International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 9 (September 2025), Pages: 152-160

----------------------------------------------

 Original Research Paper

Strategic preparation of tetraconazole from PTFE waste: Addressing the impending PFAS regulations

 Author(s): 

 Weikang Lin 1, *, Puivun Chai 1, Lei Cao 2, Le Kang 3, Mingxian Chen 4

 Affiliation(s):

  1Department of Chemical and Petroleum Engineering, Faculty of Engineering Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
  2Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Nanjing, China
  3School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
  4Department of Research and Development, Liaoning Longtian Chemical Technology Co., Ltd., Fuxin, China

 Full text

    Full Text - PDF

 * Corresponding Author. 

   Corresponding author's ORCID profile:  https://orcid.org/0000-0003-2960-6447

 Digital Object Identifier (DOI)

  https://doi.org/10.21833/ijaas.2025.09.014

 Abstract

Stricter global regulations on PFAS compounds have created a need for sustainable waste management solutions. In this study, we propose a method to synthesize the fungicide tetraconazole using PTFE waste as a raw material. This approach converts a difficult-to-recycle waste into a valuable product, helping to address environmental challenges. The process involves the controlled pyrolysis of PTFE waste to produce tetrafluoroethylene (TFE), which then reacts with 2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-ol (compound 4-b) in a benzotrifluoride solution under optimized conditions. This reaction yields tetraconazole with a GC purity of 99.25%. The findings support circular economy practices and align with emerging strict PFAS regulations.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Triazole fungicides, Tetraconazole, PFAS, PTFE waste, Tetrafluoroethylene addition

 Article history

 Received 9 March 2025, Received in revised form 21 July 2025, Accepted 16 August 2025

 Acknowledgment

The authors acknowledge funding from Liaoning Longtian Chemical Technology Co., Ltd. and thank Dr. Puivun Chai for his contributions to this research. 

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Lin W, Chai P, Cao L, Kang L, and Chen M (2025). Strategic preparation of tetraconazole from PTFE waste: Addressing the impending PFAS regulations. International Journal of Advanced and Applied Sciences, 12(9): 152-160

  Permanent Link to this page

 Figures

  Fig. 1  Fig. 2  Fig. 3  Fig. 4

 Tables

  Table 1  Table 2  Table 3  Table 4  Table 5  Table 6

----------------------------------------------   

 References (38)

  1. Aborode AT, Adesola RO, Idris I et al. (2025). Challenges associated with PFAS detection method in Africa. Environmental Health Insights, 2025: 19.  https://doi.org/10.1177/11786302241310430    [Google Scholar] PMid:39759477 PMCid:PMC11694309
  2. Ahmed MZ, Rao T, Saeed A et al. (2021). Antifungal drugs: Mechanism of action and resistance. In: Ahmed S, Chandra Ojha S, Najam-ul-Haq M, Younus M, and Hashmi MZ (Eds.), Biochemistry of drug resistance: 143-165. Springer, Cham, Switzerland.  https://doi.org/10.1007/978-3-030-76320-6    [Google Scholar]
  3. Aoujil F, Litskas V, Yahyaoui H, El Allaoui N, Benbouazza A, Aziz A, Hafidi M, and Habbadi K (2024). Sustainability indicators for the environmental impact assessment of plant protection products use in Moroccan vineyards. Horticulturae, 10(5): 473.  https://doi.org/10.3390/horticulturae10050473    [Google Scholar]
  4. Bossche HV, Willemsens G, and Marichal P (1987). Anti- Candida drugs—The biochemical basis for their activity. CRC Critical Reviews in Microbiology, 15(1): 57-72.  https://doi.org/10.3109/10408418709104448    [Google Scholar] PMid:3319421
  5. Chai J, Wang G, Zhao J, Wang G, Wei C, Zhang A, and Zhao G (2024). Robust, breathable, and chemical-resistant polytetrafluoroethylene (PTFE) films achieved by novel in-situ fibrillation strategy for high-performance triboelectric nanogenerators. Nano Research, 17: 1942-1951.  https://doi.org/10.1007/s12274-023-6147-3    [Google Scholar]
  6. Chew SY and Than LTL (2016). Vulvovaginal candidosis: Contemporary challenges and the future of prophylactic and therapeutic approaches. Mycoses, 59(5): 262-273.  https://doi.org/10.1111/myc.12455    [Google Scholar] PMid:26765516
  7. Chu C, Ma LL, Alawi H, Ma W, Zhu Y, Sun J, Lu Y, Xue Y, and Chen G (2024). Mechanistic exploration of polytetrafluoroethylene thermal plasma gasification through multiscale simulation coupled with experimental validation. Nature Communications, 15: 1654.  https://doi.org/10.1038/s41467-024-45077-6    [Google Scholar] PMid:38395949 PMCid:PMC10891128
  8. Corrêa-Junior D, Parente CET, and Frases S (2024). Hazards associated with the combined application of fungicides and poultry litter in agricultural areas. Journal of Xenobiotics, 14(1): 110-134.  https://doi.org/10.3390/jox14010007    [Google Scholar] PMid:38249104 PMCid:PMC10801622
  9. De Mello-Sampayo C, Viana P, Lopes A, Carvalho da Silva R, de Jesus R, Sarmento G, Almeida A, and Meisel L (2024). Survey of antifungal in surface-and groundwater: A Portuguese environmental case study. Sustainability, 16(2): 594.  https://doi.org/10.3390/su16020594    [Google Scholar]
  10. Degradi L, Tava V, Esposto MC, Prigitano A, Bulgari D, Kunova A, Saracchi M, Cortesi P, and Pasquali M (2024). Genomic insights into fusarium verticillioides diversity: The genome of two clinical isolates and their demethylase inhibitor fungicides susceptibility. Pathogens, 13(12): 1062.  https://doi.org/10.3390/pathogens13121062    [Google Scholar] PMid:39770322 PMCid:PMC11728828
  11. Donley N, Cox C, Bennett K, Temkin AM, Andrews DQ, and Naidenko OV (2024). Forever pesticides: A growing source of PFAS contamination in the environment. Environmental Health Perspectives, 132(7): 075003.  https://doi.org/10.1289/EHP13954    [Google Scholar] PMid:39046250 PMCid:PMC11268133
  12. Dutilloy E, Oni FE, Esmaeel Q, Clément C, and Barka EA (2022). Plant beneficial bacteria as bioprotectants against wheat and barley diseases. Journal of Fungi, 8(6): 632.  https://doi.org/10.3390/jof8060632    [Google Scholar] PMid:35736115 PMCid:PMC9225584
  13. Elmer W and White JC (2018). The future of nanotechnology in plant pathology. Annual Review of Phytopathology, 56: 111-133.  https://doi.org/10.1146/annurev-phyto-080417-050108    [Google Scholar] PMid:30149792
  14. Gao Y, Ning F, Wang H, Han J, and Lichtfouse E (2025). Functional clothing, an overlooked source of persistent textile fibers in the global microplastic pollution. Environmental Chemistry Letters, 23: 915–921.  https://doi.org/10.1007/s10311-024-01796-2    [Google Scholar]
  15. Ibrahim RE, Fouda MM, Abdelwarith AA, Younis EM, Wagih E, Elshafey BA, Davies SJ, and Abdel Rahman AN (2024). Hexaflumuron insecticide exposure induces behavior alterations, hemato-biochemical disorders, antioxidant-immune dysfunction, and histopathological alterations in Nile tilapia ( Oreochromis niloticus). Veterinary Research Communications, 48: 3105-3120.  https://doi.org/10.1007/s11259-024-10467-0    [Google Scholar] PMid:39083180
  16. Jeschke P (2024). Recent developments in fluorine‐containing pesticides. Pest Management Science, 80: 3065-3087.  https://doi.org/10.1002/ps.7921    [Google Scholar] PMid:38073050
  17. Jiang L, Liu B, Zhang S, Zhang R, Wu C, and Qiao K (2024). Increasing spray volume and ozone spray of tetraconazole improve control against strawberry powdery mildew. Crop Protection, 179: 106602.  https://doi.org/10.1016/j.cropro.2024.106602    [Google Scholar]
  18. Karhan M and Arslan Ö (2024). A new approach based on 2D wavelet transform in the analysis of wettability behavior and evaporation rate for the surface of PTFE dielectric material used in high voltage applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 702: 135115.  https://doi.org/10.1016/j.colsurfa.2024.135115    [Google Scholar]
  19. Lee Y, Oh J, and Yoh JJ (2024). Aging effects on magnesium–teflon–viton related to magnesium hydroxide formation and the weakened bond of polytetrafluoroethylene. Journal of Thermal Analysis and Calorimetry, 149: 2189-2197.  https://doi.org/10.1007/s10973-023-12794-x    [Google Scholar]
  20. Li H, Cui G, Li G, Lu H, Wei H, Zhang H, and Zhang H (2024). Assessing the efficacy and residual impact of plant growth retardants on crop lodging and overgrowth: A review. European Journal of Agronomy, 159: 127276.  https://doi.org/10.1016/j.eja.2024.127276    [Google Scholar]
  21. Moudgal VV and Sobel JD (2003). Antifungal drugs in pregnancy: A review. Expert Opinion on Drug Safety, 2(5): 475-483.  https://doi.org/10.1517/14740338.2.5.475    [Google Scholar] PMid:12946248
  22. Patrício FRA, Almeida IMG, Barros BC, Santos AS, and Frare PM (2008). Effectiveness of acibenzolar‐ S‐methyl, fungicides and antibiotics for the control of brown eye spot, bacterial blight, brown leaf spot and coffee rust in coffee. Annals of Applied Biology, 152: 29-39.  https://doi.org/10.1111/j.1744-7348.2007.00187.x    [Google Scholar]
  23. Peng XM, Cai GX, and Zhou CH (2013). Recent developments in azole compounds as antibacterial and antifungal agents. Current Topics in Medicinal Chemistry, 13(16): 1963-2010.  https://doi.org/10.2174/15680266113139990125    [Google Scholar] PMid:23895097
  24. Pu R, Zhao L, Deng S, Naidu R, Mantzavinos D, Lin L, Fang C, and Lei Y (2025). Effect of high-frequency ultrasonication on degradation of polytetrafluoroethylene (PTFE) microplastics/nanoplastics. Separation and Purification Technology, 357: 130229.  https://doi.org/10.1016/j.seppur.2024.130229    [Google Scholar]
  25. Puts GJ, Crouse P, and Ameduri BM (2019). Polytetrafluoroethylene: Synthesis and characterization of the original extreme polymer. Chemical Reviews, 119(3): 1763-1805.  https://doi.org/10.1021/acs.chemrev.8b00458    [Google Scholar] PMid:30689365
  26. Qiu S, Teng X, Zhang Y, Wang X, Chen K, Zhao J, and Huang Q (2025). Wearing comfortable and high electrical output TENGs woven with PTFE core–shell nanofiber yarns. Chemical Engineering Journal, 505: 159501.  https://doi.org/10.1016/j.cej.2025.159501    [Google Scholar]
  27. Renella G, Carletti P, and Masi A (2025). Sustainable management of poly-and perfluoroalkyl substances (PFASs)-contaminated areas: Tackling a wicked environmental problem. Sustainability, 17(2): 510.  https://doi.org/10.3390/su17020510    [Google Scholar]
  28. Rust D, Vollmer MK, Henne S, Frumau A, van den Bulk P, Hensen A, Stanley KM, Zenobi R, Emmenegger L, and Reimann S (2024). Effective realization of abatement measures can reduce HFC-23 emissions. Nature, 633: 96-100.  https://doi.org/10.1038/s41586-024-07833-y    [Google Scholar] PMid:39169190
  29. Rutkowska E, Wołejko E, Kaczyński P, Łuniewski S, and Łozowicka B (2023). High and low temperature processing: Effective tool reducing pesticides in/on apple used in a risk assessment of dietary intake protocol. Chemosphere, 313: 137498.  https://doi.org/10.1016/j.chemosphere.2022.137498    [Google Scholar] PMid:36495984
  30. Samia B, Socorro J, Durand A, Quivet E, and Wortham H (2024). Photolytic degradation of commonly used pesticides adsorbed on silica particles. Science of the Total Environment, 949: 174964.  https://doi.org/10.1016/j.scitotenv.2024.174964    [Google Scholar] PMid:39059656
  31. Shahid M, Shafi Z, Ilyas T, Singh UB, and Pichtel J (2024). Crosstalk between phytohormones and pesticides: Insights into unravelling the crucial roles of plant growth regulators in improving crop resilience to pesticide stress. Scientia Horticulturae, 338: 113663.  https://doi.org/10.1016/j.scienta.2024.113663    [Google Scholar]
  32. Sieiro-Sampedro T, Briz-Cid N, Pose-Juan E, Figueiredo-González M, González-Barreiro C, Simal-Gándara J, Cancho-Grande B, and Rial-Otero R (2020). Tetraconazole alters the methionine and ergosterol biosynthesis pathways in  Saccharomyces yeasts promoting changes on volatile derived compounds. Food Research International, 130: 108930.  https://doi.org/10.1016/j.foodres.2019.108930    [Google Scholar] PMid:32156378
  33. Silva NA, Tatumi SH, Rocca RR, Yee M, Nagabushana KR, de Farias Soares A, Duque IAM, and Fernandes CP (2024). UV-C radiation dosimetry using phototransfer OSL of green quartz–teflon pellets. Brazilian Journal of Physics, 54: 130.  https://doi.org/10.1007/s13538-024-01516-9    [Google Scholar]
  34. Tang Y and Tsui GC (2024). Copper-catalyzed pentafluoroethylation of aryl/alkenyl iodides with pentafluoroethylsilane. Organic Chemistry Frontiers, 11(16): 4366-4370.  https://doi.org/10.1039/D4QO00433G    [Google Scholar]
  35. Tsuda M, Itoh H, and Kato S (2004). Evaluation of the systemic activity of simeconazole in comparison with that of other DMI fungicides. Pest Management Science, 60(9): 875-880.  https://doi.org/10.1002/ps.907    [Google Scholar] PMid:15382501
  36. Václavík J, Klimánková I, Budinská A, and Beier P (2018). Advances in the synthesis and application of tetrafluoroethylene‐and 1, 1, 2, 2‐tetrafluoroethyl‐containing compounds. European Journal of Organic Chemistry, 2018: 3554-3593.  https://doi.org/10.1002/ejoc.201701590    [Google Scholar]
  37. Yin K, Wu H, Yin Q, Fang L, and Zhang Y (2023). Efficient and practical route for 3, 5-dichloro-4-(1, 1, 2, 2-tetrafluoroethoxy) aniline: A key intermediate of hexaflumuron. Russian Journal of Organic Chemistry, 59(Suppl 1): S1-S6.  https://doi.org/10.1134/S1070428023130018    [Google Scholar]
  38. Zhang J, Tang X, Ishaaya I, Cao S, Wu J, Yu J, Li H, and Qian X (2010). Synthesis and insecticidal activity of heptafluoroisopropyl-containing benzoylphenylurea structures. Journal of Agricultural and Food Chemistry, 58(5): 2736-2740.  https://doi.org/10.1021/jf9025508    [Google Scholar] PMid:20014763