Volume 12, Issue 9 (September 2025), Pages: 61-78
----------------------------------------------
Review Paper
Deep learning and attention mechanisms in RNA secondary structure prediction: A critical survey
Author(s):
Musaab Nabil Ali Askar 1, Azian Azamimi Abdullah 1, 2, *, Mohd Yusoff Mashor 1, Zeti-Azura Mohamed-Hussein 3, Zeehaida Mohamed 4, Wei Chern Ang 5, Shigehiko Kanaya 6
Affiliation(s):
1Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau, Malaysia 2Advanced Sensor Technology, Centre of Excellence (CEASTech), Universiti Malaysia Perlis (UniMAP), Arau, Malaysia 3Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia 4Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town, Malaysia 5Clinical Research Centre, Hospital Tuanku Fauziah, Ministry of Health Malaysia, Perlis, Kangar, Malaysia 6Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
Full text
Full Text - PDF
* Corresponding Author.
Corresponding author's ORCID profile: https://orcid.org/0000-0001-5851-7705
Digital Object Identifier (DOI)
https://doi.org/10.21833/ijaas.2025.09.006
Abstract
The secondary structure of ribonucleic acid (RNA) plays a key role in understanding gene regulation, cellular processes, and the development of new treatments. Traditional thermodynamic methods, especially those using Minimum Free Energy (MFE) algorithms, have provided a reliable physics-based approach for predicting RNA structures. Although these methods remain important, there is increasing interest in using deep learning models to detect new structural patterns, such as pseudoknots and long-range interactions, in large RNA datasets. Building on thermodynamic principles, these models aim to extend current knowledge and offer new ways to study RNA structure and function. In particular, attention-based transformer models are effective at capturing both short- and long-distance relationships, making them well-suited for modeling complex RNA sequences. This review highlights recent advances in RNA secondary structure prediction using transformer-based approaches, focusing on key models such as E2EFold, ATTFold, RNAformer, and DEBFold. It also discusses current challenges, future research directions, and the impact of attention-based deep learning on the field of RNA structural bioinformatics.
© 2025 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords
RNA structure, Deep learning, Transformer models, Thermodynamic methods, Pseudoknot prediction
Article history
Received 1 March 2025, Received in revised form 25 July 2025, Accepted 7 August 2025
Acknowledgment
The authors would like to thank the Ministry of Higher Education for providing financial support under the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2021/TKO/UNIMAP/02/65).
Compliance with ethical standards
Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Citation:
Askar MNA, Abdullah AA, Mashor MY, Mohamed-Hussein Z-A, Mohamed Z, Ang WC, and Kanaya S (2025). Deep learning and attention mechanisms in RNA secondary structure prediction: A critical survey. International Journal of Advanced and Applied Sciences, 12(9): 61-78
Permanent Link to this page
Figures
Fig. 1 Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Tables
Table 1 Table 2 Table 3
----------------------------------------------
References (78)
- Andronescu M, Bereg V, Hoos HH, and Condon A (2008). RNA STRAND: The RNA secondary structure and statistical analysis database. BMC Bioinformatics, 9: 340. https://doi.org/10.1186/1471-2105-9-340
[Google Scholar]
PMid:18700982 PMCid:PMC2536673
- Balcerowicz M, Di Antonio M, and Chung BY (2021). Monitoring real-time temperature dynamics of a short RNA hairpin using Förster resonance energy transfer and circular dichroism. Bio-Protocol, 11(6): e3950. https://doi.org/10.21769/BioProtoc.3950
[Google Scholar]
PMid:33855112 PMCid:PMC8032495
- Bellaousov S and Mathews DH (2010). ProbKnot: Fast prediction of RNA secondary structure including pseudoknots. RNA, 16(10): 1870-1880. https://doi.org/10.1261/rna.2125310
[Google Scholar]
PMid:20699301 PMCid:PMC2941096
- Bellaousov S, Reuter JS, Seetin MG, and Mathews DH (2013). RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Research, 41(W1): W471-W474. https://doi.org/10.1093/nar/gkt290
[Google Scholar]
PMid:23620284 PMCid:PMC3692136
- Bliss N, Bindewald E, and Shapiro BA (2020). Predicting RNA shape scores with deep learning. RNA Biology, 17(9): 1324-1330. https://doi.org/10.1080/15476286.2020.1760534
[Google Scholar]
PMid:32476596 PMCid:PMC7549691
- Bravo JP, Bartnik K, Venditti L, Acker J, Gail EH, Colyer A, Davidovich C, Lamb DC, Tuma R, Calabrese AN, and Borodavka A (2021). Structural basis of rotavirus RNA chaperone displacement and RNA annealing. Proceedings of the National Academy of Sciences, 118(41): e2100198118. https://doi.org/10.1073/pnas.2100198118
[Google Scholar]
PMid:34615715 PMCid:PMC8521686
- Budnik M, Wawrzyniak J, Grala Ł, Kadziński M, and Szóstak N (2024). Deep dive into RNA: A systematic literature review on RNA structure prediction using machine learning methods. Artificial Intelligence Review, 57: 254. https://doi.org/10.1007/s10462-024-10910-3
[Google Scholar]
- Burkhardt DH, Rouskin S, Zhang Y, Li GW, Weissman JS, and Gross CA (2017). Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. eLife, 6: e22037. https://doi.org/10.7554/eLife.22037
[Google Scholar]
PMid:28139975 PMCid:PMC5318159
- Chai J, Zeng H, Li A, and Ngai EW (2021). Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6: 100134. https://doi.org/10.1016/j.mlwa.2021.100134
[Google Scholar]
- Chen J, Hu Z, Sun S et al. (2022). Interpretable RNA foundation model from unannotated data for highly accurate RNA structure and function predictions. Arxiv Preprint Arxiv:2204.00300. https://doi.org/10.48550/arXiv.2204.00300
[Google Scholar]
- Chen K, Zhou Y, Ding M, Wang Y, Ren Z, and Yang Y (2024). Self-supervised learning on millions of primary RNA sequences from 72 vertebrates improves sequence-based RNA splicing prediction. Briefings in Bioinformatics, 25(3): bbae163. https://doi.org/10.1093/bib/bbae163
[Google Scholar]
PMCid:PMC11009468
- Chen X, Li Y, Umarov R, Gao X, and Song L (2020a). RNA secondary structure prediction by learning unrolled algorithms. Arxiv Preprint Arxiv:2002.05810. https://doi.org/10.48550/arXiv.2002.05810
[Google Scholar]
- Chen Z, Zhao P, Li F, Wang Y, Smith AI, Webb GI, Akutsu T, Baggag A, Bensmail H, and Song J (2020b). Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Briefings in Bioinformatics, 21(5): 1676-1696. https://doi.org/10.1093/bib/bbz112
[Google Scholar]
- Choi SR and Lee M (2023). Transformer architecture and attention mechanisms in genome data analysis: A comprehensive review. Biology, 12(7): 1033. https://doi.org/10.3390/biology12071033
[Google Scholar]
PMid:37508462
- Danaee P, Rouches M, Wiley M, Deng D, Huang L, and Hendrix D (2018). bpRNA: Large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Research, 46(11): 5381-5394. https://doi.org/10.1093/nar/gky285
[Google Scholar]
PMid:29746666 PMCid:PMC6009582
- Do CB, Woods DA, and Batzoglou S (2006). CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22(14): e90-e98. https://doi.org/10.1093/bioinformatics/btl246
[Google Scholar]
- Fei Y, Zhang H, Wang Y, Liu Z, and Liu Y (2022). LTPConstraint: A transfer learning based end-to-end method for RNA secondary structure prediction. BMC Bioinformatics, 23: 354. https://doi.org/10.1186/s12859-022-04847-z
[Google Scholar]
PMid:35999499 PMCid:PMC9396797
- Franke JK, Runge F, Köksal R, Backofen R, and Hutter F (2024). RNAformer: A simple yet effective deep learning model for RNA secondary structure prediction. BioRxiv. https://doi.org/10.1101/2024.02.12.579881
[Google Scholar]
- Fu L, Cao Y, Wu J, Peng Q, Nie Q, and Xie X (2022). UFold: Fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Research, 50(3): e14. https://doi.org/10.1093/nar/gkab1074
[Google Scholar]
PMid:34792173 PMCid:PMC8860580
- Fu X, Wang G, Wang C, Xu H, and Li H (2023). Multi-scale hybrid three-dimensional-two-dimensional-attention boosted convolutional neural network for hyperspectral image classification. Journal of Applied Remote Sensing, 17(2): 026513. https://doi.org/10.1117/1.JRS.17.026513
[Google Scholar]
- Gong T, Ju F, and Bu D (2024). Accurate prediction of RNA secondary structure including pseudoknots through solving minimum-cost flow with learned potentials. Communications Biology, 7: 297. https://doi.org/10.1038/s42003-024-05952-w
[Google Scholar]
PMid:38461362 PMCid:PMC10924946
- Graf J and Kretz M (2020). From structure to function: Route to understanding lncRNA mechanism. BioEssays, 42(12): 2000027. https://doi.org/10.1002/bies.202000027
[Google Scholar]
PMid:33164244
- Griffiths-Jones S, Bateman A, Marshall M, Khanna A, and Eddy SR (2003). Rfam: An RNA family database. Nucleic Acids Research, 31(1): 439-441. https://doi.org/10.1093/nar/gkg006
[Google Scholar]
PMid:12520045 PMCid:PMC165453
- Grigorashvili EI, Chervontseva ZS, and Gelfand MS (2022). Predicting RNA secondary structure by a neural network: What features may be learned? PeerJ, 10: e14335. https://doi.org/10.7717/peerj.14335
[Google Scholar]
PMid:36530406 PMCid:PMC9756865
- Guo MH, Xu TX, Liu JJ, Liu ZN, Jiang PT, Mu TJ, Zhang SH, Martin RR, Cheng MM, and Hu SM (2022). Attention mechanisms in computer vision: A survey. Computational Visual Media, 8(3): 331-368. https://doi.org/10.1007/s41095-022-0271-y
[Google Scholar]
- He S, Gao B, Sabnis R, and Sun Q (2023). RNAdegformer: Accurate prediction of mRNA degradation at nucleotide resolution with deep learning. Briefings in Bioinformatics, 24(1): bbac581. https://doi.org/10.1093/bib/bbac581
[Google Scholar]
PMCid:PMC9851316
- Hernández A and Amigó JM (2021). Attention mechanisms and their applications to complex systems. Entropy, 23(3): 283. https://doi.org/10.3390/e23030283
[Google Scholar]
PMid:33652728 PMCid:PMC7996841
- Hofacker IL (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13): 3429-3431. https://doi.org/10.1093/nar/gkg599
[Google Scholar]
PMid:12824340 PMCid:PMC169005
- Hou Q and Jaffrey SR (2023). Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells. RNA Biology, 20(1): 198-206. https://doi.org/10.1080/15476286.2023.2206248
[Google Scholar]
PMid:37129556 PMCid:PMC10155629
- Huang L, Zhang H, Deng D, Zhao K, Liu K, Hendrix DA, and Mathews DH (2019). LinearFold: Linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search. Bioinformatics, 35(14): i295-i304. https://doi.org/10.1093/bioinformatics/btz375
[Google Scholar]
PMid:31510672 PMCid:PMC6681470
- Jabbari H, Wark I, Montemagno C, and Will S (2018). Knotty: Efficient and accurate prediction of complex RNA pseudoknot structures. Bioinformatics, 34(22): 3849-3856. https://doi.org/10.1093/bioinformatics/bty420
[Google Scholar]
- Jumper J, Evans R, Pritzel A et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596: 583-589. https://doi.org/10.1038/s41586-021-03819-2
[Google Scholar]
PMid:34265844 PMCid:PMC8371605
- Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, and Petrov AI (2018). Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 46(D1): D335-D342. https://doi.org/10.1093/nar/gkx1038
[Google Scholar]
PMCid:PMC5753348
- Kalvari I, Nawrocki EP, Ontiveros-Palacios N et al. (2021). Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 49(D1): D192-D200. https://doi.org/10.1093/nar/gkaa1047
[Google Scholar]
PMCid:PMC7779021
- Kuznetsov SV, Ren CC, Woodson SA, and Ansari A (2008). Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Research, 36(4): 1098-1112. https://doi.org/10.1093/nar/gkm1083
[Google Scholar]
PMid:18096625 PMCid:PMC2275088
- Li Y, Chen S, Liu N, Ma L, Wang T, Veedu RN, Li T, Zhang F, Zhou H, Cheng X, and Jing X (2020a). A systematic investigation of key factors of nucleic acid precipitation toward optimized DNA/RNA isolation. Biotechniques, 68(4): 191-199. https://doi.org/10.2144/btn-2019-0109
[Google Scholar]
PMid:32066262
- Li Z, Gao T, Guo C, and Li HA (2020b). A gated recurrent unit network model for predicting open channel flow in coal mines based on attention mechanisms. IEEE Access, 8: 119819-119828. https://doi.org/10.1109/ACCESS.2020.3004624
[Google Scholar]
- Liao G and Deng X (2020). Leveraging social relationship‐based graph attention model for group event recommendation. Wireless Communications and Mobile Computing, 2020: 8834450. https://doi.org/10.1155/2020/8834450
[Google Scholar]
- Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, and Hofacker IL (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6: 26. https://doi.org/10.1186/1748-7188-6-26
[Google Scholar]
PMCid:PMC3319429
- Lu JS, Bindewald E, Kasprzak WK, and Shapiro BA (2018). RiboSketch: Versatile visualization of multi-stranded RNA and DNA secondary structure. Bioinformatics, 34(24): 4297-4299. https://doi.org/10.1093/bioinformatics/bty468
[Google Scholar]
PMid:29912310 PMCid:PMC6289134
- Lu XJ, Bussemaker HJ, and Olson WK (2015). DSSR: An integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Research, 43(21): e142. https://doi.org/10.1093/nar/gkv716
[Google Scholar]
PMid:26184874 PMCid:PMC4666379
- Mailler E, Paillart JC, Marquet R, Smyth RP, and Vivet‐Boudou V (2019). The evolution of RNA structural probing methods: From gels to next‐generation sequencing. WIREs RNA, 10: e1518. https://doi.org/10.1002/wrna.1518
[Google Scholar]
PMid:30485688
- Mao K, Wang J, and Xiao Y (2020). Prediction of RNA secondary structure with pseudoknots using coupled deep neural networks. Biophysics Reports, 6: 146-154. https://doi.org/10.1007/s41048-020-00114-x
[Google Scholar]
- Mao K, Wang J, and Xiao Y (2022). Length-dependent deep learning model for RNA secondary structure prediction. Molecules, 27(3): 1030. https://doi.org/10.3390/molecules27031030
[Google Scholar]
PMid:35164295
- Morris KV and Mattick JS (2014). The rise of regulatory RNA. Nature Reviews Genetics, 15(6): 423-437. https://doi.org/10.1038/nrg3722
[Google Scholar]
PMid:24776770 PMCid:PMC4314111
- Nussinov R and Jacobson AB (1980). Fast algorithm for predicting the secondary structure of single-stranded RNA. Proceedings of the National Academy of Sciences, 77(11): 6309-6313. https://doi.org/10.1073/pnas.77.11.6309
[Google Scholar]
PMid:6161375 PMCid:PMC350273
- O'shea K and Nash R (2015). An introduction to convolutional neural networks. Arxiv Preprint Arxiv:1511.08458. https://doi.org/10.48550/arXiv.1511.08458
[Google Scholar]
- Ou X, Zhang Y, Xiong Y, and Xiao Y (2022). Advances in RNA 3D structure prediction. Journal of Chemical Information and Modeling, 62(23): 5862-5874. https://doi.org/10.1021/acs.jcim.2c00939
[Google Scholar]
PMid:36451090
- Pan Z, Wang Y, Wang K, Ran G, Chen H, and Gui W (2022). Layer‐wise contribution‐filtered propagation for deep learning‐based fault isolation. International Journal of Robust and Nonlinear Control, 32(17): 9120-9138. https://doi.org/10.1002/rnc.6328
[Google Scholar]
- Peselis A and Serganov A (2014). Structure and function of pseudoknots involved in gene expression control. WIREs RNA, 5: 803-822. https://doi.org/10.1002/wrna.1247
[Google Scholar]
PMid:25044223 PMCid:PMC4664075
- Qian X, Zhang C, Chen L, and Li K (2022). Deep learning-based identification of maize leaf diseases is improved by an attention mechanism: Self-attention. Frontiers in Plant Science, 13: 864486. https://doi.org/10.3389/fpls.2022.864486
[Google Scholar]
PMid:35574079 PMCid:PMC9096888
- Reuter JS and Mathews DH (2010). RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11: 129. https://doi.org/10.1186/1471-2105-11-129
[Google Scholar]
PMid:20230624 PMCid:PMC2984261
- Sarzynska J, Popenda M, Antczak M, and Szachniuk M (2023). RNA tertiary structure prediction using RNAComposer in CASP15. Proteins, 91(12): 1790-1799. https://doi.org/10.1002/prot.26578
[Google Scholar]
PMid:37615316
- Sato K, Akiyama M, and Sakakibara Y (2021). RNA secondary structure prediction using deep learning with thermodynamic integration. Nature Communications, 12: 941. https://doi.org/10.1038/s41467-021-21194-4
[Google Scholar]
PMid:33574226 PMCid:PMC7878809
- Sayers EW, Beck J, Bolton EE et al. (2021). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 49(D1): D10-D17. https://doi.org/10.1093/nar/gkaa892
[Google Scholar]
PMid:33095870 PMCid:PMC7778943
- Schärfen L and Neugebauer KM (2021). Transcription regulation through nascent RNA folding. Journal of Molecular Biology, 433(14): 166975. https://doi.org/10.1016/j.jmb.2021.166975
[Google Scholar]
PMid:33811916 PMCid:PMC8184640
- Sherstinsky A (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404: 132306. https://doi.org/10.1016/j.physd.2019.132306
[Google Scholar]
- Singh J, Hanson J, Paliwal K, and Zhou Y (2019). RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nature Communications, 10: 5407. https://doi.org/10.1038/s41467-019-13395-9
[Google Scholar]
PMid:31776342
- Singh J, Paliwal K, Zhang T, Singh J, Litfin T, and Zhou Y (2021). Improved RNA secondary structure and tertiary base-pairing prediction using evolutionary profile, mutational coupling and two-dimensional transfer learning. Bioinformatics, 37(17): 2589-2600. https://doi.org/10.1093/bioinformatics/btab165
[Google Scholar]
PMid:33704363
- Sloma MF and Mathews DH (2016). Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures. RNA, 22: 1808-1818. https://doi.org/10.1261/rna.053694.115
[Google Scholar]
PMid:27852924 PMCid:PMC5113201
- Solayman M, Litfin T, Singh J, Paliwal K, Zhou Y, and Zhan J (2022). Probing RNA structures and functions by solvent accessibility: An overview from experimental and computational perspectives. Briefings in Bioinformatics, 23(3): bbac112. https://doi.org/10.1093/bib/bbac112
[Google Scholar]
PMid:35348613 PMCid:PMC9116373
- Sweeney BA, Petrov AI, Ribas CE et al. (2021). RNAcentral 2021: Secondary structure integration, improved sequence search and new member databases. Nucleic Acids Research, 49(D1): D212-D220. https://doi.org/10.1093/nar/gkaa921
[Google Scholar]
PMid:33106848 PMCid:PMC7779037
- Tan Z, Fu Y, Sharma G, and Mathews DH (2017). TurboFold II: RNA structural alignment and secondary structure prediction informed by multiple homologs. Nucleic Acids Research, 45(20): 11570-11581. https://doi.org/10.1093/nar/gkx815
[Google Scholar]
PMid:29036420 PMCid:PMC5714223
- Townshend RJ, Eismann S, Watkins AM, Rangan R, Karelina M, Das R, and Dror RO (2021). Geometric deep learning of RNA structure. Science, 373: 1047-1051. https://doi.org/10.1126/science.abe5650
[Google Scholar]
PMid:34446608 PMCid:PMC9829186
- Ursuleanu TF, Luca AR, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M, Preda C, and Grigorovici A (2021). Unified analysis specific to the medical field in the interpretation of medical images through the use of deep learning. E-Health Telecommunication Systems and Networks, 10(2): 41-74. https://doi.org/10.4236/etsn.2021.102003
[Google Scholar]
- Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, and Polosukhin I (2017). Attention is all you need. In the 31st Conference on Neural Information Processing Systems, Long Beach, USA: 1-15.
[Google Scholar]
- Wang L, Zhong X, Wang S, Zhang H, and Liu Y (2021). A novel end-to-end method to predict RNA secondary structure profile based on bidirectional LSTM and residual neural network. BMC Bioinformatics, 22: 169. https://doi.org/10.1186/s12859-021-04102-x
[Google Scholar]
PMid:33789581 PMCid:PMC8011163
- Wang X, Gu R, Chen Z, Li Y, Ji X, Ke G, and Wen H (2023). UNI-RNA: Universal pre-trained models revolutionize RNA research. bioRxiv. https://doi.org/10.1101/2023.07.11.548588
[Google Scholar]
- Wang Y, Liu Y, Wang S, Liu Z, Gao Y, Zhang H, and Dong L (2020). ATTfold: RNA secondary structure prediction with pseudoknots based on attention mechanism. Frontiers in Genetics, 11: 612086. https://doi.org/10.3389/fgene.2020.612086
[Google Scholar]
PMid:33384721 PMCid:PMC7770172
- Weinberg CE, Weinberg Z, and Hammann C (2019). Novel ribozymes: Discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Research, 47(18): 9480-9494. https://doi.org/10.1093/nar/gkz737
[Google Scholar]
PMCid:PMC6765202
- Xu B, Zhu Y, Cao C et al. (2022). Recent advances in RNA structurome. Science China Life Sciences, 65(7): 1285-1324. https://doi.org/10.1007/s11427-021-2116-2
[Google Scholar]
PMid:35717434 PMCid:PMC9206424
- Yang TH (2024). DEBFold: Computational identification of RNA secondary structures for sequences across structural families using deep learning. Journal of Chemical Information and Modeling, 64(9): 3756-3766. https://doi.org/10.1021/acs.jcim.4c00458
[Google Scholar]
PMid:38648189 PMCid:PMC11094721
- Yu K, Wei T, Li Z, Li J, Wang Z, and Dai Z (2020). Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF–DNA interaction. Journal of the American Chemical Society, 142(51): 21267-21271. https://doi.org/10.1021/jacs.0c10442
[Google Scholar]
- Zhang H, Zhang C, Li Z, Li C, Wei X, Zhang B, and Liu Y (2019). A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming. Frontiers in Genetics, 10: 467. https://doi.org/10.3389/fgene.2019.00467
[Google Scholar]
PMid:31191603 PMCid:PMC6540740
- Zhang H, Zhang Q, Shao S, Niu T, and Yang X (2020). Attention-based LSTM network for rotatory machine remaining useful life prediction. IEEE Access, 8: 132188-132199. https://doi.org/10.1109/ACCESS.2020.3010066
[Google Scholar]
- Zhao Q, Mao Q, Zhao Z, Yuan W, He Q, Sun Q, Yao Y, and Fan X (2023). RNA independent fragment partition method based on deep learning for RNA secondary structure prediction. Scientific Reports, 13: 2861. https://doi.org/10.1038/s41598-023-30124-x
[Google Scholar]
PMid:36801945 PMCid:PMC9938198
- Zhong G, Lin X, Chen K, Li Q, and Huang K (2020). Long short-term attention. In: Ren J, Hussain A, Zhao H, Huang K, Zheng J, Cai J, Chen R, and Xiao Y (Eds.), Proceedings of the 10th International Conference on Brain Inspired Cognitive Systems (BICS), Springer, Guangzhou, China: 45-54. https://doi.org/10.1007/978-3-030-39431-8_5
[Google Scholar]
- Zuker M and Stiegler P (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research, 9(1): 133-148. https://doi.org/10.1093/nar/9.1.133
[Google Scholar]
PMid:6163133 PMCid:PMC326673
|