International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 5 (May 2025), Pages: 57-67

----------------------------------------------

 Original Research Paper

An optimal level-set field re-initialization using Chorin's projection method for structured meshes

 Author(s): 

 Umer Siddiqui *, Fahim Raees

 Affiliation(s):

 Department of Mathematics, NED University of Engineering and Technology, Karachi, Pakistan

 Full text

    Full Text - PDF

 * Corresponding Author. 

   Corresponding author's ORCID profile:  https://orcid.org/0009-0000-2269-0450

 Digital Object Identifier (DOI)

  https://doi.org/10.21833/ijaas.2025.05.007

 Abstract

This paper presents a new and effective method for re-initializing the Level-Set (LS) field within the framework of Chorin's projection method. The Navier-Stokes equations (NSE) are solved numerically using the Finite Element Method (FEM) in combination with Chorin's projection method. The proposed approach improves accuracy and efficiency, ensuring precise mass conservation of the LS field. The effectiveness and efficiency of the re-initialization method are validated through benchmark test cases. This study provides an efficient approach for solving time-dependent incompressible fluid flow problems by using Chorin's projection method to separate pressure and velocity fields. Additionally, it introduces an efficient technique for re-initializing the LS field. The findings demonstrate the accuracy, efficiency, and mass conservation capabilities of the method, making a valuable contribution to numerical analysis and computational fluid dynamics.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Level-set re-initialization, Chorin’s projection method, Finite element method, Mass conservation accuracy, Incompressible fluid flow

 Article history

 Received 26 October 2024, Received in revised form 23 March 2025, Accepted 29 April 2025

 Acknowledgment

This research was funded by the NED University of Engineering and Technology, Karachi, Pakistan. The author and co-author both are very thankful to NED University and acknowledged for their support.

  Compliance with ethical standards

  Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Siddiqui U and Raees F (2025). An optimal level-set field re-initialization using Chorin's projection method for structured meshes. International Journal of Advanced and Applied Sciences, 12(5): 57-67

  Permanent Link to this page

 Figures

  Fig. 1  Fig. 2  Fig. 3  Fig. 4  Fig. 5  Fig. 6  Fig. 7 

 Tables

  Table 1  

----------------------------------------------   

 References (36)

  1. Akbar N, Hussain SM, and Khan RU (2022). Numerical solution of casson fluid flow under viscous dissipation and radiation phenomenon. Journal of Applied Mathematics and Physics, 10(2): 475-490.  https://doi.org/10.4236/jamp.2022.102036    [Google Scholar]
  2. Ausas RF, Dari EA, and Buscaglia GC (2008). A mass-preserving geometry-based reinitialization method for the level set function. Mecánica Computacional, 27: 13-32.    [Google Scholar]
  3. Badia S and Codina R (2007). Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numerische Mathematik, 107: 533-557.  https://doi.org/10.1007/s00211-007-0099-5    [Google Scholar]
  4. Bir B, Goswami D, and Pani AK (2024). Optimal error estimates of the penalty finite element method for the unsteady Navier–Stokes equations with nonsmooth initial data. Journal of Scientific Computing, 98: 51. https://doi.org/10.1007/s10915-023-02445-6    [Google Scholar]
  5. Bressan A (2011). Isogeometric regular discretization for the Stokes problem. IMA Journal of Numerical Analysis, 31(4): 1334-1356.  https://doi.org/10.1093/imanum/drq014    [Google Scholar]
  6. Chan TF and Vese LA (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2): 266-277.  https://doi.org/10.1109/83.902291  PMid:18249617    [Google Scholar]
  7. Chorin AJ (1967). The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bulletin of the American Mathematical Society, 73(6): 928-931.  https://doi.org/10.1090/S0002-9904-1967-11853-6    [Google Scholar]
  8. Chorin AJ (1997). A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 135(2): 118-125.  https://doi.org/10.1006/jcph.1997.5716    [Google Scholar]
  9. Chorin AJ and Marsden JE (1990). A mathematical introduction to fluid mechanics. Volume 3, Springer, New York, USA.  https://doi.org/10.1007/978-1-4684-0364-0    [Google Scholar]
  10. Codina R (2001). Pressure stability in fractional step finite element methods for incompressible flows. Journal of Computational Physics, 170(1): 112-140.  https://doi.org/10.1006/jcph.2001.6725    [Google Scholar]
  11. Dana S, Jammoul M, and Wheeler MF (2021). Performance studies of the fixed stress split algorithm for immiscible two-phase flow coupled with linear poromechanics. Computational Geosciences, 26: 13-27.  https://doi.org/10.1007/s10596-021-10110-w    [Google Scholar]
  12. de Boor C (1978). A practical guide to splines. Volume 27, Springer-Verlag, New York, USA.  https://doi.org/10.1007/978-1-4612-6333-3    [Google Scholar]
  13. de Frutos J, García-Archilla B, and Novo J (2018). Error analysis of projection methods for non inf-sup stable mixed finite elements: The Navier–Stokes equations. Journal of Scientific Computing, 74: 426-455.  https://doi.org/10.1007/s10915-017-0446-3    [Google Scholar]
  14. Derr NJ and Rycroft CH (2022). A projection method for porous media flow. Arxiv Preprint Arxiv:2206.14379.  https://doi.org/10.48550/arXiv.2206.14379    [Google Scholar]
  15. Gagniere S, Hyde D, Marquez‐Razon A, Jiang C, Ge Z, Han X, Guo Q, and Teran J (2020). A hybrid Lagrangian/Eulerian collocated velocity advection and projection method for fluid simulation. Computer Graphics Forum, 39(8): 1-14.  https://doi.org/10.1111/cgf.14096    [Google Scholar]
  16. Gharibi Z and Dehghan M (2024). Analysis of weak Galerkin mixed finite element method based on the velocity–Pseudostress formulation for Navier–Stokes equation on polygonal meshes. Journal of Scientific Computing, 101: 12.  https://doi.org/10.1007/s10915-024-02651-w    [Google Scholar]
  17. Gresho PM and Sani RL (1987). On pressure boundary conditions for the incompressible Navier‐Stokes equations. International Journal for Numerical Methods in Fluids, 7(10): 1111-1145.  https://doi.org/10.1002/fld.1650071008    [Google Scholar]
  18. Guermond J and Shen J (2004). On the error estimates for the rotational pressure-correction projection methods. Mathematics of Computation, 73(248): 1719-1737.  https://doi.org/10.1090/S0025-5718-03-01621-1    [Google Scholar]
  19. Guermond JL and Quartapelle L (1998). On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numerische Mathematik, 80: 207-238.  https://doi.org/10.1007/s002110050366    [Google Scholar]
  20. Han WW, Jiang YL, and Miao Z (2023). Numerical analysis of projection methods for the time-dependent Navier-Stokes equations with modular grad-div stabilization. Computers and Mathematics with Applications, 141: 145-158.  https://doi.org/10.1016/j.camwa.2023.04.015    [Google Scholar]
  21. Hartmann D, Meinke M, and Schröder W (2008). Differential equation based constrained reinitialization for level set methods. Journal of Computational Physics, 227(14): 6821-6845.  https://doi.org/10.1016/j.jcp.2008.03.040    [Google Scholar]
  22. Hirt CW and Nichols BD (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1): 201-225.  https://doi.org/10.1016/0021-9991(81)90145-5    [Google Scholar]
  23. Jobelin M, Lapuerta C, Latché JC, Angot P, and Piar B (2006). A finite element penalty–projection method for incompressible flows. Journal of Computational Physics, 217(2): 502-518.  https://doi.org/10.1016/j.jcp.2006.01.019    [Google Scholar]
  24. Karam M and Saad T (2023). On the theory of fast projection methods for high-order Navier-Stokes solvers. Journal of Computational Physics, 495: 112557.  https://doi.org/10.1016/j.jcp.2023.112557    [Google Scholar]
  25. Khan W, Ullah B, and Ullah Z (2020). The localized radial basis functions for parameterized level set based structural optimization. Engineering Analysis with Boundary Elements, 113: 296-305.  https://doi.org/10.1016/j.enganabound.2020.01.008    [Google Scholar]
  26. Long X and Ding Q (2023). Convergence analysis of the fully discrete projection method for inductionless magnetohydrodynamics system based on charge conservation. Journal of Scientific Computing, 96: 2.  https://doi.org/10.1007/s10915-023-02226-1    [Google Scholar]
  27. Lyras KG, Hanson B, Fairweather M, and Heggs PJ (2020). A coupled level set and volume of fluid method with a re-initialisation step suitable for unstructured meshes. Journal of Computational Physics, 407: 109224.  https://doi.org/10.1016/j.jcp.2019.109224    [Google Scholar]
  28. Osher S and Sethian JA (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1): 12-49.  https://doi.org/10.1016/0021-9991(88)90002-2    [Google Scholar]
  29. Owkes M and Desjardins O (2013). A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows. Journal of Computational Physics, 249: 275-302.  https://doi.org/10.1016/j.jcp.2013.04.036    [Google Scholar]
  30. Raees F (2016). A mass-conserving hybrid interface capturing method for geometrically complicated domains. Ph.D. Dissertation, Delft University of Technology, Delft, Netherlands.    [Google Scholar]
  31. Rannacher R (1992). On Chorin's projection method for the incompressible Navier-Stokes equations. In: Heywood JG, Masuda K, Rautmann R, Solonnikov VA (Eds.), The Navier-Stokes equations II — Theory and numerical methods. Lecture Notes in Mathematics, Vol 1530. Springer, Berlin, Germany.  https://doi.org/10.1007/BFb0090341    [Google Scholar]
  32. Rider WJ and Kothe DB (1995). A marker particle method for interface tracking. In the 6 th International Symposium on Computational Fluid Dynamics, Lake Tahoe, USA: 976-981.    [Google Scholar]
  33. Weinan E and Liu JG (1995). Projection method I: Convergence and numerical boundary layers. SIAM Journal on Numerical Analysis, 32(4): 1017-1057.  https://doi.org/10.1137/0732047    [Google Scholar]
  34. Yang J, Li Y, and Kim J (2024). A structure-preserving projection method with formal second-order accuracy for the incompressible Navier–Stokes equations. Communications in Nonlinear Science and Numerical Simulation, 133: 107963.  https://doi.org/10.1016/j.cnsns.2024.107963    [Google Scholar]
  35. Zalesak ST (1979). Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31(3): 335-362.  https://doi.org/10.1016/0021-9991(79)90051-2    [Google Scholar]
  36. Zhang Y (2014). Fast approach to checkerboard corner detection for calibration. Optical Engineering, 53(11): 112203.  https://doi.org/10.1117/1.OE.53.11.112203    [Google Scholar]