′ − 6𝜌𝑛𝑣𝑣′ +
3

2
𝑚2𝜌𝑣2𝑣′ − 3𝜇𝑢′ + 3𝑚𝜌𝑢𝑣′ =

0.                                                                                                      (19) 
𝜇𝑣′ = 𝜌𝑢′.                                                                                     (20) 
 

Integrating Eq. 20 with respect to 𝜉 and setting 
the constant of integration to zero yields; 
 
𝜇𝑣 = 𝜌𝑢, leading to 

𝑢 =
𝜇

𝜌
𝑣.                                                                                          (21) 

 

Substituting Eq. 21 into Eq. 19 gives: 
 

−𝜆𝑣′ − 𝜌3𝑣′′′ − 6𝜌𝑛𝑣𝑣′ +
3

2
𝑚2𝜌𝑣2𝑣′ − 3

𝜇2

𝜌
𝑣′ +

3𝑚𝜇𝑣𝑣′ = 0.                                                                                 (22) 
 

Integrating Eq. 22 results in: 
 

−(𝜆 + 3
𝜇2

𝜌
)𝑣 +

3

2
(𝑚𝜇 − 6𝜌𝑛)𝑣2 − 𝜌3𝑣′′ +

1

2
𝑚2𝜌𝑣3 = 0.           (23) 

 

Applying the balance principle between the terms 
𝑣3and 𝑣′′ in Eq. 23 determines 𝑁 = 1. Thus, the 
solution of the FKD equation takes the form 
 
𝑣(𝜉) = ∑ 𝑎𝑖

1
𝑖=−1 (𝑔′)𝑖 = 𝑎−1(𝑔

′)−1 + 𝑎0 + 𝑎1𝑔
′.              (24) 

 

Substituting Eq. 24 with Eq. 10 in Eq. 23 and 
setting the coefficients of 𝑔′ to zero results in a 
system of algebraic equations. This leads to a system 
of nonlinear algebraic equations for 
𝑎−1, 𝑎0, 𝑎1, 𝜌, 𝜇 𝜆, 𝑎, 𝑏 and 𝑐 which can be solved using 
Maple. The resulting sets of equations are as follows: 
 

• Set 1:  𝑎0 =
𝜌𝑏

𝑚
, 𝑎−1 =

2𝜌𝑎

𝑚
, 𝜇 =

6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 , 𝑎1 = 0, 𝜌 = 𝜌                            (25) 

• Set 2:  𝑎0 =
−𝜌𝑏

𝑚
, 𝑎−1 =

−2𝜌𝑎

𝑚
, 𝜇 =

6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 , 𝑎1 = 0, 𝜌 = 𝜌.                           (26) 

• Set 3:  𝑎0 =
𝜌𝑏

𝑚
, 𝜇 =

6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 , 𝑎1 =
2𝑐𝜌

𝑚
, 𝑎−1 = 0, 𝜌 = 𝜌.      (27) 

• Set 4:  𝑎0 =
−𝜌𝑏

𝑚
, 𝜇 =

6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 , 𝑎1 =
−2𝑐𝜌

𝑚
, 𝑎−1 = 0, 𝜌 = 𝜌        (28) 

• Set 5:  𝑎0 =
2𝜌𝑏

𝑚
, 𝜇 =

(6𝜌𝑛−𝜌2𝑚𝑏)

𝑚
,    𝜆 =

(−4𝑚2𝜌3𝑏2+36𝜌2𝑏𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2 , 𝑎−1 =
2𝜌𝑎

𝑚
, 

𝑎1 =
2𝑐𝜌

𝑚
, 𝜌 = 𝜌 .                                                                   (29) 
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• Set 6:  𝑎0 =
−2𝜌𝑏

𝑚
, 𝜇 =

(6𝜌𝑛+𝜌2𝑚𝑏)

𝑚
, 𝜆 =

(−4𝑚2𝜌3𝑏2−36𝜌2𝑏𝑚𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2
, 𝑎−1 =

−2𝜌𝑎

𝑚
, 

𝑎1 =
−2𝑐𝜌

𝑚
, 𝜌 = 𝜌 .                                                               (30) 

 

• Family 1: For Ω = 4𝑎𝑐 − 𝑏2 > 0, the solutions in 
Eq. 24 take the form: 

 

𝑣(𝜉) = 𝑎−1 (
1

2𝑐
[√Ω tan (

1

2
√Ω𝜉) − 𝑏])

−1
+ 𝑎0 +

𝑎1 (
1

2𝑐
[√Ω tan (

1

2
√Ω𝜉) − 𝑏]) , 𝑢(𝜉) =

𝜇

𝜌
𝑣.                           (31) 

 

Based on the above sets, the following solutions 
are obtained: 

  

For set 1: 
 

{
  
 

  
 𝑣1(𝑥, 𝑦, 𝑡) =

𝜌𝑏

𝑚
+
4𝜌𝑎𝑐

𝑚
[√Ω tan(

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

,

𝑢1(𝑥, 𝑦, 𝑡) =
𝑏 𝜇

𝑚
+
4𝑎𝑐𝜇

𝑚
[√Ω tan (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

 𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

 𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .

,                                                     (32) 

 

For set 2:  
 

{
 
 
 

 
 
 𝑣2(𝑥, 𝑦, 𝑡) =

−𝜌𝑏

𝑚
−
4𝜌𝑎𝑐

𝑚
[√Ω tan(

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

 𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

,

 

𝑢2(𝑥, 𝑦, 𝑡) =
−𝜇𝑏

𝑚
−
4𝑎𝑐𝜇

𝑚
[√Ω tan(

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

 𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

,

 𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2
.

 

                                                   (33) 

 

For set 3: 
 

{
  
 

  
 𝑣3(𝑥, 𝑦, 𝑡) =

𝜌𝑏

𝑚
+

𝜌

𝑚
([√Ω tan(

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

 𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]) ,

 𝑢3(𝑥, 𝑦, 𝑡) =
6𝑛𝑏𝜌

𝑚2
+
4𝜇𝑎𝑐

𝑚
([√Ω tan (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

 𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]) ,

  𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2
.

                                                (34) 

 

For set 4: 
 

{
  
 

  
 𝑣4(𝑥, 𝑦, 𝑡) =

−𝜌𝑏

𝑚
−

𝜌

𝑚
[√Ω tan (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

 𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏] ,

𝑢4(𝑥, 𝑦, 𝑡) =
−𝜇𝑏

𝑚
−

𝜇

𝑚
[√Ω tan(

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

 𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏] ,

   𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .

                                                            (35) 

 

For set 5: 
 

{
 
 
 
 
 

 
 
 
 
 𝑣5(𝑥, 𝑦, 𝑡) =

2𝜌𝑏

𝑚
+
4𝜌𝑎𝑐

𝑚
[√Ω tan(

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

+

𝜌

𝑚
[√Ω tan (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏] ,

𝑢5(𝑥, 𝑦, 𝑡) =
2𝜇𝑏

𝑚
+
4𝜇𝑎𝑐

𝑚
[√Ω tan (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

+
𝜇

𝑚
[√Ω tan(

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏] ,

𝜇 =
(6𝜌𝑛−𝜌2𝑚𝑏)

𝑚
, 𝜆 =

(−4𝑚2𝜌3𝑏2+36𝜌2𝑏𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2 .

                                                  (36) 

 

For set 6: 
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{
 
 
 
 
 

 
 
 
 
 𝑣6(𝑥, 𝑦, 𝑡) =

−2𝜌𝑏

𝑚
−
4𝜌𝑎𝑐

𝑚
[√Ω tan (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

−
𝜌

𝑚
[√Ω tan (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

𝑢6(𝑥, 𝑦, 𝑡) =
−2𝜇𝑏

𝑚
−
4𝜇𝑎𝑐

𝑚
[√Ω tan (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏]

−1

−
𝜇

𝑚
[√Ω tan(

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) − 𝑏] ,

 𝜇 =
(6𝜌𝑛+𝜌2𝑚𝑏)

𝑚
, 𝜆 =

(−4𝑚2𝜌3𝑏2−36𝜌2𝑏𝑚𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2
.  

                                                   (37) 

  
 

• Family 2: For Ω = 4𝑎𝑐 − 𝑏2 < 0, the solutions in 
Eq. 24 are given by: 

 

𝑣(𝜉) = −𝑎−1 (
1

2𝑐
[√Ω tan ℎ (

1

2
√Ω𝜉) + 𝑏])

−1
+ 𝑎0 −

𝑎1
1

2𝑐
[√Ω tan ℎ (

1

2
√Ω𝜉) + 𝑏] , 𝑢(𝜉) =

𝜇

𝜌
𝑣.                          (38) 

 

From the given sets, the following solutions are 
derived: 

  

For set 1:  
 

{
  
 

  
 𝑣7(𝑥, 𝑦, 𝑡) =

𝜌𝑏

𝑚
−
4𝜌𝑎𝑐

𝑚
([√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

,

𝑢7(𝑥, 𝑦, 𝑡) =
𝜇𝑏

𝑚
−
4𝜇𝑎𝑐

𝑚
([√Ω tanh (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

,

  𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .

                                              (39) 

 

For set 2: 
 

{
  
 

  
    𝑣8(𝑥, 𝑦, 𝑡)  =

−𝜌𝑏

𝑚
+
4𝜌𝑎𝑐

𝑚
([√Ω tanh (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

,

  𝑢8(𝑥, 𝑦, 𝑡) =
−𝜇𝑏

𝑚
+
4𝜇𝑎𝑐

𝑚
([√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

,

𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2
.    

                                        (40) 

 

For set 3: 
 

{
  
 

  
 𝑣9(𝑥, 𝑦, 𝑡) =   

𝜌𝑏

𝑚
−

𝜌

𝑚
(√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏) ,

𝑢9(𝑥, 𝑦, 𝑡) =   
𝜇𝑏

𝑚
−

𝜇

𝑚
(√Ω tanh (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏) ,

 𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .

                                                         (41) 

 

For set 4: 
 

{
  
 

  
 𝑣10(𝑥, 𝑦, 𝑡) =

−𝜌𝑏

𝑚
+

𝜌

𝑚
[√Ω tanh(

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏] ,

𝑢10(𝑥, 𝑦, 𝑡) =
−𝜇𝑏

𝑚
+

𝜇

𝑚
[√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏] ,

  𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .

                                                        (42) 

 

For set 5: 
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{
 
 
 
 
 

 
 
 
 
 𝑣11(𝑥, 𝑦, 𝑡) =

2𝜌𝑏

𝑚
−
4𝜌𝑎𝑐

𝑚
([√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

−
𝜌

𝑚
[√Ω tanh(

1

2
√Ω(

𝜌

𝛽
((𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏] ,

𝑢11(𝑥, 𝑦, 𝑡) =
2𝜇𝑏

𝑚
−
4𝜇𝑎𝑐

𝑚
([√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

−
𝜇

𝑚
[√Ω tanh(

1

2
√Ω(

𝜌

𝛽
((𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏] ,

 𝜇 =
(6𝜌𝑛−𝜌2𝑚𝑏)

𝑚
, 𝜆 =

(−4𝑚2𝜌3𝑏2+36𝜌2𝑏𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2
.

                                            (43) 

 

For set 6: 
 

{
 
 
 
 
 

 
 
 
 
 𝑣12(𝑥, 𝑦, 𝑡) = −

2𝜌𝑏

𝑚
+
4𝜌𝑎𝑐

𝑚
 ([√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

+
𝜌

𝑚
[√Ω tanh (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏] ,

𝑢12(𝑥, 𝑦, 𝑡) = −
2 𝜇𝑏

𝑚
+
4 𝜇𝑎𝑐

𝑚
 ([√Ω tanh (

1

2
√Ω (

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏])

−1

+
 𝜇

𝑚
[√Ω tanh (

1

2
√Ω(

𝜌

𝛽
(𝑥 +

1

Γ(𝛽)
)𝛽 +

𝜇

𝛽
(𝑦 +

1

Γ(𝛽)
)𝛽 −

𝜆

𝛽
(𝑡 +

1

Γ(𝛽)
)𝛽)) + 𝑏] ,

  𝜇 =
(6𝜌𝑛+𝜌2𝑚𝑏)

𝑚
, 𝜆 =

(−4𝑚2𝜌3𝑏2−36𝜌2𝑏𝑚𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2
.  

                                      (44) 

  

• Family 3: For: Ω = 4𝑎𝑐 − 𝑏2 = 0, the solutions in 
Eq. 24 are expressed as: 

 

𝑣(𝜉) = −𝑎−1(
1

𝑐
[
1

𝜉
+

𝑏

2
])−1 + 𝑎0 − 𝑎1

1

𝑐
[
1

𝜉
+

𝑏

2
] , 𝑢 =

𝜇

𝜌
𝑣 .                 (45) 

 

The following solutions are derived from the 
given sets: 

  

For set 1:  
 

{
 
 

 
 𝑣13(𝑥, 𝑦, 𝑡) =

𝜌𝑏

𝑚
−
2𝜌𝑎𝑐

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

,

𝑤13(𝑥, 𝑦, 𝑡) =
 𝜇𝑏

𝑚
−
2 𝜇𝑎𝑐

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

, 𝜇 =
6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2  

.

                                (46) 

 

For set 2: 
 

{
 
 
 

 
 
 𝑣14(𝑥, 𝑦, 𝑡) =  

−𝜌𝑏

𝑚
+
2𝜌𝑎𝑐

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

,

𝑢14(𝑥, 𝑦, 𝑡) =  
−𝜇𝑏

𝑚
+
2𝜇𝑎𝑐

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

, 𝜇 =
6𝜌𝑛

𝑚
,

𝜆 =
𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .  
.

                                                                                         (47) 

 

For set 3: 
 

{
 
 

 
 𝑣15(𝑥, 𝑦, 𝑡) =

𝜌𝑏

𝑚
−
2𝜌

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
]),   

𝑢15(𝑥, 𝑦, 𝑡) =
𝜇𝑏

𝑚
−
2𝜇

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
]) ,   𝜇 =

6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .

                                        (48) 

 

For set 4:  
 

{
 
 

 
 𝑣16(𝑥, 𝑦, 𝑡) = −

𝜌𝑏

𝑚
+
2𝜌

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
]),   

𝑢16(𝑥, 𝑦, 𝑡) = −
𝜇𝑏

𝑚
+
2𝜇

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
]) , 𝜇 =

6𝜌𝑛

𝑚
, 𝜆 =

𝜌(𝑚2𝜌2𝑏2−4𝑚2𝜌2𝑎𝑐−216𝑛2)

2𝑚2 .   

                                    (49) 

 

For set 5: 
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{
 
 
 
 
 
 

 
 
 
 
 
  𝑣17(𝑥, 𝑦, 𝑡) =

2𝜌𝑏

𝑚
−
2𝑐𝜌𝑎

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

−
2𝜌

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
]) ,

 𝑢17(𝑥, 𝑦, 𝑡) =
2𝜇𝑏

𝑚
−
2𝑐𝜇𝑎

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

−
2𝜇

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
]) ,

𝜇 =
(6𝜌𝑛−𝜌2𝑚𝑏)

𝑚
, 𝜆 =

(−4𝑚2𝜌3𝑏2+36𝜌2𝑏𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2 .

                                                                                                            (50) 

 

For set 6: 
 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑣18(𝑥, 𝑦, 𝑡) =

2𝑐𝜌𝑎

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

−
2𝜌𝑏

𝑚
+
2𝜌

𝑚
[

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
] ,

𝑢18(𝑥, 𝑦, 𝑡) =
2𝑐𝜇𝑎

𝑚
([

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
])

−𝟏

−
2𝜇𝑏

𝑚
+
2𝜇

𝑚
[

1
𝜌

𝛽
(𝑥+

1

Γ(𝛽)
)𝛽+

𝜇

𝛽
(𝑦+

1

Γ(𝛽)
)𝛽−

𝜆

𝛽
(𝑡+

1

Γ(𝛽)
)𝛽
+
𝑏

2
] ,

𝜇 =
(6𝜌𝑛+𝜌2𝑚𝑏)

𝑚
, 𝜆 =

(−4𝑚2𝜌3𝑏2−36𝜌2𝑏𝑚𝑛+4𝑚2𝜌3𝑎𝑐−108𝑛2𝜌)

𝑚2
.   

                                                                                                                        (51) 

  
 

5. Graphical illustrations 

This study presents a graphical analysis of the 
FKD equation to examine how variations in 
fractional order influence the solutions 𝑣1(𝑥, 𝑦, 𝑡), 
𝑣5(𝑥, 𝑦, 𝑡), 𝑣13(𝑥, 𝑦, 𝑡) and 𝑣17(𝑥, 𝑦, 𝑡). The analysis is 
performed using fixed parameter values 𝑐 = 𝑚 =
𝑛 = 𝜌 = 1 over the domain −5 ≤  𝑥, 𝑡 ≤  5. Results 
are visualized in 3D for fractional orders 𝛽 = 1, 𝛽 =
0.75, 𝛽 = 0.5, and 𝛽 =  0.25 in panels (a-d), while 
panel (e) presents a corresponding 2D plot at y = 2. 

Fig. 1 displays 3D plots of the solutions 𝑣1(𝑥, 𝑦, 𝑡) 
in panels (a-d) with parameters 𝑎 = 4, 𝑏 = 2, 𝜇 =
6 , 𝜆 = −114. Panels (a-d) illustrate the impact of the 
fractional order of solution 𝑣1(𝑥, 𝑦, 𝑡). Panels (a) and 
(b) show strong localized peaks, while panels (c) and 
(d) display oscillatory behavior and damping effects. 
Panel (e) presents a 2D slice at 𝑡 = 1, showing the 
propagation of traveling wave solutions. Similar 
wave behaviors are observed in the solutions 
𝑢1(𝑥, 𝑦, 𝑡), 𝑢2(𝑥, 𝑦, 𝑡) and 𝑣2(𝑥, 𝑦, 𝑡) confirming the 
consistency of nonlinear dynamics across the 
system. These visualizations highlight the formation 
and movement of nonlinear waves, demonstrating 
the influence of system parameters on wave 
evolution. Fig. 2 presents a series of visualizations 
illustrating the behavior of the solution 𝑣5(𝑥, 𝑦, 𝑡) 
under specific parameter values 𝑎 = 4, 𝑏 = 2, 𝜇 =
6, 𝜆 = −114. Panels (a-d) display 3D 
representations, while panel (e) provides a 2D plot 
at t = 1, depicting traveling wave solutions. Panel (a) 
shows multiple sharp peaks, indicating strong 
localized singularities and high sensitivity to 
fractional effects. Panel (b) exhibits pronounced 
negative spikes, suggesting significant damping. 
Panel (c) features a single dominant downward 

spike, representing a highly localized. Panel (d) 
presents a mix of positive and negative peaks, 
demonstrating a balance between fractional 
damping and non-local interactions. The 2D graph 
shows that when 𝛽 = 1, the soliton looks smooth 
with a few oscillations. However, as 𝛽 decreases, the 
oscillatory behavior becomes more noticeable. This 
pattern is characteristic of nonlinear wave dynamics, 
where soliton structures evolve based on parameter 
variations. Additionally, similar wave behavior is 
observed in the solutions 𝑢5(𝑥, 𝑦, 𝑡), 𝑣6(𝑥, 𝑦, 𝑡), and 
𝑢6(𝑥, 𝑦, 𝑡), as demonstrated in their respective 3D 
visualizations, reinforcing the consistent impact of 
parameter changes on wave evolution. 

Fig. 3 illustrates the shock soliton solution for 
𝑣13(𝑥, 𝑦, 𝑡) through 3D and 2D visualizations, 
highlighting its dynamic behavior under the given 
parameter settings 𝑎 = −4, 𝑏 = 4, 𝜇 = 6, 𝜆 = −10. 
The physical difference between panels (a) and (b) is 
minimal, as both exhibit smooth decay. Panel (c) 
shows a slight reduction in the overall magnitude of 
the surface values. Panel (d) exhibits a decrease in 
values, suggesting a stronger damping effect or a 
greater influence of diffusion. 2D representation in 
panel (e) further emphasizes that, as the parameter 
𝛽 increases, the magnitude of 𝑣13(𝑥, 𝑦, 𝑡) also 
increases, indicating a direct proportional 
relationship. 

Fig. 4 provides a detailed visualization of the 
shock soliton solution for 𝑣17(𝑥, 𝑦, 𝑡) under various 
conditions. Panels (a-d) offer 3D plots illustrating the 
evolution of the shock soliton for fixed parameters 
𝑎 = 𝑏 = 4, 𝑐 = 1, 𝜇 = 2, 𝜆 = −12. In panel (a), the 
surface exhibits strong curvature and steep 
gradients near the boundary, indicating significant 
variations in the system's behavior.  
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Fig. 1: Panels (A)–(D) illustrate 3D of 𝑣1(𝑥, 𝑦, 𝑡) corresponding to 𝛽 = 1, 0.75, 0.5, and 0.25 respectively. Panel (E) depicts the 
2D of 𝑣1(𝑥, 𝑦, 𝑡) at a fixed time 𝑡 = 1 

 

   
 

 
 

Fig. 2: Panels (A)–(D) illustrate 3D of 𝑣5(𝑥, 𝑦, 𝑡) corresponding to 𝛽 = 1, 0.75, 0.5, and 0.25 respectively. Panel (E) depicts the 
2D of 𝑣1(𝑥, 𝑦, 𝑡) at a fixed time 𝑡 = 1 
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Fig. 3: Panels (A)–(D) illustrate 3D of 𝑣13(𝑥, 𝑦, 𝑡) corresponding to 𝛽 = 1, 0.75, 0.5, and 0.25 respectively. Panel (E) depicts the 

2D of 𝑣1(𝑥, 𝑦, 𝑡) at a fixed time 𝑡 = 1 
 

   
 

 
 

Fig. 4: Panels (A)–(D) illustrate 3D of 𝑣17(𝑥, 𝑦, 𝑡) corresponding to 𝛽 = 1, 0.75, 0.5, and 0.25 respectively. Panel (E) depicts the 
2D of 𝑣1(𝑥, 𝑦, 𝑡) at a fixed time 𝑡 = 1 

 

In panel (b), the curvature decreases, suggesting 
the dissipation of initial disturbances and the 

transition to a smoother state. The domain expands 
further in panel (c), and the surface becomes 
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increasingly flatter, implying a reduction in transient 
effects. In panel (d), the surface appears nearly 
uniform over a large domain, indicating a stabilized 
system with minimal variations. Panel (e) presents 
2D plots at time 𝑡 = 1 with the same parameters, 
showing the effect of varying 𝛽 on the shape of the 
curve. Specifically, an increase in 𝛽 is inversely 
related to the magnitude of  𝑣17(𝑥, 𝑦, 𝑡), indicating 
that higher values of 𝛽 reduce the amplitude of the 
shock soliton. Physically, this suggests that 𝛽 plays a 
key role in modulating the intensity of the shock 
wave or soliton, where higher values of 𝛽 lead to a 
more dampened or weaker wave. This could be 
interpreted in contexts such as fluid dynamics or 
nonlinear wave phenomena, where the soliton 
represents a stable, localized wave solution, and 𝛽 
may control energy dissipation or the extent of 
nonlinearity in the system. 

6. Conclusion 

In this study, the modified (w/g)-expansion 
method was successfully employed to derive 
analytical solutions for the FKD equation, including 
the beta fractional derivative. Various categories of 
solutions, including periodic, shock, and traveling 
wave solutions, were obtained. Graphical 
representations were provided to visualize and 
interpret the characteristics of these solutions, 
offering insights into their behavior. The solutions 
obtained are consistent with those presented in 
Wang and Li (2024) when 𝛽 is set to 1. All 
calculations in this study were carried out via 
MAPLE software. Future studies could explore the 
numerical solution of the FKD equation. 
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