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The secondary structure of ribonucleic acid (RNA) plays a key role in 
understanding gene regulation, cellular processes, and the development of 
new treatments. Traditional thermodynamic methods, especially those using 
Minimum Free Energy (MFE) algorithms, have provided a reliable physics-
based approach for predicting RNA structures. Although these methods 
remain important, there is increasing interest in using deep learning models 
to detect new structural patterns, such as pseudoknots and long-range 
interactions, in large RNA datasets. Building on thermodynamic principles, 
these models aim to extend current knowledge and offer new ways to study 
RNA structure and function. In particular, attention-based transformer 
models are effective at capturing both short- and long-distance relationships, 
making them well-suited for modeling complex RNA sequences. This review 
highlights recent advances in RNA secondary structure prediction using 
transformer-based approaches, focusing on key models such as E2EFold, 
ATTFold, RNAformer, and DEBFold. It also discusses current challenges, 
future research directions, and the impact of attention-based deep learning 
on the field of RNA structural bioinformatics. 
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1. Introduction 

*The growing awareness of ribonucleic acid (RNA) 
significance in gene regulation has inspired a rush of 
interest in studying its secondary structure and 
more complex tertiary conformation (Mailler et al., 
2019; Morris and Mattick, 2014). The rapidly 
expanding field of RNA research and structural 
analysis has opportunities for further growth. Recent 
research highlights transformers’ effectiveness in 
modeling complex genetic relationships, motivating 
their use in RNA structural analysis (Choi and Lee, 
2023). This indicates the ability to comprehend data 
by dynamically analyzing different genetic regions 
and their relationships and entails improving the 
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creation of next-generation treatments and 
comprehending the process of RNA degradation and 
its connection to molecular structure, among other 
things (He et al., 2023).  

RNA plays an important role in gene regulation, 
making its secondary and tertiary structures key 
research topics. Recent advances show that 
transformer models can capture complex genetic 
relationships, improving RNA structural prediction. 
This review introduces RNA structure, examines 
transformer-based approaches, and discusses their 
potential, challenges, and future directions in 
enhancing RNA bioinformatics and therapeutic 
development. 

We review key attention-based models, assessing 
their ability to improve RNA structure prediction in 
both accuracy and scalability. Finally, we address 
ongoing challenges, explore future opportunities, 
and emphasize how progress in attention-based 
deep learning is expected to significantly advance 
RNA structural bioinformatics research and 
applications. 
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2. RNA structure 

A single-stranded RNA molecule undergoes RNA 
folding when it creates base-pair interactions and 
connections to form specific three-dimensional 
configurations (Schärfen and Neugebauer, 2021). 
The biological activity of RNA depends on its folded 
structure because this feature determines RNA 
interactions with proteins or small ligands, hence 
making this process vital for RNA's practicality. The 
combination of RNA nucleotide sequence and its 
environment, with ion presence and other elements, 
affects how RNA molecules dynamically self-fold. 
The ability of RNA molecules to perform biological 
activities, including gene expression and virus 
replication, alongside RNA-protein interactions, 
depends completely on the RNA molecules' folding 
process (Graf and Kretz, 2020; Hou and Jaffrey, 
2023).  

The chemical bonds between nucleotides cause 
RNA to develop hairpin loops, together with bulges 
and internal loops for structural maintenance. 
Studying RNA structure alterations under changing 
environmental conditions and chemical situations 
provides essential information about RNA structure 
functions. Loop size and composition, together with 
the neighboring elements, determine loop stability 
(Balcerowicz et al., 2021). Hairpin loops play a role 
in gene regulation by enabling ribozymes to catalyze 
reactions. On the other hand, interior loops and 
bulges provide RNA with the flexibility required for 
chemical interactions (Kuznetsov et al., 2008). 

Watson-Crick base pairing within RNA helices 
maintains the entire structure by preserving RNA 
integrity. The collection of structural motifs 
performs essential roles in RNA biological functions, 
making them crucial to study in more detail. RNA 
molecules use their three-dimensional arrangement 
to form tertiary structures in addition to their 
hairpins and loop configurations. RNA performs its 
molecular functions through these patterns that 
create spatial arrangements and establish contact 
points with other biomolecules. A loop functions by 
linking nucleotides with sequences that exist beyond 
the loop structure to generate pseudoknots (Bravo et 
al., 2021; Peselis and Serganov, 2014).  

Similarly, RNA's extraordinary ability to catalyze 
specific chemical reactions on its own is 
demonstrated by ribozymes, which are catalytically 
active RNA molecules. This is particularly evident in 
RNA's capacity to self-cleave without substantial 
protein interference (Weinberg et al., 2019). 
Moreover, the intersection of many strands of RNA 
forms complicated junctions that are crucial for the 
determination of the tertiary shape of the molecule, 
thereby determining how stable it is, its activity, and 
its interaction with other molecules. The merging of 
structural characteristics underscores the elaborate 
architecture of RNA and its essential involvement in 
the cell environment. In Fig. 1, tertiary structure 
folding and interactions, as well as secondary 
structure motifs, including hairpin loops, bulges, and 
internal loops, are shown very vividly. 

 
 

Hairpin Loop

Bulge

Helix

Internal Loop

RNA Sequence RNA Secondary Structure RNA Teritary Structure

 
Fig. 1: RNA structures visualization 

 

In Fig. 1, the left panel shows the basic RNA 
sequence characterized by its single-stranded nature 
and its nucleotides. The middle panel showcases 
RNA secondary structural motifs, including hairpin 
loops, bulges, internal loops, and helices, as 
predicted by RiboSketch (Lu et al., 2018). The right 
panel provides a conceptual representation of RNA's 
tertiary structure, highlighting the complex folding 
and interactions as rendered by RNAComposer 
(Sarzynska et al., 2023).  

2.1. Thermodynamic models: Minimum free 
energy (MFE)  

The beginnings of RNA secondary structure 
prediction tools in computational biology were 
intended to understand the process of RNA folding 
into its thermodynamically most stable 
conformation. The field initially focused on the 
identification of minimum free energy (MFE), like 
conformations of RNA molecules, because RNA takes 
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the conformation that results in the minimum free 
energy under physiological conditions. This was an 
initial approach, and fundamental, foundational tools 
such as Mfold, RNAfold, tRNAscan-SE, and RNA 
structure were developed to implement these rules 
using dynamic programming techniques. These 
methods, while pioneering in their own respect, 
defined a base from which improvements to RNA 
computational biology could be made (Hofacker, 
2003; Reuter and Mathews, 2010; Zuker and 
Stiegler, 1981). Zuker and Stiegler (1981) set the 
basis for this work in 1981, initiating the tradition of 
an effective computational method for the 
corresponding future works. They assumed that RNA 
molecules fold to conform to the structure that 
corresponds to the minimum free energy; this is a 
shift from experimentation to the computational 
method (Zuker and Stiegler, 1981). To construct 
their model, they used several assumptions or 
components. Initially, they applied the available 
thermodynamic parameters to analyze the free 
energy of specificity stems, loops, and junctions in 
RNA molecules. This data supported the guiding 
assumption that RNA would adopt the lowest-energy 
conformation, which is a principle that originates 
from the molecular stability principle commonly 
found in physical chemistry. This thermodynamic 
framework brought further biological roots to MFE 
approaches and enabled predictions to meet with 
RNA stability inclination. Aside from the 
thermodynamic predictions, they used the dynamic 
programming algorithm to make the prediction 
process manageable (Nussinov and Jacobson, 1980). 
This algorithm enabled them to search for the 
potential base-pairing configurations without 
assessing each of them separately, a complication 
imposed by the fact that longer RNA sequences can 
potentially fold into millions or billions of 
conformations. In this manner, by dividing the 
problem into recursive subproblems, they were able 
to calculate the free energy for each segment of the 
RNA sequence and guarantee that the values would 
cover the configuration, which minimized the total 
free energy. They also adhered to conventional RNA 
base-pairing guidelines; they used Watson-Crick 
pairing and occasional GU wobble pairs. These rules 
also helped to eliminate more pairings that the 
program did not have to consider because they 
improved the algorithm's performance. This was the 
algorithm, one of the first and still one of the most 
widely used RNA structure prediction methods.  

2.2. Machine learning in RNA secondary 
structure prediction 

Following the discussion of thermodynamic 
principles governing RNA folding, attention is now 
turned to machine learning techniques that utilize 
data-driven strategies in RNA secondary structure 
prediction. MFE-based models have traditionally 
provided a sound thermodynamic basis for a priori 
prediction of RNA secondary structure, reporting 
details about probable stable folds. Nevertheless, 

Real RNA molecules can adopt other conformations, 
including pseudoknots, that could be biologically 
relevant but are not captured by single-conformation 
methods. In parallel, access to RNA sequencing data 
facilitated machine learning strategies, initially 
mooted in the early 2000s, trained to discover 
patterns within large datasets directly. Data-driven 
methods extend predictive capabilities and 
complement the thermodynamic view, particularly 
for structural features and variations beyond the 
realm of classical MFE predictions. 

Among the first RNA structure prediction 
methods using machine learning is CONTRAfold (Do 
et al., 2006). It uses a conditional log-linear model, a 
type of generalized probabilistic model, to predict 
RNA secondary structures by computing 
probabilities for potential structures based on 
factors such as base-pairing propensity and 
sequence-specific features that are derived from the 
training data. Contrary to the conventional models, 
which depend on a predetermined set of 
thermodynamic parameters, it is based on the 
feature representation inferred from the current set 
of RNA structures. Moreover, it adopts a data-driven 
approach, assigning appropriate weights to the 
features using structural data. Given an RNA 
sequence, CONTRAfold computes the partition 
function to get the sum probability of all possible 
structures that are useful for probable pairing and 
pointing out the structures with the sum expected 
accuracy in their structures. It made use of 
probabilistic graphical models in connection with 
supervised learning, which was beneficial as it 
provided better structures in the structures of 
diverse RNA sequences than other thermodynamic 
models. This innovation marked a significant shift: 
Instead of simply seeking the minimum energy 
configuration, it is possible to train machine learning 
models that evaluate the probability of distinct 
structural configurations through characteristics 
obtained from realistic data.  

2.3. Deep learning in RNA secondary structure 
prediction 

Extending the foundation of machine learning, 
deep learning architectures have significantly 
enhanced the capability to model intricate RNA 
folding designs. It is a branch of machine learning 
sciences that has recently come into focus in data-
oriented approaches owing to the program's 
capacity to learn intricate nonlinear patterns (Pan et 
al., 2022). It has been particularly beneficial in the 
medical field in the analysis of medical pictures with 
improvements in the component element 
characterization and medical application (Ursuleanu 
et al., 2021). It encompasses various architectures, 
including Convolutional Neural Networks (CNN) 
(O’shea and Nash, 2015) and Recurrent Neural 
Networks (RNN) (Sherstinsky, 2020). CNNs have 
turned out to be triumphant in Computer Vision 
tasks, including Object Recognition, Image 
Classification, and Semantic Segmentation (Chai et 
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al., 2021). Coupled deep neural networks have been 
applied efficiently and effectively in deep learning 
techniques, becoming very helpful in predicting RNA 
secondary structure, followed by convolutional 
neural networks and then deep neural networks 
(Bliss et al., 2020; Chen et al., 2020b; Mao et al., 
2022; 2020; Zhang et al., 2019; Zhao et al., 2023).  

It has also been used for thermodynamics and 
deep learning RNA secondary structure profile 
prediction, including Bidirectional Long Short-Term 
Memory and Residual Neural Networks (Wang et al., 
2021). Most important in this respect is the Atomic 
Rotationally Equivariant Scorer, ARES, described by 
Townshend et al. (2021), which illustrated how RNA 
structure prediction can very effectively be 
improved by machine learning when limited or no 
training data are available. Moreover, a reliable 
method for RNA secondary structure prediction has 
been made possible by the combination of deep 
learning and thermodynamic integration (Sato et al., 
2021). Similarly, the studies by Ou et al. (2022), 
Solayman et al. (2022), Xu et al. (2022), and Yu et al. 
(2020) showed how deep learning can be used to 
help gain more accurate and efficient RNA structure 
prediction, further insight into structures and 
functions of RNA, and mix artificial intelligence 
techniques with traditional bioinformatics tools. 
Having outlined the underlying foundations of 
attention mechanisms, we go on to introduce and 
critically review the prevailing models for RNA 
secondary structure prediction that incorporate 
these techniques. 

2.4. The integration of attention mechanisms and 
transformer architectures  

The attention mechanism has been applied to an 
extensive range of topics in the domains of machine 
learning, natural language processing, and computer 
vision. It was applied to various architectures of 
neural networks, such as convolutional neural 
networks, recurrent neural networks, and graph 
neural networks (Fu et al., 2023; Guo et al., 2022; Li 
et al., 2020a; 2020b; Liao and Deng, 2020; Qian et al., 
2022; Zhang et al., 2020; Zhong et al., 2020). In 
contrast to using a single context vector, the 
attention mechanism changes this focus dynamically 
on each step of output production on different 
segments of the input sequence. First, scores are 
computed between each encoder state and the 
current decoder state. This is then normalized to 
create a weight distribution. These weights are 
utilized to compute a context vector, the weighted 
sum of the states of an encoder, directing the 
creation of every output word (Hernández and 
Amigó, 2021). Moreover, the application of the 
attention mechanism to RNA secondary structure 
prediction algorithms has shown promising results 
in terms of enhancing the overall performance of the 
algorithm, handling long RNA sequence and 
pseudoknot issues, and predictive accuracy. For 
example, one of the algorithms called "ATTfold" 
overcomes the long sequence prediction problem by 

considering the global information of RNA sequences 
through the attention mechanism, which focuses on 
the base-pair correlation (Wang et al., 2020). 

Transformers-based models are a breakthrough 
in machine learning, especially in the area of natural 
language processing. The Transformer model 
introduced by Vaswani et al. (2017) revolutionized 
sequence modeling by enabling parallel processing 
through self-attention mechanisms, making it highly 
suitable for analyzing RNA sequences. It is based on 
the idea that the attention processes can be applied 
to efficiently process sequential data like language. It 
allows parallel computing and solves other issues 
with previous RNN models, such as long-term 
dependency. Word embedding is the first step 
through which the transformer model takes words 
and changes them to their numeric forms. Each 
phrase or symbol in the predefined lexicon has its 
own numeric vector. This is done by some kind of 
basic neuron network, where each input (word or 
symbol) obtains a certain weight from some layer, 
and it will carry out a specific numeric 
representation for each word. The embeddings cater 
to the process of preparing the model to work with 
numerical data in the neural networks. 

The order of words carries significant meaning. 
The positioning of the words within the sentence is 
very important. Positional encoding is used to 
address this in numerical forms. This is done by 
adding function values that denote the position of 
the words in each sentence within the word 
embeddings. Specifically, the functions for this 
position-specific value setting are in the form of sine 
and cosine with certain restrictions. Therefore, the 
Transformer model retains the sequencing in which 
the input is presented with the inclusion of 
positional encoding. The secret lies in the self-
attention mechanism of the Transformer 
architecture, so that the model is able to evaluate the 
relative weights of the various words in a sentence 
while keeping the overall context of the sentence in 
perspective. This method calculates three sets of 
values for each word: query, key, and value. 
Interaction among these sets determines the self-
attention scores, which guide the model to attend 
only to relevant parts of an input sequence. 
Therefore, it can handle longer sequences well, 
noting that the process is highly effective and very 
parallelizable. An exemplary implementation of a 
Transformer is way ahead of RNNs in managing very 
long sequences. The core idea of multi-head 
attention is to parallelize the computation of 
multiple self-attentive LSTM models. In multi-head 
attention, the mechanism of attending to oneself is 
executed several times. For all input elements, it 
calculates different query, key, and value vectors in 
each head position. Overall, various linear 
transformations can be executed. Finally, attention-
weighted outputs from every head are concatenated. 
The encoder and decoder stack is an encoder-
decoder structure where an input sequence is 
translated into an output sequence. The encoder 
processes the input while the decoder generates the 
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output. The critical stage in this process is attention, 
which aligns the input and output sequences. This 
guarantees that relevant features in the input will be 
duly reflected in the output, as the decoder is 
capable of attending to important parts of the input 
at each step of generating a word in the output. 
Multiple components beyond the basic transformer 
architecture can be added to increase performance, 

especially on complex tasks. Normalization layers 
are usually added after each stage to preserve the 
learning process within a stable range. The scaling of 
the attention mechanism can be taken further, and 
more neural network layers can be densely added to 
the encoder and decoder networks to increase the 
capacity of the model further. Fig. 2 illustrates the 
transformer architecture. 

Input
Embeeding

Feed ForwardMulti-Head Attention Add & Norm Add & Norm

Output
Embeeding

Feed Forward

Multi-Head Attention Add & Norm

Add & Norm

Multi-Head Attention Add & Norm

LinearSoftmax

Positional Embedding

Positional Embedding

Inputs

Output

Output probabilities

Encoder

Decoder

 
Fig. 2: Transformer architecture 

 

2.5. Overview of approaches based on attention 
mechanisms and transformer architectures 

Having introduced transformer architecture, we 
now examine how these models have been 
specifically adapted for RNA secondary structure 
prediction. The current review aims to extend the 
previous systematic literature review (SLR) 
performed by Budnik et al. (2024), which 
systematically assessed RNA structure prediction 
approaches. The original study was based on a 
search in Web of Science and Google Scholar, which 
identified 295 papers. From these, 33 were selected 
using strict inclusion and exclusion criteria. This 
review focuses on methods that apply attention 
mechanisms, a rapidly advancing area in RNA 
structure prediction. In addition to re-examining the 
methods discussed in the original study, this review 
also considers more recent approaches, offering a 
broader picture of current developments in the field. 
By combining earlier studies with the latest 
research, the review highlights the main trends, 
strengths, and limitations of attention-based 
methods for predicting RNA secondary and tertiary 
structures. 

2.6. RNA structure prediction models 

The advancement through incorporating 
attention mechanisms into RNA secondary structure 
prediction has dramatically improved the field of 
solving problems such as long-range dependencies, 

pseudoknot prediction, and computational 
scalability. This section considers their advancement 
based on performance metrics, literature, 
architecture, and the problems that they solve. 
Datasets are the foundation of RNA secondary 
structure prediction as they make up the training 
sets and the benchmarks that models are compared 
to. The reviewed models employ diverse datasets, 
and the differences in the structure of datasets, 
including families under consideration and their 
coverage, define the performance and, therefore, the 
extent of the model's applicability. The data sets 
used by the reviewed models are summarized in 
Table 1. 

All of the reviewed models rely on at least one of 
these datasets for both training and evaluation. The 
datasets used during training influence how well a 
model performs on specific RNA families and 
structural types. Some models are trained only on 
canonical (non-pseudoknotted) structures from 
RNAStralign and ArchiveII, while others incorporate 
the pseudoknot-rich data from bpRNA-1m to 
enhance their capabilities. In contrast, the 
pretraining of UNI-RNA uses very large collections, 
combining multiple sequence databases from 
RNAcentral and NCBI, in order to extend the model’s 
applicability.  

Fig. 3 demonstrates that Rfam (multiple versions) 
together with bpRNA/bpRNA-1m is used most 
frequently by models, while new models primarily 
train using enormous unannotated sequence 
databases for pretraining. 
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Table 1: Datasets of the RNA secondary structure 
Dataset Description Usage in models 

Rfam (Griffiths-
Jones et al., 2003; 

Kalvari et al., 2021) 

A repository of non-coding RNA families with annotated consensus secondary 
structures. Versions (e.g., 14.4, 14.5, 14.9) provide incremental improvements in 

sequence diversity and annotation. 
Training for canonical structures 

bpRNA (Danaee et 
al., 2018) 

Contains over 102,318 sequences derived from experimental RNA structures, 
covering diverse RNA families. 

Training for general RNA families and 
benchmarking 

bpRNA-1m 
(Danaee et al., 

2018) 

An extended variant of bpRNA with over one million sequences, offering enhanced 
structural diversity and coverage. 

Training for pseudoknot prediction 

PDB (Lu et al., 
2015) 

High-resolution, experimentally determined 3D RNA structures; crucial for refining 
secondary structure predictions. 

Refining secondary structure 
predictions 

RNAStralign (Tan 
et al., 2017) 

A curated collection of 37,149 RNA structures with sequence alignments and 
secondary structure annotations. Sequence lengths range from 30 to 1851 

nucleotides. 
Benchmarking models 

ArchiveII (Sloma 
and Mathews, 

2016) 

Includes 3,975 sequences from 10 conserved RNA families. Frequently used for 
benchmarking canonical structures. 

Validation against experimental 
benchmarks 

RNA STRAND 
(Andronescu et al., 

2008) 

A small-scale, manually curated database with high-quality RNA structure 
annotations, valuable for validation tasks. 

Large-scale pretraining 

 

 
Fig. 3: Aggregated dataset usage across RNA secondary structure prediction modes 

 

The performance evaluation of models primarily 
relies on the Precision and Recall measures together 
with their harmonic mean F1 score. The F1 score 
proves valuable because it combines precision with 
recall statistics, where precision represents the 
correct predictions among all predicted base pairs, 
while recall demonstrates the percentage of true 
base pairs that the model correctly identifies. The F1 
score acts as a standard metric for comparing 
models since it utilizes per-based-pair calculations to 

provide an overall prediction accuracy summary. Fig. 
4 presents a bar chart graphical representation of 
the F1 scores obtained by each of the models. All 
bars are graphically differentiated to be easily 
distinguished from one another. This chart was 
obtained by plotting the actual extracted 
performance metrics without making 
approximations in the process, and hence, the results 
are as accurate as possible during comparisons. 

 

 
Fig. 4: F1 scores of RNA secondary structure prediction models 

 

Table 2 shows the results of F1 between the 
models. Early models such as ATTfold reached a 
comparatively average F1 score of 0.810 on 

benchmark datasets, which suggested that there is 
immense potential for attention mechanisms, due to 
which there were restrictions on datasets as well as 
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complex architecture. Using only canonical 
structures, PredPair, taking advantage of CNNs, 
biLSTMs, and attention mechanisms, proved to 
provide high accuracy while being reasonably 
successful in pseudoknot recognition as well. Other 
models like E2EFold followed the trend of reaching 
the given benchmark of F1 equal to 0.833 while 
using multiple-head attention and constrained 
optimization for the prediction of both canonical and 

pseudoknotted structures. Likewise, UNI-RNA 
reported an F1 score of 0.821, which is ensured by 
large pretraining datasets where the large scale of 
the data led to more accurate prediction. The most 
recent DEBFold model proposed accurately 
evaluated correlations in F1 scores and achieved 
near canonical structure assessment with the 
balance of F1 scores and accurate attention 
integrated with thermodynamics. 

 
Table 2: Comparison of RNA secondary structure prediction models based on attention mechanism results 

Reference Dataset Model Results 
Yang (2024) Rfam 14.4; bpRNA; Protein Data Bank (PDB) DEBFold F1 score: 0.649 

Gong et al. (2024) Rfam 14.5; bpRNA-1m KnotFold 
F1 score: 0.758 
Precision: 0.784 

Recall: 0.734 
Franke et al. (2024) Rfam 14.9; bpRNA; ArchiveII; RNA STRAND; PDB RNAformer F1 score: 0.730 

Wang et al. (2023) bpRNA; RNAStralign UNI-RNA 
F1 score: 0.821 
Precision: 0.894 

Recall: 0.801 

Fei et al. (2022) Rfam 14.5; bpRNA; tRNA; 5SrRNA; SRP; PDB LTPConstraint 
F1 score: 0.731 
Precision: 0.747 

Recall: 0.715 
Grigorashvili et al. (2022) Rfam PredPair Accuracy: 0.630 

Wang et al. (2020) RNAStralign ATTfold F1 score: 0.810 

Chen et al. (2020a) RNAStralign; ArchiveII E2EFold 
F1 score: 0.833 
Precision: 0.880 

Recall: 0.798 

 

The subsequent parts of this section detail each 
significant attention-based model. We present an 
analysis of model architecture featuring attention 
mechanisms, which includes testing contexts with 
specified datasets along with performance metrics as 
F1 score assessments, and special strengths or 
weaknesses regarding the handling of pseudoknots 
and computational resource utilization.  

2.6.1. E2EFold 

E2EFold is a significant advancement that deals 
with limitations in accuracy, pseudoknot structures, 
and computational complexity of RNA secondary 
structure. This end-to-end deep learning model, 
which incorporates the transformer-based Deep 
Score Network and the constrained optimization 
Post-Processing Network, enables the prediction of 
RNA base-pair matrices directly while constraining 
severe complications such as non-overlapping pairs, 
min loop lengths, and nucleotide compatibility. The 
Deep Score Network utilizes transformer encoders 
to obtain sequence dependencies as well as global 
context through positional embeddings and utilizes 
2D convolutions to compute all base-pair scores. The 
Post-Processing Network utilizes an unrolling of 
several primal-dual optimization steps, which are 
entirely differentiable; therefore, so is the end-to-
end training and guaranteeing structural validity for 
the secondary structures of the RNA molecules, 
including the pseudoknots. The model is tested on 
the RNAStralign data set of 30451 (Tan et al., 2017), 
sequence length up to 1851, and evaluated on the 
ArchiveII data set without retraining of model of 
3975, length up to 2968 (Sloma and Mathews, 2016). 
The training follows a two-step process: The Deep 
Score Network is trained with weighted binary 
cross-entropy for handling the data imbalance issue 

and, after that, fine-tuned in collaboration with the 
Post-Processing Network on a differentiable F1 loss 
function, which considers the specific error rates for 
optimization. The evaluation shows outstanding 
performance in terms of predictive accuracy with F1 
scores of 0.821 and 0.686 on RNAStralign (Tan et al., 
2017) and ArchiveII (Sloma and Mathews, 2016), 
respectively, outcompeting all state-of-the-art 
algorithms like CONTRAfold (Do et al., 2006) and 
LinearFold (Huang et al., 2019). This is mostly 
notable in the performance of the pseudoknot, 
where it scores an F1 of 0.71 compared to 
RNAstructure (Bellaousov et al., 2013), scoring an F1 
of 0.472. Scalability to long sequences with an almost 
equivalent runtime with LinearFold (Huang et al., 
2019) and the incorporation of hard constraints to 
prevent over-fitting and produce biologically 
realistic folds. The applicability of the model has 
been demonstrated in synthetic biology, drug 
discovery, and functional genomics; however, the 
current method has drawbacks that keep it from 
generalizing for other RNA families, particularly 
those underrepresented in the database, and is 
constrained by scalability issues in terms of 
sequence length beyond 3,000 bases. This coherent 
design and training framework emphasizes the 
capacity of E2Efold to establish a new gold standard 
for RNA structural bioinformatics. 

2.6.2. ATTFold 

ATTFold successfully overcomes some of the 
long-standing limitations of RNA secondary 
structure modeling, such as dealing with long 
sequences and predicting pseudoknots. Constructing 
upon an Encoder-Decoder-Constrain structure, 
ATTFold adopts a transformer-learning-encoder 
combined with an attention mechanism to generate 
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relatively high-dimensional feature vectors of RNA 
sequences, where the positional embeddings are also 
applied to preserve RNA sequence order. This is 
followed by a convolutional neural network (CNN) 
decoder, which produces a symmetric base-pairing 
scoring matrix to predict the likelihood of each base 
pair being paired. This unconstrained matrix is then 
refined in the constraint module, where certain 
biological constraints such as canonical base pairing 
(A-U, G-C, G-U pairings), minimum loops of a hairpin, 
and single pair restrictions are implemented, 
applying the hard constraint algorithm with 
Lagrange Multiplier optimization. Training on the 
RNAStralign (Tan et al., 2017) dataset of 25,425 
exact RNA sequences obtained by removing stem-
loops and filtering out sequences with lengths 
exceeding 512 bases, 20,340 of these sequences 
were used for training, 2,543 for validation, and 
2,542 for testing, with redundant sequences culled to 
prevent leakage of information. The model 
optimization followed a fitting of the loss function 
involved computational complexity through gradient 
descent and backpropagation to optimize a 
composite loss function that combines fitting 
accuracy and structural constraints. On short 
sequences like tRNA and 5S_rRNA, ATTFold achieved 
an F1 score more than 0.9, which was 20% better 
than traditional methods, including RNAfold (Zuker 
and Stiegler, 1981) and Probknot (Bellaousov and 
Mathews, 2010). However, on longer, more 
complicated folds containing pseudoknots like 
telomerase RNA, ATTFold still demonstrated 
considerable gains, and F1 scores over 0.8. These 
results affirm the high scalability and versatility of 
ATTFold for different RNA families. However, there 
are issues that have not been adequately solved in 
predicting highly complex long sequences, mainly 
due to the scarcity of datasets and the complexity of 
RNA secondary structures. Future work seeking to 
augment long-sequence datasets, as well as 
incorporate experimental constraints, could also 
strengthen the model, positioning ATTFold as a 
foundational technology for RNA structural 
bioinformatics for use in biological research, 
synthetic biology, and therapeutic RNA design. 

2.6.3. PredPair 

The PredPair model contains a deep learning 
architecture that utilizes CNNs, biLSTMs, and 
attention mechanisms to predict base-pairing 
probabilities that originate from sequence data in 
the context of RNA secondary structure prediction. 
In contrast to the thermodynamic or homology-
based approaches, PredPair is free from such pre-
learned information as stacking energies or spatial 
layouts and factors, receiving as the sole input one-
hot encoded RNA sequence with a unique mark on a 
particular nucleotide. The architecture then applies a 
convolutional layer to extract the local features, an 
attention layer that guides the model to the 
nucleotide complementarity, and biLSTMs to capture 
long-distance features, leading to a certainty matrix 

of pairing propensity. Training used 2,147 Rfam 
(Kalvari et al., 2018) families without sequences 
below 20/ 20 paired nucleotides and split into 
training, validation, and test sets in the ratio 
60/20/20, respectively. Each RNA sequence was 
encoded into input-output pairs where the target 
represented specific base-pair interactions and the 
source text the sequence, producing 857,307 
training samples. For optimization, categorical cross-
entropy was used as a loss function, and the Adam 
optimizer had a learning rate of 0.1 and L2 
regularization to prevent overfitting the model. 
Using evaluations of performance, it was indicated 
that there was a top-1 accuracy of 0.58 and a top-2 
accuracy of 0.7. A rise was observed to 0.63 when 
making sure that the certainty matrix was 
symmetrical. Compared with benchmarks, PredPair 
obtained preferable F1 scores; however, slightly 
higher false positive ratios than RNAplfold (Lorenz 
et al., 2011) and SPOT-RNA (Singh et al., 2019). 
Notably, it was capable of predicting pseudoknots 
with reasonable accuracy at 0.78, and this is a 
problematic structure type to predict as it was not 
heavily represented in the training sets. Additional 
gradient-based saliency map analysis for three 
representative recognition cases confirmed that the 
model learned semi-quantitative representations of 
biologically relevant biochemical features, Watson-
Crick base pairing and wobble pairings, and stacking 
energy hierarchies. Applying t-SNE to adjust 
clustering underlined the ability of the constructed 
network to arrange sequences according to their 
Rfam families, even though their similarity, rather 
than Rfam structural motifs, could prevail in those 
clusters. The usefulness of the model was confirmed 
again through an analysis of the DMS-seq data from 
E. coli (Burkhardt et al., 2017); predicted co-
occupied nucleotides corresponded to experimental 
inaccessible sites. 

2.6.4. LTPConstraint 

The LTPConstraint model is used here as it is a 
novel state-of-the-art RNA secondary structure 
prediction model that utilizes deep learning methods 
like Bi-LSTM, Transformer, Transfer Learning, and 
biologically motivated constraints. By training the 
model on datasets drawn from Rfam v14.5 (Kalvari 
et al., 2021), bpRNA (Danaee et al., 2018), and 
RNAStralign (Tan et al., 2017), diverse data 
preprocessing methods, including redundancy 
deletion and length division of the input sequences, 
are incorporated to have high-quality data fed into 
the model. The architecture consists of three 
interconnected modules: A global semantic 
extraction module based on Bi-LSTM and 
Transformer layers, which capture sequential and 
positional information; a local feature extraction 
module that calculates base-pair scores using a U-
net-inspired generator; and a hard constraint layer 
that translates RNA pairing rules. The Bi-LSTM used 
in this study is a type of bidirectional RNN that is 
able to process sequences forwards and backwards, 
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making sure that essential long-range dependencies 
and contextual relationships in RNA sequences are 
not ignored. This mechanism is crucial in unravelling 
the intricacies of folding patterns that are typical of 
RNA secondary structures. 

The training TSA is 80-10-10 for training, 
validation, and testing with optimizers such as Adam 
and customized losses such as weighted logistic loss 
and F1 loss for better predictions, especially where 
the datasets are highly imbalanced. Transfer 
learning improves the model even more by training 
the model on big, general data sets (for example, 
Rfam) and then updating the model based on a small 
data set of chosen RNA families. It helps to avoid the 
need for large volumes of data that are usually 
specific to one family and, at the same time, 
increases the rate of convergence and accuracy. The 
model performs nicely in predicting pseudoknot 
structures because it achieves higher F1 scores than 
benchmark models such as ProbKnot (Bellaousov 
and Mathews, 2010) and Knotty (Jabbari et al., 
2018); specifically, 0.9034 for 128-length sequences 
and 0.7310 for 512-length sequences. Quantitatively, 
the use of the adjacency matrix may add 
computational steps and the consideration of 
multiple neural components. At the same time, 
qualitatively, for both benchmark and chimeric RNA 
structures, LTPConstraint offers sound and precise 
predictions. 

2.6.5. UNI-RNA 

The Uni-RNA model is a model for RNA 
secondary structure prediction that uses a pre-
trained architecture based on transformers and 
optimised for different RNA datasets. Uni-RNA is 
based on one of the most used NLP models in the last 
years, the BERT model (Bidirectional Encoder 
Representations from Transformers), which 
pretrains on masked tokens and learn contextual 
relations within the sequences. In RNA tasks, Uni-
RNA generalizes this concept to nucleic acid 
sequences and identifies previously concealed 
structural and functional features with masked 
nucleic acid modeling. Integration of ~1 billion RNA 
sequences from RNAcentral (Sweeney et al., 2021), 
the National Center for Biotechnology Information 
(NCBI) (Sayers et al., 2021), and other databases of 
Uni-RNA, the training updates included MMseqs2 
clustering for sequence clustering and readaptation 
of RNA sequences mapped to a DNA character set. 
The architecture varies from 8 to 24 transformer 
layers and applies rotary embeddings for positional 
encoding, using fast attention for memory-efficient 
computation and fused layer normalization for 
better training performance. 

The best models of comparison used in 
benchmarking were RNA-FM (Chen et al., 2022) and 
Uni-RNA, using totally different approaches like 
UFold (Fu et al., 2022), CONTRAfold (Do et al., 2006), 
and SpliceBERT (Chen et al., 2024). Since RNA-FM 
aims to perform RNA tasks using language 
understanding, we utilize a pre-trained language 

model for RNA-FM to extract sequence embeddings 
for RNA tasks. UFold utilizes a deep learning 
framework to predict the secondary structures of 
RNA using an unrolled algorithm to enhance precise 
determination. CONTRAfold, an earlier work that 
involves the use of machine learning, forecasts 
secondary structures without adopting 
thermodynamic models, bearing a difference to 
physics-based models. To enhance the prediction of 
RNA secondary structures, SpliceBERT is another 
transformer-based model that applies BERT for DNA 
sequences to recognize splice sites, indicating its 
flexibility across different species. 

Uni-RNA did better than these models, with 0.894 
of Precision, 0.801 recall, and an F1 score of 0.821, 
and made RNA-FM’s F1 score benchmark on bpRNA-
1m (Danaee et al., 2018) and RNAStralign (Tan et al., 
2017) to 0.694. In the long-range contact map, Uni-
RNA attained a maximum L/5 precision of 0.709, 
which is significantly higher than one-hot encoding, 
with 0.647 superior in modelling intricate structural 
dependencies. In splice site prediction, Uni-RNA 
performs the best with an F1 score of 0.9635, while 
SpliceBERT shows 0.9568, which proves good cross-
sectional compatibility. The training was done on 
128 A100 GPUs, engaging the Adam optimization 
method coupled with the dropout of 0.1, gradient 
clipping, and the learning rate of 0.004 to maintain 
convergence stability. Uni-RNA at present, utilizing 
architectural novelty, vast data sets, and high 
performance, emerges as a front-rank tool in 
computational RNA biology; this innovative ally 
equips techniques in RNA structure prediction, 
functional annotation, and therapeutics use with 
unparalleled Precision and capacity. 

2.6.6. RNAformer 

RNAformer is a leap forward in the area of RNA 
secondary structure prediction based on a new 
architecture that combines axial self-attention and 
latent space recycling, thus allowing for the 
modelling of long-range interdependencies and 
multiple passes over the sequence to refine base-pair 
predictions. Unlike most of the current approaches, 
RNAformer does not require side information such 
as multiple sequence alignment (MSA); instead, it 
uses a two-dimensional embedding of RNA 
sequences, and this rationality makes it more 
interpretable and scalable. Training was based on 
representative datasets from Rfam (v14.9) (Kalvari 
et al., 2021), together with RNAStralign (Tan et al., 
2017), bpRNA (Danaee et al., 2018), ArchiveII (Sloma 
and Mathews, 2016), and RNA STRAND (Andronescu 
et al., 2008), as well as on secondary structures of 
PDB entries supported by DSSR (Lu et al., 2015). 
Outlier removal processes like BLAST for homology 
filtering and covariance models helped in optimizing 
the mentioned dataset for minimizing the bias in 
model assessment. The model also proved rather 
portable in terms of training on finite-defined sets of 
canonical and complex shapes, pseudoknots in 
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particular, TS0 for intraspecific/subsets and TS-hard 
for interaspecific comparisons. 

The Binary Cross Entropy loss with masking is 
utilized to address the problem of both paired and 
unpaired base entries, and the model is further 
trained, as a result of this RNAformer, with Dropout 
layers of 0.4 and the AdamW optimizer and Cosine 
Annealing, unique to learning rate scheduling of 
0.001. This is achieved through the axial-attention-
based transformer blocks of which the present 
model has six, as well as latent space recycling, 
which is borrowed from AlphaFold (Jumper et al., 
2021). This mechanism of refinement acted during 
fine-tuning and was computationally lighter than 
recycling during the pretraining phase. Similar to 
previous experiments, evaluation based on F1 and 
F1-shifted scores also showed that RNAformer 
surpassed other de novo RNA structure prediction 
methods like RNA-FM and UFold (Fu et al., 2022) in 
terms of both scores, as it was able to achieve an F1 
score of 0.73 on the TS0 dataset and 0.743 on the 
TS1, while the arrangement also indicates the 
comparative performance with homology-based 
methods like SPOT-RNA2 (Singh et al., 2021). In 
addition, inference speed is relatively fast: Less than 
one second for one sequence, and memory-efficient 
FlashAttention makes it fit for use in a large-scale 
context. Nevertheless, there remain challenges to 
attaining scalability with the use of RNAformer, 
especially when handling longer sequences, as well 
as making more accurate predictive estimations with 
respect to highly intricate characteristics. 

2.6.7. KnotFold 

KnotFold is a state-of-the-art RNA secondary 
structure prediction model capable of flagging 
canonical base pairs and recognizing complex 
pseudoknots using a transformer-based architecture 
and self-attention. The model predicts an L x L base-
pair probability matrix, leveraging eight transformer 
encoder layers (embedding dimension: 256, eight 
attention heads per layer, and 6.5 million parameters 
for each model to learn, capturing long-range 
interaction dependencies, and estimating the 
corresponding probabilities P(b(i, j) | x). As trained 
and validated on the bpRNA-1m dataset (102,318 
identified RNA structures, reduced to 23,819 for 
training and 1,131 for validation) (Danaee et al., 
2018), KnotFold incorporates these probabilities 
into a potential function that employs the minimum-
cost flow algorithm in optimizing the secondary 
structures predicated on the iterative addition and 
removal of base pairs. Its workflow was given on 
RNA CP000097.1_937913-937973 (Kalvari et al., 
2021), which predicted that there would be 18 base 
pairs. However, there was one false positive, and 
after 36 optimization steps, the cost was finally 
tuned to -351.6. KnotFold’s performance was 
benchmarked against four state-of-the-art RNA 
prediction tools. The four RNA folding tools that 
have been compared include MXfold2 (Sato et al., 
2021), SPOT-RNA (Singh et al., 2019), UFold (Fu et 

al., 2022), and Jabbari et al. (2018). MXfold2 uses 
thermodynamic principles along with deep learning 
to predict structures with proclivity toward energy 
minimization. Several analyses were performed on 
the constructed dataset, PKTest, which comprises 
1009 pseudoknotted RNAs from BpRNA (Danaee et 
al., 2018) and Rfam (Kalvari et al., 2021). In PKTest, 
KnotFold obtained the F1 score of 0.758, which was 
higher than MXfold2 (0.654), SPOT-RNA (0.579), and 
UFold (0.602). KnotFold employs AdamW 
optimization with (learning rate: 0.001, warm-up 
distance: 30000 steps, weight decay: 0.01, batch size: 
4, policy for overfitting: Dropout and ensemble. 
Transformer-based attention mechanisms, as well as 
iterative flow optimization, make KnotFold suited for 
dealing with complex pseudoknots and for 
generalization to new RNA families, outperforming 
other existing methods and confirming its practical 
applications in synthetic biology, RNA function 
analysis, as well as in drug discovery.  

2.6.8. DEBFold 

DEBFold also marks an improvement over 
traditional and deep-learning relatives by effectively 
making use of a two-step approach to RNA 
secondary structure prediction. The first stage also 
utilizes a deep convolutional network with a self-
attention mechanism to predict base-pairing 
probabilities from RNA sequences represented as 
6×l×10 tensors in which l is the sequence length, 
capturing the results of six conventional 
thermodynamic predictors, such as RNAfold and 
IPknot. Taking advantage of a large-scale family-wise 
strategy on the (bpRNA-1m), including 43,269 
sequences belonging to 2,125 structural families, 
DEBFold alleviates overfitting arising from deep-
learning models trained on sequence information. 
The dataset was carefully split based on 25-fold 
cross-validation; all family members were 
independent and diverse; further testing sets 
(TestSetβ and TestSetγ) were generated from 
bpRNA-new and PDB, respectively, for assessment. 
The second stage converts these pairing 
probabilities into SHAPE-like scores to guide an 
optimization process that incorporates 
thermodynamic principles. In the proposed model, 
training was conducted for over 250 epochs using 
the Adam optimizer with an enhanced cosine-decay 
learning rate scheduler. Dropout regularization and 
batch normalization were also employed to improve 
generalization. 

The performance benchmarks also put DEBFold 
higher than classical and deep-learning-based 
methods every time. Compared with other classical 
thermodynamic tools like RNAfold, IPknot, and 
TurboFold, DEBFold got higher median F1 scores 
(e.g., 0.649 for TestSetα) and depicted better overall 
cross-family generalization. DEBFold also 
outperforms these deep-learning approaches and 
achieves an F1 score of 0.557 on fully curated 
datasets like TestSetβ and 0.779 on the TestSetγ 
datasets. On a more primary note, DEBFold exceeded 
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a comparable performance to SPOT-RNA2 in the 
context of experimentally validated PDB sequences. 
At the same time, the time to make computations 
was significantly shorter and equal to 67 seconds, on 
average, not rising to 142 hours, 16% of the time for 
specific sequences explored in the subset of SPOT-
RNA2. The use of variable sources thermal modelling 
integrated with deep learning forms the core of 
DEBFold, providing it with best-in-class accuracy 
and scalability. DEBFold proves to be 
computationally efficient but shows the best 
performance in tasks involving only canonical 
structures of RNA and sequences up to 512 
nucleotides long. This unique combination of deep 
learning and thermodynamics, which can obtain 
state-of-the-art performance, also shows the 
potential for further application in RNA structural 

biology and functional annotation, even if there are 
still several difficulties, including problems with 
pseudoknots and long noncoding RNA prediction. 
This study shows that by improving the issues cited 
in previous approaches systematically and achieving 
better performance than benchmarks in different 
data sets, DEBFold not only offers new ways and 
thoughts for RNA secondary structure prediction but 
also has a substantial application value. 

In addition to the explanations provided above, 
Fig. 5 presents a collective graphical summary of the 
eight attention-based models for RNA secondary 
structure prediction. Fig. 5 delineates the 
fundamental computational components, i.e., input 
encoders, attention mechanisms, intermediate 
neural layers, constraint modules, and output stages, 
that each respective model employs. 

 

Block 1: Transformer Encoder 
(captures global dependencies)

Block 1: Transformer Encoder (with 
positional encoding)

Block 1: 1D Convolution Layer 
(local features)

Block 1: BiLSTM (global context)

Block 1: Pretrained BERT-style 
Transformer (massive training 

corpus)

Block 1: Axial Attention (applied 
row-wise and column-wise on L×L 

matrix)

Block 1: Transformer Encoder (base 
embeddings)

Block 1: CNN (feature extraction 
from combined inputs)

Block 2: 2D Convolution (computes 
base-pair scores)

Block 3: Primal-Dual Optimization 
Network (enforces folding 

constraints)

Output: Base-pair matrix (binary)

Block 2: CNN Decoder (generates 
N×N base-pair probability matrix)

Block 3: Constraint Module 
(Lagrange multiplier optimization 

for RNA pairing rules)

Output: Validated base-pair matrix

Block 2: Attention Layer (focus on 
base interactions)

Block 3: BiLSTM (captures 
sequence context)

Block 4: Fully Connected + Softmax 
(predicts partner position)

Block 2: Transformer Encoder (self-
attention layers)

Block 3: U-Net CNN (predicts base-
pair score matrix)

Block 4: Constraint Module (filters 
for canonical structure)

Output: Final base-pair matrix
Output: Pairing index (of marked 

base)

Block 2: Embedding Projection 
(base embedding interactions)

Output: Base-pair probability 
matrix

Block 2: Latent Recycling (reuses 
intermediate states for refinement)

Output: Base-pair score matrix

Block 2: Score Projection (outer 
product of embeddings   base-pair 

matrix)

Block 3: Learned Potential + Flow 
Solver (minimum-cost 

optimization)

Output: Base-pair matrix including 
pseudoknots

Block 2: Self-Attention (sequence-
level dependencies)

Block 3: Thermodynamic Pseudo-
SHAPE Conversion

Block 4: Constrained Folding (using 
RNAfold-style integration)

Output: Final RNA secondary 
structure

E2EFold ATTFold PredPair LTPConstraint

UniRNA RNAformer KnotFold DEBFold

 
Fig. 5: Architecture diagrams of the attention-based RNA secondary structure prediction models 

 

2.7. Comprehensive technical summary of the 
RNA secondary structure prediction models 

Table 3 compares the models across several 
categories: pseudoknot support, maximum sequence 
length, computational cost, and main innovation. 
Each model involves trade-offs. Some are designed 
for faster performance on CPUs, while others can 
process very long sequences or more complex 
structures, though with higher computational 
demands. Table 3 shows which model is most 
suitable for different tasks, such as rapid folding or 
managing pseudoknots. 

3. Discussion 

The comparative flowchart in Fig. 6 illustrates the 
workflows of RNA secondary structure prediction 

approaches, including MFE-based algorithms, 
machine learning, deep learning, and attention 
mechanisms, highlighting their unique processes, 
iterative decision-making steps, and output 
visualizations. 

The innovation of recent GPU hardware and large 
data technologies has enabled transformer-based 
models to be trained over millions of parameters, 
enabling complicated biological difficulties like huge 
pseudoknots and long-distance base pairings that 
were out of reach for conventional algorithms. The 
initial efforts, such as the ViennaRNA Package, 
served as a blueprint for the combination of 
thermodynamics and covariation through 
multidisciplinary cooperation that established the 
groundwork for integrating domain expertise and 
computational advancement. 
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Table 3: Comprehensive technical summary of the RNA secondary structure prediction models 
Model (year) Pseudoknot support Long RNA support Computational cost Key strength/Innovation 

DEBFold 
(2024) 

No 
Partial. Validated up to 512 nt; 
longer sequences out of scope. 

Low. Extremely efficient 
ensemble model; 7500× 

faster than deep 
competitors. 

Two-stage ensemble with family-
wise generalization; fast, robust 
canonical structure prediction. 

KnotFold 
(2024) 

Yes 
Yes. Efficient for ~1000 nt; cubic 

time scaling may limit >1kb 
inputs. 

Moderate–High. Combines 
O(n²) neural scoring with 
O(n³) flow optimization. 

Neural scoring with exact flow-
based pseudoknot prediction: 

breakthrough in efficient complex 
folding. 

RNAformer 
(2023) 

No 

Yes. Supports kilobase 
sequences using axial attention; 

evaluated on the TS0 
benchmark. 

Moderate–High. 
Transformer layers (8–24); 

axial attention improves 
efficiency. 

Axial-attention (scans 
rows/columns separately) 

Transformer with latent recycling; 
no reliance on alignment or external 

data. 

UNI-RNA 
(2023) 

Yes 
Yes. Trained on billion-scale 

data; supports long sequences 
with FlashAttention. 

High. Pretraining on billions 
of sequences; 400M 

parameters; GPU-intensive. 

Massive foundation model for RNA; 
learned from 1B+ sequences; 

transfer-learns RNA structure and 
function. 

LTPConstraint 
(2022) 

No 

Partial. Optimized for moderate-
length RNAs (e.g., <1000 nt); 

performance not evaluated on 
very long RNAs. 

Low. Lightweight design 
using BiLSTM, Transformer, 

and CNN modules; fast 
inference. 

Combines constraint learning with a 
lightweight architecture for efficient 

and accurate canonical structure 
prediction. 

PredPair 
(2022) 

Yes 
Partial. Tested up to ~800 nt; 

performance declines with 
length; not optimized for >1kb. 

Low–Moderate. Lightweight 
CNN+LSTM+attention; 

inference feasible on CPUs. 

Learns base-pairing rules de novo; 
interpretable architecture that 

discovers thermodynamic features. 

ATTfold 
(2020) 

Yes 
Yes. Targets long sequences up 

to ~rRNA length; accuracy 
declines >1000 nt. 

Moderate. Transformer-like 
network; fast GPU inference; 

polynomial complexity. 

Early attention-based model 
integrating structural constraints; 

handles long-range pairing and 
pseudoknots. 

Calculate Minimum Free Energy

• Dynamic Programming
• Thermodynamic Rules 

(Stacking Energies, Loops)

Feature Extraction
(Nucleotide Composition, 

Thermodynamic Properties)

ML Model ( Random Forest / SVM)

CNN / biLSTM Model

Loss Optimization (Reduce 
Prediction Errors)

Attention Mechanism (Self-
Attention Layers / Capture 

Pairwise Dependencies)

Base Pair Probabilities (Long-
Range Interactions / Nucleotide 

Dependencies)

Are base 
pairings 
optimal?

Is 
prediction 

valid?

Is the loss 
minimized?

Are 
probabilities 
biologically 
plausible?

Refinement Layers (Handle 
Pseudoknots)

Constrained Optimization

Minimum Free Energy

Machine Learning

Attention Mechanism

Deep Learning

 
Fig. 6: The workflows of RNA secondary structure prediction approaches 

 

Attention-based deep learning approaches have 
outperformed previous approaches by using data-
driven methods in detecting local as well as distal 
dependencies within RNA sequences. By using 
weight sharing across the sequence and global self-
attention mechanisms, transformers are able to 
detect complex patterns of base pairing, such as 
distal interactions and pseudoknots, that were 
challenging for simpler machine learning and 
thermodynamic models to represent. Additionally, 
parallel calculation of entire sequences provides 
computational benefit over sequential RNN-based 
methods by enabling quicker training and inference 

on big RNA datasets. Pretrained transformer models 
like UNI-RNA can generalize RNA knowledge into 
specialized tasks with fine-tuning, which further 
increases their versatility. 

Despite these strengths, attention-based models 
also come with significant challenges and limitations 
that must be critically analyzed. The advanced 
efficacy of E2EFold and RNAformer depends on 
significant computational expenses, together with 
multiple scalability needs. Using GPUs and lots of 
training time, together with tens of thousands of 
sequences and many attention layers, makes this 
process difficult for small research groups that lack 
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extensive resources. Long RNAs exceeding 
thousands of nucleotides continue to present 
challenges for predicting their structures when 
deployed for use. The extended axial attention 
adaptations in RNAformer create difficulties for 
processing RNA sequences that surpass multiple 
thousands of lengths. The attention schemes 
implemented by E2EFold and RNAformer (multi-
head and axial, respectively) require extensive 
resources to operate effectively. These efficiency 
limitations demonstrate that accuracy-boundary 
breakthroughs in these models need complementary 
technology to create either new minimalistic models 
or adaptation approaches that enhance memory 
efficiency for practical applications. Another 
limitation regarding biases and generalizability. 
Deep learning algorithms obtain their performance 
level from the quality of available data. Most 
attention-based predictors receive training from the 
same sets of data, including RNAStralign, bpRNA, and 
Rfam families. The models experience difficulties 
with RNA families and structural motifs that occur 
infrequently during training. A model that primarily 
encounters short pseudoknots during training might 
struggle to find long-range pseudoknots even if the 
input data contains them. The same holds true for 
E2EFold, which lacks the ability to predict previously 
unseen motifs because they are outside its scope. 
The elimination of sequence stretches longer than 
1000 nucleotides during preprocessing leads to 
models receiving limited exposure to distant 
interaction patterns during training. The knowledge 
base of reference structures suffers from two major 
issues: first, they derive from predictive algorithms 
that could potentially embed system errors, and 
second, the reference experiments generate 
structures biased toward MFE assumptions. Model 
generalizability receives negative consequences 
from this procedure. The ability of UNI-RNA to 
process extensive unannotated data sequences 
suggests a strategy that involves training on diverse 
sequence sets to minimize bias effect, yet fails to 
ensure a complete solution. Extra care is needed 
when analyzing high test set performance stemming 
from data similarity to training sets because real 
generality needs to be demonstrated through new 
RNA performance assessment (multiple DEBFold 
tests employed this approach).  

Different models showcase unique trade-offs 
between complexity, scalability, and accuracy: 
 
• E2EFold achieves state-of-the-art performance on 

pseudoknots but incurs massive computational 
overhead and struggles beyond 3000 nucleotides. 

• RNAformer incorporates axial attention to improve 
scalability, yet still faces challenges with extremely 
long RNAs and highly complex pseudoknotted 
structures. 

• DEBFold balances attention mechanisms with 
thermodynamic priors, offering reliable and 
efficient performance on canonical structures 
without maximizing peak accuracy. 

• KnotFold specializes in pseudoknot prediction by 
combining attention mechanisms with iterative 
optimization, excelling in this specific task. 

• PredPair and LTPConstraint offer lightweight 
alternatives suitable for standard secondary 
structure prediction, though their flexibility and 
accuracy are lower for highly complex RNAs. 

• UNI-RNA, via extensive pretraining, achieves broad 
generalization but requires substantial 
computational investment and still demands 
careful task-specific fine-tuning. 

 
These comparisons highlight that no single model 

is universally optimal; model choice depends on 
specific research needs, available computational 
resources, and target RNA complexity. 

Additionally, the interpretability and validation 
capabilities of these models remain limited because 
attention weights offer restricted diagnostic 
features, although they occasionally reveal which 
nucleotides the model pairs based on inspection of 
attention matrices. Researchers must have trust in 
predictive models but require an understanding of 
their operations, particularly when designing future 
experiments. The PredPair saliency analysis 
demonstrates progress by showing that it identified 
known pairing rules. Making sense of the underlying 
reasoning behind model-predicted structures 
remains a complex task for scientific interpretation. 
The validation process depends on experimental 
testing through SHAPE and DMS chemical probing 
and comparative sequence analysis. The prediction 
models currently do not supply uncertainty 
measurements other than basic pairing probability 
statistics. Researchers actively pursue methods to 
interpret complex models while establishing 
confidence measures since model complexity 
continues to increase. 

RNA secondary structure modeling still poses one 
of the most difficult tasks, pseudoknot prediction. 
Although domain-specific strategies are in models 
such as KnotFold and E2EFold, other models, such as 
UNI RNA and PredPair, focus more on canonical 
structures for computational simplicity. Since 
accuracy in this domain is sensitive to well-behaved 
specializations, flexibility in other domains is traded 
off, but specialized architectures for pseudoknots 
yield better accuracy. It therefore offers validation to 
pseudoknot prediction with the important reminder 
that task-specific approaches will continue to be 
needed, and the range of model scope will be well 
assessed. 

Attention-based RNA models utilize a 
tremendous amount of advanced training techniques 
to stabilize learning and prevent overfitting. Adam 
and variant AdamW are the optimizers the most 
used, sometimes along with a learning rate schedule, 
cosine annealing (as in RNAformer too), to keep 
training momentum. To also make the model more 
robust against noisy data, regularization strategies 
like dropout and batch normalization are used. 
Choosing these optimizations fits well with the 
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complexity of the architecture and diversity of the 
dataset encountered during RNA structure modeling. 

The circumstances observed demonstrate why 
performance benchmarks must include additional 
information. The evaluation of F1 scores by models 
requires a specific mention regarding which 
structural combinations provided those results. The 
F1 score of 0.8 seems to indicate successful structure 
prediction for canonical structures, although the 
same model demonstrates reduced capability when 
dealing with pseudoknots or longer sequences. The 
review demonstrates that models E2EFold and 
KnotFold excel at identifying pseudoknots while 
DEBFold and LTPConstraint focus mainly on 
canonical forms because of their emphasis on 
consistency and efficiency. The results showed that 
ATTFold achieved exceptional accuracy on short 
RNAs containing simple motifs to the extent of 
outperforming physical models by a 20 percent 
margin. For valid comparisons, it is necessary to 
examine how many pseudoknots exist in the 
benchmark set and what length of sequences were 
included. 

4. Conclusions 

Recent developments have enhanced the field of 
RNA structure prediction comprehensively because 
of computational technology, which includes 
attention mechanisms and transformation systems. 
Such approaches have raised the bar for precision, 
allowing for the representation of structures like 
pseudoknots and long-range contacts. However, 
some of the major problems still need to be solved 
today: the requirements for computational resources 
of current methods and the need for sufficiently 
diverse and high-quality datasets. Overcoming these 
limitations is of paramount importance for the 
enhancement of the availability and application of 
RNA prediction tools and the achievement of 
groundbreaking advancements in synthetic biology, 
drug discovery, and RNA-based therapeutic 
technologies. 

On the horizon for future work, the solution 
requires multiple focused approaches to resolve 
these difficulties. Using sparse attention along with 
axial attention as a computational architecture 
reduces both hardware memory and running time 
requirements. These attention mechanisms 
minimize attention scope to nucleotide neighbors in 
addition to splitting base-pair matrix analysis 
between rows and columns. Model performance 
stability remains intact when adding low-rank 
approximation and pruning methods to optimize 
large model structures. Transfer learning enables 
researchers to overcome data scarcity by training 
models on massive unlabeled RNA datasets prior to 
fine-tuning them specifically for structure prediction. 
The training process enhances its ability to discover 
important biological patterns through the 
incorporation of experimental probing data, such as 
SHAPE or DMS reactivity profiles pertaining to 
underrepresented RNAs. A comprehensive pipeline 

of interdisciplinary work combines machine learning 
models to produce experimental testable predictions 
that generate empirical data, which cycles back into 
training data. Proper strategy implementation will 
generate RNA folding tools with high accuracy while 
providing large-scale capabilities to more scientists 
in the field. 

List of abbreviations 

AI Artificial intelligence 
ARES Atomic rotationally equivariant scorer 

BERT 
Bidirectional encoder representations 
from transformers 

BiLSTM Bidirectional long short-term memory 

bpRNA 
A database containing RNA sequences 
and structures 

CEASTech 
Centre of excellence (advanced sensor 
technology) 

CNN Convolutional neural network 

CONTRAfold 
An RNA secondary structure prediction 
method 

CPU Central processing unit 
DMS Dimethyl sulfate 
DMS-seq Dimethyl sulfate sequencing 
DNA Deoxyribonucleic acid 

DSSR 
An algorithm for dissecting the spatial 
structure of RNA 

E2EFold 
An end-to-end deep learning model for 
RNA secondary structure prediction 

FRGS Fundamental research grant scheme 
GPU Graphics processing unit 

IPknot 
An RNA secondary structure prediction 
method including pseudoknots 

LSTM Long short-term memory 

LTPConstraint 
A transfer learning-based method for 
RNA secondary structure prediction 

MFE Minimum free energy 

MMseqs2 
A software suite for fast and deep 
clustering and searching of large protein 
and nucleotide sequence sets 

MSA Multiple sequence alignment 

NCBI 
National center for biotechnology 
information 

NLP Natural language processing 
nt Nucleotide(s) 
PDB Protein data bank 

PredPair 
A neural network model for predicting 
RNA secondary structure 

ProbKnot 
A method for fast prediction of RNA 
secondary structure including 
pseudoknots 

Rfam A database of RNA families 
RNA Ribonucleic acid 
RNA-FM An RNA foundation model 
RNAcentral A database of non-coding RNA sequences 

RNAfold 
A program for predicting minimum free 
energy secondary structures of RNA 

RNAformer 
A deep learning model for RNA 
secondary structure prediction 

RNAplfold 
A program for computing local base 
pairing probabilities in RNA 

RNN Recurrent neural network 

RNAstructure 
A software package for RNA secondary 
structure prediction and analysis 

RNA STRAND 
The RNA secondary structure and 
statistical analysis database 

SHAPE Selective 2'-hydroxyl acylation analyzed 
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by primer extension 
SLR Systematic literature review 

SPOT-RNA 
A method for RNA secondary structure 
prediction using an ensemble of neural 
networks 

tRNA Transfer RNA 

tRNAscan-SE 
A program for detecting transfer RNA 
genes in genomic sequences 

TSNE 
T-distributed stochastic neighbor 
embedding 

UFold 
A fast and accurate RNA secondary 
structure prediction method with deep 
learning 

UNI-RNA 
Universal pre-trained models for RNA 
research 
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