International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 11 (November 2025), Pages: 12-18

----------------------------------------------

 Original Research Paper

Computing dominant edge resolvability of graphs using the binary snow ablation optimizer

 Author(s): 

 Yasser M. Hausawi *

 Affiliation(s):

 Digital Transformation Programs Center, Institute of Public Administration, Riyadh, Saudi Arabia

 Full text

    Full Text - PDF

 * Corresponding Author. 

   Corresponding author's ORCID profile:  https://orcid.org/0000-0002-4790-8249

 Digital Object Identifier (DOI)

  https://doi.org/10.21833/ijaas.2025.11.002

 Abstract

The graph metric known as dominant edge resolvability measures the ability to distinguish vertices of a graph through paths that include a selected set of edges. This study introduces a new approach for computing this metric using the Binary Snow Ablation Optimizer (BSAO), a meta-heuristic algorithm inspired by the snow ablation phenomenon. The problem is modeled as a binary optimization task, where each edge is represented by a binary variable, and a fitness function evaluates the uniqueness of vertex identification. BSAO is then employed to efficiently explore the solution space and approximate optimal solutions. Experimental results on diverse graphs show that the proposed method outperforms existing techniques in both computational efficiency and solution quality, while maintaining scalability to large-scale graphs, making it a practical tool for real-world applications.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Graph theory, Dominant edge resolvability, Binary optimization, Meta-heuristic algorithms, Computational efficiency

 Article history

 Received 17 March 2025, Received in revised form 18 August 2025, Accepted 8 October 2025

 Acknowledgment

No Acknowledgment. 

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Hausawi YM (2025). Computing dominant edge resolvability of graphs using the binary snow ablation optimizer. International Journal of Advanced and Applied Sciences, 12(11): 12-18

  Permanent Link to this page

 Figures

 No Figure

 Tables

  Table 1  Table 2  Table 3  Table 4

----------------------------------------------   

 References (33)

  1. Abbas MN, Bara’a AA, Broneske D, and Saake G (2024). An evolutionary algorithm with heuristic operator for detecting protein complexes in protein interaction networks with negative controls. IEEE Access, 12: 28873-28897.  https://doi.org/10.1109/ACCESS.2024.3367746    [Google Scholar]
  2. Alfarisi R, Husain SKS, Susilowati L, and Kristiana AI (2024). Dominant mixed metric dimension of graph. Statistics, Optimization & Information Computing, 12(6): 1826-1833.  https://doi.org/10.19139/soic-2310-5070-1925    [Google Scholar]
  3. Ali I, Javaid M, and Shang Y (2024a). Computing dominant metric dimensions of certain connected networks. Heliyon, 10(4): e25654.  https://doi.org/10.1016/j.heliyon.2024.e25654    [Google Scholar] PMid:38370250 PMCid:PMC10869853
  4. Ali S, Azeem M, Zahid MA, Usman M, and Pal M (2024b). Novel resolvability parameter of some well-known graphs and exchange properties with applications. Journal of Applied Mathematics and Computing, 70: 4373-4394.  https://doi.org/10.1007/s12190-024-02137-w    [Google Scholar]
  5. Almotairi S, Alharbi O, Alzaid Z, Hausawi YM, Almutairi J, and Mohamed B (2024). Computing the connected dominant metric dimension of different graphs. Advances and Applications in Discrete Mathematics, 41(6): 505-520.  https://doi.org/10.17654/0974165824034    [Google Scholar]
  6. Andrew BI and Anuradha A (2024). Analysing spectral parameters of decane—A graph theoretical perspective. Results in Control and Optimization, 14: 100392.  https://doi.org/10.1016/j.rico.2024.100392    [Google Scholar]
  7. Asiri A and Mohamed B (2024). Binary fruit fly optimization algorithm for counting the number of spanning trees in networks. Advances and Applications in Discrete Mathematics, 41(8): 663-676.  https://doi.org/10.17654/0974165824042    [Google Scholar]
  8. Azhar K, Nadeem A, Zafar S, and Kashif A (2024a). Fault-tolerant partition resolvability of chemical chains. TWMS Journal of Applied and Engineering Mathematics, 14(4): 1597-1608.    [Google Scholar]
  9. Azhar K, Zafar S, Nadeem A, and Shang Y (2024b). Fault-tolerant partition resolvability of cycle with chord. PLOS ONE, 19(11): e0313300.  https://doi.org/10.1371/journal.pone.0313300    [Google Scholar] PMid:39504326 PMCid:PMC11540233
  10. Batiha IM and Mohamed B (2024). Binary rat swarm optimizer algorithm for computing independent domination metric dimension problem. Mathematical Models in Engineering, 10(3): 119–132.  https://doi.org/10.21595/mme.2024.24037    [Google Scholar]
  11. Batiha IM, Anakira N, and Mohamed B (2024a). Algorithm for finding domination resolving number of a graph. Journal of Mechanics of Continua and Mathematical Sciences, 19(9): 18-23.  https://doi.org/10.26782/jmcms.2024.09.00003    [Google Scholar]
  12. Batiha IM, Jebril IH, and Mohamed B (2024b). Determining the dominant metric dimension for various graphs. Journal of Mechanics of Continua and Mathematical Sciences, 19(10): 105-116.  https://doi.org/10.26782/jmcms.2024.10.00007    [Google Scholar]
  13. Bukhari S, Jamil MK, and Azeem M (2024). Vertex-edge based resolvability parameters of vanadium carbide network with an application. Molecular Physics, 122(6): e2260899.  https://doi.org/10.1080/00268976.2023.2260899    [Google Scholar]
  14. Casel K, Estrada-Moreno A, Fernau H, and Rodríguez-Velázquez JA (2016). Weak total resolvability in graphs. Discussiones Mathematicae Graph Theory, 36(1): 185-210.  https://doi.org/10.7151/dmgt.1853    [Google Scholar]
  15. Guo X, Tan C, Shi L, Khishe M, and Bagi K (2024). Foot fractures diagnosis using a deep convolutional neural network optimized by extreme learning machine and enhanced snow ablation optimizer. Scientific Reports, 14: 28428.  https://doi.org/10.1038/s41598-024-80132-8    [Google Scholar] PMid:39558102 PMCid:PMC11574293
  16. Ismail R, Ali S, Azeem M, and Zahid MA (2024). Double resolvability parameters of fosmidomycin anti-malaria drug and exchange property. Heliyon, 10(13): e33211.  https://doi.org/10.1016/j.heliyon.2024.e33211    [Google Scholar] PMid:39035488 PMCid:PMC11259831
  17. Khan Y, Mustafa S, Ahmad RW, Maqsood T, Rehman F, Ali J, and Rodrigues JJ (2024). Content caching in mobile edge computing: A survey. Cluster Computing, 27: 8817-8864.  https://doi.org/10.1007/s10586-024-04459-7    [Google Scholar]
  18. Kiran AA, Shaker H, and Saputro SW (2024). Edge resolvability of generalized honeycomb rhombic torus. Journal of Applied Mathematics and Computing, 71: 303-322.  https://doi.org/10.1007/s12190-024-02231-z    [Google Scholar]
  19. Kumar S, Mallik A, Khetarpal A, and Panda BS (2022). Influence maximization in social networks using graph embedding and graph neural network. Information Sciences, 607: 1617-1636.  https://doi.org/10.1016/j.ins.2022.06.075    [Google Scholar]
  20. Laird L, Tillquist RC, Becker S, and Lladser ME (2020). Resolvability of Hamming graphs. SIAM Journal on Discrete Mathematics, 34(4): 2063-2081.  https://doi.org/10.1137/19M1274511    [Google Scholar]
  21. Lal S and Bhat VK (2023). On the dominant local metric dimension of some planar graphs. Discrete Mathematics, Algorithms and Applications, 15(7): 2250152.  https://doi.org/10.1142/S179383092250152X    [Google Scholar]
  22. Lenz D, Puchert S, and Schmidt M (2024). Recurrent and (strongly) resolvable graphs. Journal de Mathématiques Pures et Appliquées, 186: 1-30.  https://doi.org/10.1016/j.matpur.2024.04.002    [Google Scholar]
  23. Listiana Y, Susilowati L, Slamin S, and Osaye FJ (2023). A central local metric dimension on acyclic and grid graph. AIMS Mathematics, 8(9): 21298-21311.  https://doi.org/10.3934/math.20231085    [Google Scholar]
  24. Mohamed B and Badawy M (2024). Some new results on domination and independent dominating set of some graphs. Applied and Computational Mathematics, 13(2): 53-57.  https://doi.org/10.11648/j.acm.20241303.11    [Google Scholar]
  25. Nadeem MF, Shabbir A, and Azeem M (2024). On metric dimension of carbon nanotube Y-junctions. Journal of Applied Mathematics and Computing, 70: 6013-6034.  https://doi.org/10.1007/s12190-024-02208-y    [Google Scholar]
  26. Nawaz R, Jamil MK, and Azeem M (2024). Edge-based metric resolvability of anti-depression molecular structures and its application. Results in Chemistry, 7: 101458.  https://doi.org/10.1016/j.rechem.2024.101458    [Google Scholar]
  27. Pandya SB, Kalita K, Čep R, Jangir P, Chohan JS, and Abualigah L (2024). Multi-objective snow ablation optimization algorithm: An elementary vision for security-constrained optimal power flow problem incorporating wind energy source with FACTS devices. International Journal of Computational Intelligence Systems, 17: 33.  https://doi.org/10.1007/s44196-024-00415-w    [Google Scholar]
  28. Sharma SK and Bhat VK (2024). Computing some resolvability parameters for two-fold circular ladder. Journal of Interconnection Networks, 24(3): 2450016.  https://doi.org/10.1142/S0219265924500166    [Google Scholar]
  29. Umilasari R, Susilowati L, Osaye AJ, and Saifudin I (2024). Some properties of dominant local metric dimension. Statistics, Optimization & Information Computing, 12(6): 1912-1920.  https://doi.org/10.19139/soic-2310-5070-2062    [Google Scholar]
  30. Wang S, Wu R, Lu J, Jiang Y, Huang T, and Cai YD (2022). Protein‐protein interaction networks as miners of biological discovery. Proteomics, 22: 2100190.  https://doi.org/10.1002/pmic.202100190    [Google Scholar] PMid:35567424
  31. Xiao Y, Cui H, Hussien AG, and Hashim FA (2024). MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications. Advanced Engineering Informatics, 61: 102464.  https://doi.org/10.1016/j.aei.2024.102464    [Google Scholar]
  32. Zahidah S, Susilowati L, and Lusvianto E (2023). The dominant metric dimension of the edge corona product graph. AIP Conference Proceedings, AIP Publishing, Malang, Indonesia, 2975: 020007.  https://doi.org/10.1063/5.0181065    [Google Scholar]
  33. Zahradník J and Custódio S (2012). Moment tensor resolvability: Application to southwest Iberia. Bulletin of the Seismological Society of America, 102(3): 1235-1254.  https://doi.org/10.1785/0120110216    [Google Scholar]