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This paper presents a new and effective method for re-initializing the Level-
Set (LS) field within the framework of Chorin's projection method. The 
Navier-Stokes equations (NSE) are solved numerically using the Finite 
Element Method (FEM) in combination with Chorin's projection method. The 
proposed approach improves accuracy and efficiency, ensuring precise mass 
conservation of the LS field. The effectiveness and efficiency of the re-
initialization method are validated through benchmark test cases. This study 
provides an efficient approach for solving time-dependent incompressible 
fluid flow problems by using Chorin's projection method to separate 
pressure and velocity fields. Additionally, it introduces an efficient technique 
for re-initializing the LS field. The findings demonstrate the accuracy, 
efficiency, and mass conservation capabilities of the method, making a 
valuable contribution to numerical analysis and computational fluid 
dynamics. 
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1. Introduction 

*The flow in which multiple phases coexist 
simultaneously, such as solid, liquid, or gas, is 
described as multiphase flow. Multiphase flow is 
crucial in several industrial processes and numerous 
fields, including environmental engineering, 
petroleum engineering, and chemical engineering. 
Two prominent methods study the multiphase flow: 
(i) the Eulerian-Eulerian method and (ii) the 
Eulerian-Lagrangian method. Both methods facilitate 
the exchange of phenomena associated with 
turbulence, momentum, mass, and heat transfer. 

The multiphase flow comprises four main types: 
(i) solid-liquid flow, (ii) solid-gas flow, (iii) liquid-gas 
flow, and (iv) liquid-liquid flow. In a multiphase flow, 
material characteristics and the two-phase effects, 
e.g. density and viscosity, significantly influence the 
interface's movement. Multiphase flow has 
numerous applications, including nuclear 
engineering, environmental engineering, oil and gas 
industries, biomedical treatment, chemical 
processes, medical sciences, mining and mineral 
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processing, food and beverage industries, and 
infrastructure and transportation. 

Multiphase flow presents several prominent 
challenges; these include the scalability of phase 
distribution, mass and heat transfer computational 
complexity, flow regime transitions, and system 
design. Recently, various models have emerged for 
multiphase flow simulation, including computational 
fluid dynamics (CFD), separated flow, multi-fluid, 
homogeneous, and drift-flux models. Researchers 
have introduced several creative methods for 
multiphase flow simulation: Level-Set (LS) method 
(Osher and Sethian, 1988), the Volume of Fluid (VoF) 
method (Hirt and Nichols, 1981), the Marker Particle 
(MP) method (Rider and Kothe, 1995), and the 
Modified Level-Set (MLS) method (Owkes and 
Desjardins, 2013). 

The projection method was introduced by Chorin 
(1967). He has made significant contributions to 
computational fluid mechanics (CFM), turbulence 
modeling, and computational statistical mechanics 
(CSM). The framework of the projection method 
relies on the Helmholtz decomposition, which 
separates the velocity field into two components: (i) 
a solenoidal (divergence-free) part and (ii) an 
irrotational (curl-free) part, as discussed in Chorin 
and Marsden (1990). 

The numerical approaches, devised for the 
Navier-Stokes equations (NSE) experience difficulty 
with the incompressibility limitation (Yang et al., 
2024). Akbar et al. (2022) introduced the first 
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primitive-variable numerical approach, applying the 
incompressibility limitation through pressure 
obtained with the derivation of the Poisson equation 
by getting the divergence of the equation of motion 
for the incompressible viscous fluids shown in 
(Chorin, 1997). Nevertheless, the pressure does not 
specify the physical conditions, necessitating 
unnatural boundary conditions, which add 
complexity to the problem. Gresho and Sani (1987) 
examined the relation between the dissimilar 
pressure boundary conditions and the actual 
equations. 

The combined set of equations is non-trivial for 
solving pressure and displacement in a linear 
system. The fixed-stress splitting method discussed 
in Dana et al. (2021) is extensively used to solve 
these equations. It solves the mechanical difficulties 
in the order. One can create the equations of motion 
in two views: (i) the Lagrangian approach and (ii) 
the Eulerian approach given in Derr and Rycroft 
(2022). The Lagrangian approach traces variables at 
a specified material point, whereas the Eulerian 
approach traces variables within the selected point 
of space. The Lagrangian composition traces 
displacement and fluid flux at all material points, 
whereas the Eulerian approach traces the density 
and momentum at time steps within a specified point 
of space. Investigators have also examined these 
approaches for porous media flow, which relies on 
uncomplicated geometry and actual solutions. 

MAC grids are very advantageous to discretize 
the grad/div as stop pressure discussed in Gagniere 
et al. (2020). Several coupled finite element methods 
(FEM) collect velocities lacking the uncertainty of 
pressure. For instance, the Taylor-Hood elements 
method (Gharibi and Dehghan, 2024) interpolates 
multi-quadratic velocity and multi-linear pressure 
with incompressibility. The Taylor-Hood method 
(Bressan, 2011) interpolates the B-spline approach 
(de Boor, 1978). The collected velocities are 
employed using the pressure at the cell centers. The 
certainty of the collected grids is encouraged. 
However, the B-Spline approach achieves continuous 
derivatives quickly. 

An American scientist invented the initial variant 
of the projected method as in Long and Ding (2023) 
and is employed extensively due to its efficacy and 
clarity. The projection method solves the separated 
equations for pressure and velocity at each time 
interval. It is an impressive characteristic of the 
projection method, and this method is successful for 
considerable numerical imitations. The projection 
method depends upon the time-discretization 
scheme, which is effective in iteratively estimating 
the pressure and velocity field intellectually at every 
time interval. Researchers have studied several 
projection methods in temporal discretization 
related to error analysis in recent decades. 
Rannacher (1992), as discussed in Karam and Saad 
(2023), improved the computation of first-order 
optimal error estimates through derivations related 
to the original projection method (Guermond and 
Shen, 2004; Bir et al., 2024). 

The Chorin–Temam projection approach, a 
widely recognized method, has been extensively 
studied. The constancy of this approach, as discussed 
in Guermond and Quartapelle (1998) and Guermond 
and Shen (2004), is further elaborated in Codina 
(2001). The non-inf-sup finite elements approximate 
the pressure and velocity and achieve several 
deducible bounds. However, the researchers did not 
test the bounds of errors for this approach. The 
Chorin–Teman approach is examined in Badia and 
Codina (2007) using the inf-sup and non-inf-sup 
combined finite elements. The local kind of 
projection stability is requisite with the non-inf-sup 
firm combined finite element to achieve the bounds 
of error of the approach. The researchers attain 
optimum error bounds (de Frutos et al., 2018) with 
no other stability used in non-inf-sup firm combined 
finite elements. 

The Navier-Stokes equations are solved 
numerically using the projection methods 
formulated by Han et al. (2023). The first level of the 
projection schemes estimates the intermediate 
velocity by solving the momentum equation without 
the divergence-free incompressibility constraints. In 
the second level of the projection scheme, the 
intermediate velocity assists to obtain the final 
velocity upon divergence-free space. Unfortunately, 
that velocity field fails to meet the boundary 
conditions. This method is supposed to be ‘The error 
of the splitting approach” (Jobelin et al., 2006). 
Compared to other approaches, the outcomes are 
less accurate. A splitting dimension error can 
determine the magnitude of the intermediate 
velocity. In this paper, a new effective re-
initialization for the LS) field within the framework 
of Chorin's projection method. The Finite Element 
Method (FEM) is used to numerically solve the NSE 
using Chorin's projection method. The proposed 
scheme demonstrates enhanced proficiency and 
effectiveness, ensuring accurate mass conservation 
of the Level-Set (LS) field. Benchmark test cases will 
validate the proposed scheme's significance, 
efficiency, and effectiveness of the presented re-
initialization scheme.  

This connection presents a new method to solve 
the incompressible fluid flow time-dependent issues. 
Using Chorin's projection method, we separated the 
fluid's pressure and velocity field and added the re-
initialization scheme for the LS re-initialization. In 
this research, we provide an accurate and efficient 
solution to the NSE. 

The main goal of the presented method is to 
enhance the competence, efficiency, and mass 
conservation capability in an NSE solution, which is 
solved numerically. The FEM is employed to increase 
the sturdiness of the numerical technique. Adding 
the re-initialization method using Chorin's 
projection method constitutes a new development in 
the field, which provides better accuracy and 
competence to solve incompressible fluid flow time-
dependent issues.  

The re-initialization method based on Chorin's 
projection is preliminarily devised for structured 
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meshes. Regardless, we can also adjust LS re-
initialization for unstructured meshes, but it uses 
more intricate data structures and numerical 
procedures to regulate the inconsistent connectivity 
of the complex geometries. A specific error analysis 
of the LS re-initialization method with Chorin's 
projection method demonstrates its convergence 
rate associated with mesh enhancement. The scheme 
naturally reveals second-order precision for smooth 
solutions. Numerical errors may influence this 
exactness, particularly close sharp interfaces or 
areas with abrupt gradients. 

We organize the paper’s outline as follows: 
section 2 illustrates the Level-Set method, Section 3 
explains the re-initialization method, and Section 4 
discusses the test results. The last section (section 5) 
presents the conclusion of this research. 

2. The level-set method 

The two American scientists Osher and Sethian 
(1988) introduced an interface-catching technique 
named The Level-Set method. The interface finding 
in the LS method is highly straightforward; however, 
this technique faces the difficulty of mass 
conservation. Hence, the LS method is much superior 
to the other interface-catching methods. Naturally, 
using the partial differential result depicts an 
interface. The least insignificant idea is to 
demonstrate the interface entirely using zero-LS, 
revealed within the two and three dimensions. 

In a two-dimensional instance, we suppose that 
the function Γ(𝑡) represents the interface (or in a 
three-dimensional surface) bounded across the 
region Ω ∈ ℜ2 (It is not necessary to open the 
bounded area.). The motivated interface vector field 
𝐕 = (𝑣1, 𝑣2) uses the interface motion that depends 
upon the place of an interface, time, and the shape of 
the interface.  

The main framework of the LS method is 
illustrated in the above section using the function of 
LS 𝜙 = (𝑥, 𝑦, 𝑡) within the one and higher-
dimensional test instances. The LS method's 
paramount attitude is that the LS value is negative 
on the interface bottom and positive on the interface 
top, and the sign will remain stationary over the 
interface, showing the contour at zero as 𝜙 =
(𝑥, 𝑦, 𝑡). The present position of the interface Γ(𝑡) =
{(𝑥, 𝑦) | 𝜙(𝑥, 𝑦, 𝑡)} is always at zero using their 
contours. In a conservative form, we can write the 
equation of the LS in the mathematical form as 
follows over the divergence-free velocity field given 
in Ausas et al. (2008), delving into the intricate 
mathematical representation of the LS method. 
 
𝜕𝜙

𝜕𝑡
+ 𝐕 ∙ ∇𝜙 = 0                                                                              (1) 

 

where, 
𝜕𝜙

𝜕𝑡
 indicates the variation in the interface 

with time t. 𝐕 constitutes the velocity field whose 
divergence is equal to zero i.e. ∇ ∙ 𝐕 = 0 and ∇𝜙 
represents the LS function’s gradients from an 
interface. 

Naturally, the function of the LS upholds the 
property of the signed distance mathematically 
expressed as |∇𝜙| = 1, and 𝜙 demonstrates the 
function of the interface’s sign distance. In the two 
and three-dimensional scenario of the LS method, 
the size of the function of sign distance is as: 
 

√𝜙x
2 + 𝜙𝑦

2                                                                                        (2) 

√𝜙𝑥
2 + 𝜙𝑦

2 + +𝜙𝑧
2                                                                          (3) 

 

where, in Eqs. 2 and 3, x and y indicate the course of 
the LS function. Fig. 1 depicts an instance of the LS 
method and its contour. 

 

  
Fig. 1: The instance of the LS method and its contour 

 

In the image processing area, the Chan-Vese 
segmentation (Chan and Vese, 2001) discussed by 
Khan et al. (2020) has vigorous contours devoid of 
edges. The LS method solves the Chan-Vese 
segmentation efficiently. This segmentation can be 
switched into an easier form using the LS method. In 
three components, segmentation divides the area 

into (i) the starting boundary, (ii) the exterior 
border, and (iii) the interior border. Researchers 
found that above the border, the LS value is zero, 
positive inside an interior border and negative inside 
an exterior border. Researchers have used various 
methods, including the checkerboard method 
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(Zhang, 2014). This method ascertains the LS 
function and relies on thresholding. 

The LS approach enhances Hamilton-Jacobi 
equations for enhancing the LS function, creating 
substantial slopes near the boundaries. The poor 
accuracies of the LS functions generate an infirm 
approximation of the usual boundary values. In the 
re-initialization process, the gradient accuracy of the 
LS function retains the signed distance function. The 
FEM shape functions perform small iterations 
approximating the zero LS (iso-contour). Later, the 
discredited iso-contour distances are computed. The 
LS approach manages complex changes in topology 
during re-initialization; however, the complete 
solution of the conventional LS approach relies on 
initial shapes during the advancement of the 
structural optimization issues in two dimensions. 

The advancement of the LS method is exploited 
by Lyras et al. (2020) for the continuous function to 
understand the Volume of Fluid (VoF) method. In 
particular, the LS method accurately depicts an 
interface's curvature. Both the LS and VoF methods 
experience complexities in geometry. The main 
dissimilarity between the two methods is that the LS 
method's fluid passage is slower than the VoF 
method; the LS method catches the interface 
effortlessly; however, it needs mass conservation. 
The LS method must be combined with the VoF 
method to resolve the mass conservation issue. 

3. Re-initialization method 

In this portion, we discuss the LS method re-
initialization, which is studied in this paper to re-
initialize the LS function. Normally, the LS method's 
issue of re-initialization emerges because it does not 
properly conserve the mass. Several methods have 
been provided in the last decades to overcome this 
complexity, namely the re-initialization scheme 
based on partial differential equation (PDE) 
(Hartmann et al., 2008), the mass-conserving re-
initialization method based on geometry (Ausas et 
al., 2008), and etc. 

The geometric-based re-initialization method is 
illustrated here and employs the conception of the 
finite element method (FEM) for the re-initialization. 
The idea for the re-initialization for the LS method is 
that a second-degree polynomial has fitted over the 
rectangular shape element of a domain and 
determined the minimal distance from the interface 
to each node of all rectangular shape elements over 
the domain. We observe that the LS cost will not 
change its signs over the interface; the LS costs will 
vary at the bottom and top of the interface, i.e. 
𝑠𝑖𝑔𝑛 (𝜙), in this expression, 𝜙 denotes the LS costs 
and the sign indicates the signs (negative or positive) 
of the LS costs from the interface. Later, we estimate 
the minimal distances from the interface to the 
nodes of all elements; after that, the new updated LS 
costs are, 
 
𝜙′ = 𝑠𝑖𝑔𝑛(𝜙) ∙ 𝑑                                                                           (4) 
 

where, in Eq. 4 the new updated LS value is 
represented by 𝜙′, d represents the minimal distance 
from the interface to the nodes of all elements in a 
domain, and 𝜙 are the costs of actual LS. In the study 
of the FEM, the polynomial equation for the 
quadrilateral element expresses as: 
 
𝜙 (𝑥, 𝑦) = ∑ 𝑁𝑖  𝜙𝑖

4
𝑖=1                                                                     (5) 

 

where, 𝑁𝑖 = 1 ≤ 𝑖 ≤ 4 are the shape functions of the 
quadrilateral element and 𝜙𝑖 = 1 ≤ 𝑖 ≤ 4 are the 
actual LS costs over that element. The costs of the 
shape functions are, 
 

𝑁𝑖 =
(𝑥−𝑥𝑗) (𝑦−𝑦𝑘)

(𝑥𝑖−𝑥𝑗) (𝑦𝑖−𝑦𝑘)
   𝑖 ≠ 𝑗 ≠ 𝑘      

1 ≤ 𝑖 ≤ 4, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 4                                                (6) 
 

where, (x, y) are the point coordinates inside the 
element and i, j, k are its indices in Eq. 6, and they are 
different from each other and will cover four 
different element nodes. 

The solution of the Eq. 5 is written as: 
 
𝜙 (𝑥, 𝑦) = 𝛽0𝑥 + 𝛽1𝑥𝑦 + 𝛽2𝑦 + 𝛽3 + 𝛽4𝑥2 + 𝛽5𝑦2             (7) 
 

where, 𝛽0, 𝛽1, 𝛽2, 𝛽3 are the constant values per 
element in Eq. 7 and 𝛽4 = 𝛽5 = 0 because of the 
element’s Orthogonality. 

For the re-initialization procedure, consider the 
NSE and employ Chorin's projection method to solve 
NSE with boundary conditions 𝐮 = 0 over the 
boundary with computational domain Ω = [0 , 1] ×
 [0 , 1] to get the fluid's pressure. We utilize the 
estimated pressure to acquire the final velocity at n + 
1-time intervals 

3.1. Process of re-initialization 

In the re-initialization process, we use the FEM 
together with the Lagrange multiplier method. 
Employ the FEM for solving Eq. 5. Later, the distance 
formula determines the minimal distances from the 
interface to every node of the quadrilateral element 
by the Lagrange multiplier method. Mathematically, 
the distance formula is as follows: 
 

| 𝑑 | = √(𝑥𝑙 − 𝑥𝐿)2 + (𝑦𝑙 − 𝑦𝐿)2  , 1 ≤ 𝐿 ≤ 4             (8) 

 

where, d is the shortest distance from the interface, 
𝑥𝑙  and 𝑦𝑙  are the node’s coordinates, and 𝑥𝐿 and 𝑦𝐿 
are the points on the interface represented as 
𝜙 (𝑥, 𝑦) = 0. 

3.2. Working of the re-initialization method 

In the working of the re-initialization scheme, we 
examine the quadrilateral element with coordinates 
𝐗𝑖 = 1 ≤ 𝑖 ≤ 4, with corresponding shape functions 
𝑁𝑖 = 1 ≤ 𝑖 ≤ 4 along with LS costs 𝜙𝑖 = 1 ≤ 𝑖 ≤ 4 
shown in Fig. 2. 

We presume that the LS cost 𝜙1 is for the first 
node 𝐗1, 𝜙2 is for the second node 𝐗2, 𝜙3 is for the 
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third node 𝐗3 and 𝜙4 is for the fourth node 𝐗4, 

respectively. We fitted the second-degree polynomial 
over the quadrilateral element and determined the 
minimal distance from the interface where the 
polynomial cost equals zero represented as 
𝜙 (𝑥, 𝑦) = 0 Using the Lagrange method of the 
multiplier approach, we determined the minimal 
distances from the interface since the function needs 
to be minimized so that 𝜙 (𝑥𝑚, 𝑦𝑚) = 0. 

 

 
Fig. 2: Schematic plot of all nodes of the quadrilateral 

element 

3.3. Derivation of the Lagrange method of 
multiplier approach 

For the illustration of the Lagrange multiplier 
method, we examine the optimization Scenario. 
 
Minimize 𝑑(𝑥, 𝑦) 
Subject to 𝜙 (𝑥, 𝑦) = 0 
 

where, 𝑑(𝑥, 𝑦) represents the distance function and 
𝜙 (𝑥, 𝑦) is denoted as the LS function. We presume 
that the partial derivatives are continuous of both 
𝑑(𝑥, 𝑦) and 𝜙 (𝑥, 𝑦). Now, introduce a new variable 𝜆 
called the Lagrange multiplier, exemplified as: 
 
ℒ(𝑥, 𝑦, 𝜆) = 𝑑(𝑥, 𝑦) + 𝜆 ∙ 𝜙 (𝑥, 𝑦)                                             (9) 
 

In Eq. 9, we can add or subtract the expression 𝜆. 
 

𝑀(𝑥𝑚, 𝑦𝑚) = 𝑑(𝑥𝑚, 𝑦𝑚) + 𝜆 ∙ 𝜙 (𝑥𝑚 , 𝑦𝑚)                            (10) 
 

where, 𝑁 = 𝑑2 = (𝑥𝑚 − 𝑥𝑙)2 + (𝑦𝑚 − 𝑦𝑙)2 , 1 ≤ 𝑙 ≤
4 and  𝜙 (𝑥𝑚, 𝑦𝑚) = 𝛽0𝑥𝑚 + 𝛽1𝑥𝑚𝑦𝑚 + 𝛽2𝑦𝑚 + 𝛽3 =
0,   𝑥𝑚 𝑎𝑛𝑑 𝑦𝑚. 

In the above relation, 𝑥𝑚  and 𝑦𝑚 are the familiar 
points, 𝑥𝑙  and 𝑦𝑙  unfamiliar points respectively, 
 
(𝑥𝑚, 𝑦𝑚) = 𝛽0𝑥𝑚 + 𝛽1𝑥𝑚𝑦𝑚 + 𝛽2𝑦𝑚 + 𝛽3 = 0                  (11) 
 

In Eq. 11, 𝛽0, 𝛽1, 𝛽2, 𝛽3 are the equation’s 
coefficients and they have constant values, which can 
be positive or negative on each quadrilateral 
element. 
 
𝜕𝑀

𝜕𝑥𝑚
=

𝜕𝑁

𝜕𝑥𝑚
+ 𝜆

𝜕𝜙

𝜕𝑥𝑚
 

𝜕𝑀

𝜕𝑥𝑚
= 2(𝑥𝑚 − 𝑥𝑙) + 𝜆(𝛽0 + 𝛽1𝑦𝑚) = 0                                (12) 

 

After simplification, Eq. 12 can be rearranged as: 
 
2𝑥𝑚 + 𝜆𝛽1𝑦𝑚 = 2𝑥𝑙 −  𝜆𝛽0                                                      (13) 
𝜕𝑀

𝜕𝑦𝑚
=

𝜕𝑁

𝜕𝑦𝑚
+ 𝜆

𝜕𝜙

𝜕𝑦𝑚
 

𝜕𝑀

𝜕𝑦𝑚
= 2(𝑥𝑚 − 𝑥𝑙) + 𝜆(𝛽2 + 𝛽1𝑥𝑚) = 0                               (14) 

 

After simplification, Eq. 14 can be rearranged as: 
 
𝜆𝛽1𝑥𝑚 + 2𝑦𝑚 = 2𝑦𝑙 −  𝜆𝛽3                                                      (15) 
𝜕𝑀

𝜕𝜆
=

𝜕𝑁

𝜕𝜆
+ 𝜆

𝜕𝜙

𝜕𝜆
 

𝜕𝑀

𝜕𝜆
= 𝜙 (𝑥𝑚, 𝑦𝑚) = 𝛽0𝑥𝑚 + 𝛽1𝑥𝑚𝑦𝑚 + 𝛽2𝑦𝑚 + 𝛽3 = 0   (16) 

𝛽0𝑥𝑚 + 𝛽1𝑥𝑚𝑦𝑚 + 𝛽2𝑦𝑚 + 𝛽3 = 0                                        (17) 
 

We obtain point I on the interface after solving 
Eq. 13 and Eq. 15, we have: 
 
𝐈 (𝑥𝑚, 𝑦𝑚) =

(
4𝑥𝑙−2𝜆𝛽1𝑦𝑙−2𝜆𝛽0+λ2𝛽1𝛽2

(4−λ2𝛽1
2)

 ,
2𝑥l𝜆𝛽1−λ2𝛽0𝛽1−4𝑦𝑙+2𝜆𝛽3

− (4−λ2𝛽1
2)

)               (18) 

 
where, 𝑥𝑚  and 𝑦𝑚 are the coordinates of point I lying 
on the interface. Substituting the coordinate’s costs 
of I in Eq. 17 we have: 
 
𝛽0𝑥𝑚 + 𝛽1𝑥𝑚𝑦𝑚 + 𝛽2𝑦𝑚 + 𝛽3 = 0 
 

After substituting the costs of 𝑥𝑚  and 𝑦𝑚 in Eq. 
17, the Eq. 17 is simplified as: 

  
(𝛽3𝛽1

4 − 𝛽0𝛽1
3𝛽2) 𝜆4 + 0 𝜆3 + (4𝛽1

2𝛽2𝑦𝑙 + 12𝛽0𝛽1𝛽2 + 4𝛽1
3𝑥𝑙𝑦𝑙 + 4𝛽1

2𝛽0𝑥𝑙 − 8𝛽3𝛽1
2) 𝜆2 + (−8𝛽1

2𝑥𝑙
2 − 8𝛽0

2 − 16𝑥𝑙𝛽1𝛽2 − 8𝛽2
2 −

16𝛽0𝛽1𝑦𝑙 − 8𝛽1
2𝑦𝑙

2) 𝜆 + 16𝛽0𝑥𝑙 + 16𝛽1𝑥𝑙𝑦𝑙 + 16𝛽3 + 16𝛽2𝑦𝑙 = 0                                                                                            (19) 

  
 

Therefore, the final structure of Eq. 18 is: 
 
Ψ0 𝜆4 + Ψ1 𝜆

3 + Ψ2 𝜆2 + Ψ3 𝜆 + Ψ4 = 0                              (20) 
 

where, 
 
Ψ0 = 𝛽3𝛽1

4 − 𝛽0𝛽1
3𝛽2 

Ψ1 = 0 

Ψ2 = 4𝛽1
2𝛽2𝑦𝑙 + 12𝛽0𝛽1𝛽2 + 4𝛽1

3𝑥𝑙𝑦𝑙 + 4𝛽1
2𝛽0𝑥𝑙 − 8𝛽3𝛽1

2 

Ψ3 = −8𝛽1
2𝑥𝑙

2 − 8𝛽0
2 − 16𝑥𝑙𝛽1𝛽2 − 8𝛽2

2 − 16𝛽0𝛽1𝑦𝑙

− 8𝛽1
2𝑦𝑙

2 

Ψ4 = 16𝛽0𝑥𝑙 + 16𝛽1𝑥𝑙𝑦𝑙 + 16𝛽3 + 16𝛽2𝑦𝑙 
 

Eq. 20 represents the Quartic equation in the 
form of 𝜆, we employ the costs of 𝜆 to compute the 

minimal distance from the interface to each node of 
the quadrilateral element. If all the roots of the 
equation are complex in this situation, substitute the 
shortest or minimum distances with the actual LS 

costs (𝜙). 

3.4. Projected velocity field using Chorin’s 
projection method 

Generally, the projection method framework 
relies on the Helmholtz decomposition principle, 
which divides the velocity field u into two portions: 
(i) the irrotational portion 𝐮𝑖𝑟𝑟𝑜𝑡 , and (ii) the 
solenoidal portion 𝐮𝑠𝑜𝑙 . Mathematically we have: 
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𝐮 = 𝐮𝑠𝑜𝑙 + 𝐮𝑖𝑟𝑟𝑜𝑡                                                                     (21-a) 
𝐮 = 𝐮𝑠𝑜𝑙 + ∇𝜙                                                                          (21-b) 
 

We know that from the Vector Calculus  
𝐮𝑖𝑟𝑟𝑜𝑡 = ∇𝜙. Taking divergence on both sides of Eq. 
21-b we have: 
 
∇ ∙ 𝐮 = 𝐮𝑠𝑜𝑙 + ∇ ∙ ∇𝜙    ∴ {𝐮𝑠𝑜𝑙 =∇ ∙ 𝐮 = 0 ⇒ ∇ ∙ 𝐮𝑠𝑜𝑙 = 0 
                                              (22-a) 
∇ ∙ 𝐮 = 0 + ∇2𝜙   
∇ ∙ 𝐮 = ∇2𝜙                (22-b) 
 

The Eq. 22-b represents the Poisson equation for 
the scalar function and the solution of Eq. 22-b was 
easily obtained, leveraging the known velocity field u 
for 𝜙. 

The divergence-free potion was removed for the 
velocity field u by employing the relation defined in 
Eq. 23 using Eq. 21-b as: 
 
𝐮𝑠𝑜𝑙 = 𝐮 − ∇𝜙                                                                              (23) 
 

This paper applies Chorin's projection method to 
re-initialization process, as discussed in Section 3. 
Chorin's method disassociates pressure and velocity 
and describes them in two levels. 
 
 In the first level, estimate the intermediate velocity 

by overlooking the pressure.  
 We obtained the updated velocity field in the 

second level using the pressure over the 
divergence-free space. 

 
Now, we consider the NSE for the incompressible 

fluid flow as in Weinan and Liu (1995) is: 
 

{
 
𝜕𝐮

𝜕𝑡
+ (𝐮 ∙ ∇) 𝐮 = −

1

𝜌
∇𝑝 + 𝜈 ∇2𝐮

∇ ∙ 𝐮 = 0
                  (24) 

 

where, p is the pressure of the fluid, 𝜌 is the fluid’s 
density, 𝜈 is the kinematic viscosity of the fluid and 
𝐮 = (𝑢1, 𝑢2). Here, in Eq. 24, we only use the 
Dirichlet boundary condition 𝐮 = 0 on 𝜕Ω = 0, 
noticed that Ω is an unclosed domain in ℜ2. 

In Level 1: Estimate the intermediate velocity u* 
the first level by overlooking the pressure effect in 
Eq. 24. Mathematically, we have, 
 
𝜕𝐮

𝜕𝑡
= − (𝐮 ∙ ∇) 𝐮 + 𝜈 ∇2𝐮                                                          (25) 

𝐮∗−𝐮n

∆𝑡
= − (𝐮 ∙ ∇) 𝐮 + 𝜈 ∇2𝐮                                                     (26) 

 

Reorganizing Eq. 26 as: 
 
𝐮∗ = 𝐮n + ∆𝑡(− (𝐮 ∙ ∇) 𝐮 + 𝜈 ∇2𝐮)                                       (27) 
 

where, 𝐮𝑛 is the velocity at nth time-interval.  

In Level 2: We now computed the final velocity of 
the fluid in the second level by iteratively improving 
the intermediate velocity u* at n + 1-time intervals 
employing the mathematical relation as: 
 

𝐮n+1 = 𝐮∗ −
∆𝑡

ρ
∇𝑝𝑛+1                                                                (28) 

 

where, 𝐮n+1 and ∇𝑝𝑛+1 are the updated final velocity 
and gradients of pressure at n + 1-time intervals.  

The Eq. 28 can be rewritten as: 
 

{
 𝐮∗ = 𝐮n+1 +

∆𝑡

ρ
∇𝑝𝑛+1

∇ ∙ 𝐮n+1 = 0
                                                             (29) 

 

Using the divergence-free condition ∇ ∙ 𝐮n+1 = 0, 
we attain the pressure by taking the divergence on 
the right-hand side of Eq. 28 to derive the Poisson 
equation for the pressure at n + 1-time intervals 
denotes as 𝑝𝑛+1. Mathematically, written as: 
 

∇2𝑝𝑛+1 =
𝜌

∆𝑡
 ∇ ∙ 𝐮∗                                                                      (30) 

 

Rearranging Eq. 30 as: 
 

∇2𝑝𝑛+1 −
𝜌

∆𝑡
 ∇ ∙ 𝐮∗ = 0                                                              (31) 

 

The fluid’s density 𝜌 and time-step ∆𝑡 are 
constant, so we assume 𝜌 ∆𝑡⁄ =  𝑎0, the Eq. 30 can be 
rewritten as follows: 
 

∇2𝑝𝑛+1 = 𝑎0 ∇ ∙ 𝐮∗      ∴   𝑎0 = 
𝜌

∆𝑡
                (32) 

 

Eq. 32 indicates the Poisson equation for the 
pressure at n + 1-time intervals. We apply the finite 
difference method to solve the Poisson equation to 
obtain pressure. 

Consider R.H.S of Eq. 32, we have, 
 
∇2𝑝𝑛+1 = 𝑝𝑥𝑥

𝑛+1 + 𝑝𝑦𝑦
𝑛+1                                                             (33) 

{
𝑝𝑥

𝑛+1 =
𝑃𝑖+1,𝑗

𝑛+1 −𝑃𝑖,𝑗
𝑛+1

ℎ

𝑝𝑦
𝑛+1 =

𝑃𝑖,𝑗+1
𝑛+1 −𝑃𝑖,𝑗

𝑛+1

𝑘

                                                   (34-a), (34-b) 

{
𝑝𝑥𝑥

𝑛+1 =
𝑃𝑖−1,𝑗

𝑛+1 −2 𝑃𝑖,𝑗
𝑛+1+𝑃𝑖+1,𝑗

𝑛+1

ℎ2

𝑝𝑦𝑦
𝑛+1 =

𝑃𝑖,𝑗−1
𝑛+1 −2 𝑃𝑖,𝑗

𝑛+1+𝑃𝑖,𝑗+1
𝑛+1

𝑘2

                                       (35-a), (35-b) 

 

Substitute Eq. 35-a and Eq. 35-b into Eq. 32 we 
have: 
 
∇2𝑝𝑛+1 = 𝑎0 ∇ ∙ 𝐮∗ 
𝑝𝑥𝑥

𝑛+1 + 𝑝𝑦𝑦
𝑛+1 = 𝑎0 ∇ ∙ 𝐮∗ 

𝑃𝑖−1,𝑗
𝑛+1 −2 𝑃𝑖,𝑗

𝑛+1+𝑃𝑖+1,𝑗
𝑛+1

ℎ2 +
𝑃𝑖,𝑗−1

𝑛+1 −2 𝑃𝑖,𝑗
𝑛+1+𝑃𝑖,𝑗+1

𝑛+1

𝑘2 = 𝑎0 ∇ ∙ 𝐮∗                (36) 

 

We are working on the structured mesh therefore 
ℎ = 𝑘 so, Eq. 36 becomes: 

  
𝑃𝑖−1,𝑗

𝑛+1 +𝑃𝑖+1,𝑗
𝑛+1 +𝑃𝑖,𝑗−1

𝑛+1 +𝑃𝑖,𝑗+1
𝑛+1 −4 𝑃𝑖,𝑗

𝑛+1

ℎ2 = 𝑎0 ∇ ∙ 𝐮∗                                                                                                                                                                                       

𝑃𝑖−1,𝑗
𝑛+1 + 𝑃𝑖+1,𝑗

𝑛+1 + 𝑃𝑖,𝑗−1
𝑛+1 + 𝑃𝑖,𝑗+1

𝑛+1 − 4 𝑃𝑖,𝑗
𝑛+1 = ℎ2 𝑎0 ∇ ∙ 𝐮∗                                                                                                                                                   (37) 

𝑃𝑖−1,𝑗
𝑛+1 + 𝑃𝑖+1,𝑗

𝑛+1 + 𝑃𝑖,𝑗−1
𝑛+1 + 𝑃𝑖,𝑗+1

𝑛+1 − 4 𝑃𝑖,𝑗
𝑛+1 = ℎ2𝐹𝑖ℎ,𝑗ℎ       ∴  𝐹 = 𝑎0 ∇ ∙ 𝐮∗                                                                                                      (38) 

𝑃𝑖−1,𝑗
𝑛+1 + 𝑃𝑖+1,𝑗

𝑛+1 + 𝑃𝑖,𝑗−1
𝑛+1 + 𝑃𝑖,𝑗+1

𝑛+1 − ℎ2𝐹𝑖ℎ,𝑗ℎ =  4 𝑃𝑖,𝑗
𝑛+1                                                                                                                                                          (39) 
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Eq. 39 is the finite difference scheme for getting 
the pressure given in Eq. 32. If we set the boundary 
conditions over the boundary 𝜕Ω for pressure are 
∇𝑝𝑛+1 ∙ 𝐧 = 0, so Eq. 29 shows the typical Helmholtz-
Hodge decomposition principle.  

Practically, the boundary conditions ∇𝑝𝑛+1 ∙ 𝐧 =
0 applied in this method causes errors due to the 
pressure from the actual solution of the Navier-
Stoles equation that does not satisfy these 
conditions.  

4. Test results and discussions 

This section discusses the test results of the 
devised re-initialization scheme and examines the 
reversed vortex test instance. 

4.1. Circular shape interface 

In this test case, consider the computational 
domain Ω = [0 , 1] ×  [0 , 1] with the center of a circle 
at point (0.5, 0.5)T and a radius of 0.25. The initial 
conditions of the LS field formulated in Eq. 40 for the 
circular shape interface are mathematically written 
as: 
 
𝜙(𝒙, 0) = |𝒙 − 𝒙𝒄(0)| − 𝑅                                                        (40) 
 

where, 𝒙𝑐(0) = (0.5, 0.5)𝑇  denotes the center of the 
circle in Eq. 40. 

Therefore, Fig. 3a and Fig. 3b depict the exact LS 
field (before re-initialization) and the re-initialized 
LS field (after re-initialization), respectively, over a 
circular shape interface. 

 
 

 
a: before re-initialization 

 

 
b: After re-initialization 

Fig. 3: Contour plot of the exact LS field 

4.2. Reversed vortex test case 

The reversed vortex test instance is also the 
complex trial used for two-phase flow modeling for 
immiscible fluids because the divergence-free 
nonlinear velocity field distorts the interface and 
stretches out sharply throughout the advection 
process, causing an issue with actual mass 
conservation.  

In this test instance, the computational domain 
Ω = [0 , 1] × [0 , 1] consists of a circular fluid with 
its center initially located at (0.5, 0.7)T with a radius 
of. 0.16. The nonlinear divergence-free velocity field, 
as defined in Raees (2016), is employed for the 
advection of the circular region as follows: 
 

𝑢(𝑥, 𝑡) =

(𝑠𝑖𝑛2(𝜋𝑥) 𝑠𝑖𝑛(2𝜋𝑦), −𝑠𝑖𝑛2(𝜋𝑦) 𝑠𝑖𝑛(2𝜋𝑥)) 𝑇 𝑐𝑜𝑠 (𝜋𝑡 𝑇)⁄ , 

𝑥 ∈ Ω, 𝑇 ∈ [0 , 2]                                                     (41) 

 

According to the definition of the velocity field, 
the interface's location must revert to the exact 
initial location at the prescribed time 𝑡 = 𝑇, which is 
also the actual time for the interface. In this instance, 
the cost of the specified time is 𝑇 = 2. The exact LS 
(before re-initialization) and the re-initialized LS 
field (after re-initialization) at time t = 0 and time t = 
T are shown in Fig. 4a and Fig. 4b, respectively. The 
initial and final position of the LS field is depicted in 
Fig. 5 with three different mesh sizes h=100×100, 
200×200, 400×400, at various time instances at time 
𝑡 = 0, 𝑡 = 1

4
 𝑇 , 𝑡 = 1

2
 𝑇 , 𝑡 = 3

4
 𝑇  and 𝑡 = 𝑇. This 

thorough analysis provides a comprehensive 
understanding of the LS field behavior over time. 

 

 
a: 𝑡 = 0 

 

 
b: 𝑡 = 𝑇 

Fig. 4: The actual and re-initialized LS field 
 



Umer Siddiqui, Fahim Raees/International Journal of Advanced and Applied Sciences, 12(5) 2025, Pages: 57-67 

64 
 

 
a: 𝑡 = 0 

 
b: 𝑡 = 1

4
 𝑇 

 
c: 𝑡 = 1

2
 𝑇 

 
d: 𝑡 = 3

4
 𝑇 

 
e: 𝑡 = 𝑇 

Fig. 5: The initial and final position of the LS field for the 
reverse vortex test case with different mesh sizes 

4.3. Numerical simulation of lens-shaped 
interface deformation 

In the starting, lens-shaped interface deformation 
is the most identified and continually employed 
benchmark for assessing the incompressible two-
phase flow model. This benchmark depends on the 
liquid effects of the material, the density of the two-
phase ratio, and the lens shape deviations from the 
outset to the end of the procedure.  

In the computational domain Ω = [0 , 1] ×  [0 , 1] 
we attain the LS field solution, the initial condition 
determined as: 
 
𝜙𝑙(𝑮, 0) = max  {𝜙1(𝑮, 0), − 𝜙2(𝑮, 0)}                                (42) 
 

where, 
 
𝜙1(𝑮, 0) = |𝑮 − 𝑮1

𝑒(0)| − 𝑁                                                    (43) 
𝜙2(𝑮, 0) = |𝑮 − 𝑮2

𝑒(0)| − 𝑁                                                    (44) 
 

Here we assume the simulated values as 𝑮1
𝑒(0) =

(0.45, 0.15)𝑇 ,  𝑮2
𝑒(0) = (0.45, 0.4)𝑇 , and  𝑁 = 0.25. 

Therefore, Fig. 6a and Fig. 6b show the lens-shaped 
interface deformation before and after re-
initialization, respectively. 

 

 
a: Before re-initialization 

 

 

b: After re-initialization 

Fig. 6: Lens-shaped interface deformation 

4.4. Disc rotation case 

In Zalesak's (1979) disc rotation, we examine the 
computational domain specified in the preceding test 
case. Now we state the initial condition for the LS 
field as, 
 
𝜙𝑙(𝑮, 0) = max  {𝜙1(𝑮, 0), − 𝜙2(𝑮, 0)}                                (45) 
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where, 
 
𝜙1(𝑮, 0) = |𝑮 − 𝑮𝑒(0)| − 𝑁                                                    (46) 
𝜙2(𝑮, 0) = max  (|𝐆1 − 𝐆1

𝑒(0)| − 𝑛, |𝐆2 − 𝐆2
𝑒(0) + 2𝑛| − 𝑑)

                                                      (47) 
 

Here we assume the simulated values as 𝑮𝑒(0) =
(0.45, 0.65)𝑇, 𝑁 = 0.20  and 𝜙2(𝑮, 0) comprise the 
rectangular region with breath 𝑛 = 𝑁 6⁄  and length 
𝑑 = 𝑁, respectively. Therefore, we diagrammatically 
display Zalesak's (1979) disc rotation before and 
after re-initialization in Fig. 7a and Fig. 7b, 
respectively. 

 

 
a: Before re-initialization 

 

 
b: After re-initialization 

Fig. 7: Zalesak's disc rotation 

4.5. Error of the re-initialized LS field 

This section presents the convergence and error 
associated with the re-initialized LS field in Table 1. 

 
Table 1: Error and Convergence order of the re-initialized 

LS field 
Mesh size Max. error Convergence order 
100×100 2.1519e-04 ----- 
200×200 9.9739e-05 2.1575 
400×400 4.7671e-05 2.0922 

 

The LS function effectively re-initializes using 
Chorin's projection method with the solution of the 
Poisson equation, which is projected on the SD 
function. This method maintains smoothness but 
may raise a numerical error that needs a cautious 
parameter. Fast-marching and Hamilton-Jacobi 
solvers are the other re-initialization schemes in 
substitution. Still, the fast-marching re-initialization 
scheme may be numerically costly for complicated 
domains, and the Hamilton-Jacobi method can 

experience numerical diffusion in the re-
initialization process.  

The practical implementation challenges for LS 
re-initialization with Chorin’s projection method are 
(i) it assures stability and conserving mass, 
specifically for irregular domains and coarse time 
intervals, (ii) accurately regulates boundary 
conditions, especially for complex geometries, (iii) 
for high-performance simulations, it successfully 
solves the Poisson equation that appears from the 
projection stage. All these difficulties may restrict 
the practical usage of the method, specifically in vast 
and real-time simulations. 

Chorin's projection method solves the Poisson 
equation at each time interval during the re-
initialization process, which could be 
computationally demanding, particularly for 
extensive 3D simulations. It acquires more iteration 
for convergence for complex geometries, which 
enriches its cost numerically. Discretization error, 
initial condition sensitivity, and complexities 
applying correct boundary conditions can cause 
convergence problems and imprecise solutions for 
complex geometries. In future research, the 
researchers may concentrate on these restrictions 
utilizing exact higher-order approaches, vigorous 
boundary conditions, dynamic grid adaptation, and 
high-performance solvers. Moreover, examining the 
hybrid methods merges the diverse re-initialization 
scheme's intensity, which might be the cause of 
optimal and more exact solutions. 

5. Conclusion 

This paper presents an effective re-initialization 
scheme for the Level-Set (LS) field by using Chorin's 
projection method. The Finite Element Method 
(FEM) framework is employed to solve the NSE 
numerically using the Chorin's projection method. 
The proposed scheme exhibits enhanced proficiency 
and effectiveness, ensuring accurate mass 
conservation of the LS. The proposed scheme's 
significance, efficiency, and effectiveness are valid 
through benchmark test cases. This research paper 
presents a conclusive and innovative solution for 
efficiently solving time-dependent incompressible 
fluid flow issues. The method utilizes Chorin's 
projection method to separate pressure and velocity 
fields and includes an efficient re-initialization 
scheme for the LS field. The study proves its 
accuracy, efficiency, and ability to conserve mass, 
making it a valuable contribution to numerical 
analysis and computational fluid dynamics. In future 
research, the investigators may precede this 
research for unstructured meshes to achieve the 
optimum order of convergence and high accuracy 
using the presented re-initialization scheme. 

List of symbols 

𝑝 Pressure of the fluid 
𝜌  Fluid density 
𝜈  Kinematic viscosity 
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𝜙  LS value/LS function 
Γ(𝑡)  Interface in time t 
Ω  Bounded region/computationally domain 
𝜕𝜙

𝜕𝑡
  Interface varies with time t 

𝐕  Divergence-free velocity field 
∇𝜙  Singed distance function gradients 
𝑁𝑖  Quadrilateral element shape functions 
𝑥𝑙 𝑎𝑛𝑑 𝑦𝑙 Node coordinates 
𝑥𝐿 𝑎𝑛𝑑 𝑦𝐿 Points positioned at the interface 
𝜆 Lagrange multiplier 
T  Transpose 

d 
Minimal interface distance and rectangular 
region length 

𝜙′ Updated LS value 
𝒖𝑠𝑜𝑙. The solenoidal portion of the velocity field 
𝒖𝑖𝑟𝑟𝑜𝑡. The irrotational portion of the velocity field 

𝒖𝑛+1 
Updated final velocity field at n+1- time 
intervals 

∇𝑝𝑛+1 
Updated pressure gradients at n+1- time 
intervals 

𝜕Ω Boundary 
𝜙(𝒙, 0)  Initial conditions for the LS field 
𝒙𝑐(0) Center of the circle 
𝑮1

𝑐(0) Lens center 
R and N Circle and the lens radius 
n Rectangular region breath 
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