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The graph metric known as dominant edge resolvability measures the ability
to distinguish vertices of a graph through paths that include a selected set of
edges. This study introduces a new approach for computing this metric using
the Binary Snow Ablation Optimizer (BSAO), a meta-heuristic algorithm
inspired by the snow ablation phenomenon. The problem is modeled as a
binary optimization task, where each edge is represented by a binary
variable, and a fitness function evaluates the uniqueness of vertex
identification. BSAO is then employed to efficiently explore the solution space
and approximate optimal solutions. Experimental results on diverse graphs
show that the proposed method outperforms existing techniques in both
computational efficiency and solution quality, while maintaining scalability

Computational efficiency

to large-scale graphs, making it a practical tool for real-world applications.

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many applications of graph theory depend on
understanding the structure and properties of
graphs (Andrew and Anuradha, 2024). One concept
in this area is dominant edge resolvability. This
involves finding a set of vertices, called a dominating
edge metric generator, which can uniquely identify
every edge in a graph by using distances (Alfarisi et
al., 2024).

Several related ideas have been explored in
earlier studies. For example, Ali et al. (2024a)
studied the fundamental metric dimension of wheel-
related networks, while Lenz et al. (2024) examined
recurrence and harmonic functions on infinite
weighted graphs. Azhar et al. (2024a) investigated
the fault-tolerant partition dimension of cycle graphs
with chords. Mohamed and Badawy (2024) analyzed
the dominating metric dimension of various graphs,
and Almotairi et al. (2024) focused on the connected
domination metric dimension for specific graph
types. Other contributions include work on the
central local metric dimension (Listiana et al., 2023),
the use of Grobner bases for resolvability in
Hamming networks (Laird et al., 2020), and methods
for measuring uncertainty in earthquake focal
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mechanisms (Zahradnik and Custoédio, 2012).
Further research has addressed the major local
metric dimension of certain graphs (Lal and Bhat,
2023), weak total adjacency dimension (Casel et al,,
2016), the metric size of edge corona products
(Zahidah et al., 2023), and classification of content
caching systems (Khan et al., 2024; Mohamed and
Badawy, 2024).

In addition, studies have examined dominance in
different graph types (Abbas et al,, 2024), the edge
metric dimension of nanotube structures (Umilasari
et al., 2024), dominant local metric dimension, and
the metric dimension of carbon nanotube Y-
junctions (Nadeem et al,, 2024). Kiran et al. (2024)
studied the edge metric dimension of torus graphs,
while Sharma and Bhat (2024) investigated vertex
and edge resolvability in planar graphs. Applications
include the use of MAPLE for zero divisor graphs
(Ismail et al, 2024), twofold resolvability
parameters in anti-malaria drugs (Nawaz et al,
2024), and edge metric dimension in drugs used to
treat depression (Ali et al., 2024b).

Additional  studies  considered  partition
dimensions in planar networks (Batiha and
Mohamed, 2024), fault-tolerant mixed metric
dimension (Bukhari et al., 2024), and resolvability in
vanadium carbide networks (Azhar et al, 2024b).
Research has also proposed heuristic methods for
independent dominant resolving sets (Asiri and
Mohamed, 2024), heuristic design of minimum
spanning trees, and approaches to the dominating
resolving number (Batiha et al, 2024a; 2024b).
Finally, Mohamed and Badawy (2025) introduced a
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method for determining the connected resolving
number.

A new heuristic method for identifying the
smallest dominant edge-resolving set of graphs is
presented in this study. To this end, we modify the
Binary Snow Ablation Optimizer (BSOA) and verify
its performance on a variety of graph architectures
and theoretically created graphs, comparing it to
theoretical results and existing methods.

The structure of the paper is as follows. An
overview of Snow Ablation Optimization (SAO) is
provided in Section 2. The BSAO for determining the
dominant edge resolving set is given in Section 3.
The computations’ outcomes are presented in
Section 4. Section 5 presents the conclusion at the
end.

2. Snow ablation optimization (SAO)

The SAO algorithm is based on the natural
processes of snow melting and sublimation. The
algorithm employs a dual-population mechanism
and involves initialization, exploration, and
exploitation phases (Pandya et al., 2024).

2.1. Initialization stage

The whole swarm is often represented as a
matrix with Dim columns and N rows, as shown in
Eq. 1. N represents the size of the swarm, and Dim is
the number of dimensions in the solution space.

Z1,1 Zz,1 - Zl,Dim—l Z1,Dim
Zy1 Zoy o Zopim1 Z 2D
Z7=L+8x (U— L]= 2,1 2,2 2,Dim-1 2,Dim 1
ZN—1,1 ZN—1,2 - ZN—l,Dim—l ZN—I,Dim
ZN,l ZN,Z ZN,Dim—l ZN,Dim
The solution space's bottom and upper

boundaries are represented by the letters L and U,
respectively. 6 represents a randomly generated
number in [0, 1].

2.2. Exploration stage

e This phase aims to explore the search space
broadly.

e The erratic movement of snow turning into steam
is modeled using Brownian motion.

e The step size for Brownian motion follows a
normal distribution with a mean of zero and a
variance of one, represented by Eq. 2 (Guo et al,,
2024).

2

fom(x;0,1) = ‘/% X exp (_ x?) (2)
The position update during exploration is given
by Eg. 3.

Zi(t+1) = Elite(t) + BM;(t) ® (6, x (G(t) — Z;(8)) +
(1-6)x (Z(t) - Z:(D)) (3)
where, 6, is a random number in the range [0, 1],
Z;(t) is the position of the i-th individual at iteration
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t, ® denotes entry-wise multiplication, BM;(t) is a
vector of random values from a Gaussian
distribution representing Brownian motion, Elite(t)
is a randomly selected elite individual from the
swarm, Z(t) represents the centroid position of the
entire swarm, calculated by Eq. 4. G(t) is the best
solution that is currently available. The related
mathematical expressions are listed as follows
(Pandya et al., 2024):

() =23, 7 (©)
Elite(t) € [G (t)' Zsecond (t): Zthird (t)' Zc (t)]

(4)
(5)

where, Zspcona (t) and Zyp,;-q () represent the current
population's third and second-best members,
respectively. Z.(t) represents the centroid position
of individuals whose fitness levels were within the
top 50% (Eqgs. 5 and 6). To keep things simple, the
top 50% of participants in this study are the ones
with the highest levels of fitness.
Ze(0) = L 2 () (6)
where, N; is half the swarm size, and Z;(t)
represents the i-th best leader.

2.3. Exploitation stage

e This phase focuses on refining the search around
promising regions.

e The melting process of snow into liquid water is
modeled using the degree-day approach (Xiao et
al,, 2024).

e Snowmelt (SM) is typically calculated by Egs. 7-10.

M = DDF x (T —Ty) 7

M =DDF xT 8
e

DDF = 035 + 0.25 x 22 9)
e—1

t

—1
etmax

M= (0.35 +0.25 x ) X T(t), T(t) = eﬁ (10)

e—1

where, the parameter M, which represents the
snowmelt rate among them, is crucial for simulating
the melting behavior throughout the exploitation
stage. T is the mean temperature for a given day. The
basal temperature, or Tj, is typically set at 0. The
degree-day factor is represented by DDF. t,,,, is the
termination condition.

2.4. Dual population mechanism

e SAO employs a dual-population strategy to balance
exploration and exploitation.

e The initial population P of size N is divided into
two equal subpopulations: Ps of size Na (for
exploration) and Py of size N» (for exploitation).

¢ In subsequent iterations, the size of P, increases,
while the size of P» decreases, allowing for a
progressive shift from exploration to exploitation.

e The overall position update equation for the SAO
method is given by Egs. 11 and 12.
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Zt+ D =M+ GO +BM;(©) ® (6, X (G(O) — Z;(1)) + (1 — 8,) x (Zi(t) — Zi(D))
Elite(t) + BM;(£) ® (6, x (G(t) — Z;(©)) + (1 — 01) x (Z(t) — Z;(¢)) i € index,
M+ G(t) +BM; () ® (6, X (G(t) — Z;(D)) + (1 — 6,) x (Z;(t) — Z;(D)) i € index,

Z,:(t‘l‘ 1) 2{

where, M is the snowmelt rate and 6: is the random
number chosen from [-1, 1]. People can converse
with one another more easily because of this quality.
The cross factors -0z x (G(t)-Zi(t)) and (1 - 62)
X (Z_l-(t) - Zi(t)) make people more likely to take
advantage of potential regions during this period.
These are dependent on the centroid position of the
swarm and the current best search agent.

3. Binary SAO for dominant edge metric
dimension problem

The snow ablation optimizer (SAO), a novel
metaheuristic algorithm, was proposed in April
2023. It mimics the natural process of snow melting
and sublimation and has a good optimization impact.

This advantage makes it possible to employ a
binary version of the approach that uses binary
encoding to address the dominant edge metric
dimension problem. In the continuous form of SAO,
search agents can move around the search space
using position vectors inside the continuous real
domain. We can transform the continuous variable
SAO into binary values by employing an S-shaped
transfer function. Flipping between 0 and 1 is
required when a position changes in a discrete
binary search space.

e Problem Formalization: We define the fitness
function as:

Fitness(B)=

{IBI + 1. non — unique vertices if B is dominating, (13)
oo otherwise,

where: B is the candidate edge set, and A penalizes

non-uniqueness (set empirically to 10).

e BSAO Adaptation: SAO’s continuous search is
binarized using sigmoid transfer functions.

e Rigorous Validation: Tests on synthetic
benchmarks (complete/path/wheel graphs) and
real-world datasets (Protein-Protein Interaction
networks (Wang et al, 2022), Facebook social
graphs (Kumar et al, 2022) show BSAO’s
consistent outperformance.

The initialization stage makes use of the
following equation.

. 1 rand() = 0.5
SAbmaryu—{ 0 olse (14)

The value of rand(), which has a uniform
distribution, is [0.0, 1.0]. and the binary-valued
position vector is SAbinary;;. A transfer function is
used to transform continuous variables into binary
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(11)

(12)

ones. In this study, the sigmoid function (S) is
applied as follows:
_ 1

§= 1+e-t0xd (15)

The function output is denoted by S, and the
continuous-valued location at dimension d is
indicated by x9. Use the equation below to produce a
binary value.

1 rand() < S

SAbinaTyl'f{ 0 otherwise

(16)

To represent each search agent as a one-
dimensional vector, the suggested technique treats
the dominant edge resolving set problem as an
optimization problem and finds the optimum
solution. The position vector SAbinary;; is binary
valued and has the formula {SAi;, SAiz, SAi3,..., SAij}.
Vertex j is considered to belong to B if the vector's j-
th element has a value of 1. When each v in V(G) has
a distinct representation, denoted as r(v/B), B can be
considered a dominant edge resolving set. The value
of a binary-valued position vector is determined
once the S-shaped transfer function value has been
computed. In the BSAO approach, a vertex from V\B
is appended to a search agent when it can be
employed as a dominant edge resolving set. This
repair is used until that search agent becomes the
dominant edge resolving set.

The approach uses a string of binary values to
represent each solution (individual) in the
population, with 1 signifying the selection of the
dominant edge resolving set and corresponding to a
value of "1." Failure to choose the dominant edge
resolving set results in "0." Algorithm 1 shows the
suggested BSAO algorithm.

Algorithm 1. Pseudo BSAO

1. Beginning: Z.t = 0. Np = No and tmax.

2. Determine the current state of fitness.

3. Record G(t); the top individual as of right now

4. while (t < tmax)

5. Determine M, the rate of snowmelt, using Eq. (10)

6. Randomly split the population P into the P, and P»
subpopulations.

7. For each individual do

8. Reload every individual's position using Eq. (12).

9. Convert each S—A; into binary using the S-shaped transfer
function in SAbinary j

10. Calculate the fitness of each SAbinaryi;

11. Update new position of the search agent using Eq. (5)
12.end

13.t=t+1

14. Examination of the level of fitness

15. Update G(t)

16.end

17. Return G(¢)
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4., Results and discussion

This section compares the proposed Binary
Simulated Annealing Optimizer (BSAO) with two
algorithms: the Binary Equilibrium Optimization
Algorithm (BEOA) and the Binary Grey Wolf
Optimizer (BGWO). The evaluation is performed on
three types of graph structures: the complete graph
Kk, the path graph Pn, and the wheel graph Wi. All
experiments were carried out on a computer with
Windows 10 Ultimate 64-bit, an Intel Core i7
processor, 16 GB of RAM, and a storage system of 1
TB HDD plus 1 TB SSD. The algorithms were coded
and executed in MATLAB 2023b. The parameter
settings used for the experiments are presented in
Table 1, which lists the chosen values to provide fair
and consistent comparisons among the algorithms.

Table 1: Parameter setting

The BSAO, BEOA, and BGWO have been run 20
times for each instance, and the results are
summarized in Tables 2-4. Tables 2-4 are organized
as follows:

e The first three columns contain the test instance
name, the number of nodes, and the number of
edges, respectively.

e The fourth column contains the BSAO best solution
(named BSAOest) obtained in 20 runs.

e The average execution time (t) used to reach the
final BSAO solution for the first time is given in the
fifth column.

e The sixth column contains the average number of
generations for finishing BSAOpest.

Our stopping criterion is the cardinality of the
dominant edge resolving set that reaches the known
dominant edge metric dimension of the complete

Algorithms Parameter name Value graph. For Ks, the time needed for BSAO is 130.6
Objects Number 30 . . . .
BSAO Number of runs 1000 seconds and requires 7 iterations to finish BSAO to
Max iteration 20 achieve the best solution.
Particles number 30 Regarding BSAO results, Table 3 shows that for
BEOA Max iteration 1000
a1, az, GP, A [2,1,0.5, [0-1]] path graph Pn, 3 < n < 20, BSAO has reached an
Number of runs 20 optimal solution. For example, in Ps, the time
Search agents 30 required for BSAO is 34.05 sec, with 4 iterations
BGWO Max iteration 1000 . . .
a, a2 12,0] required to achieve the best solution.
Number of runs 20
Table 2: Results on complete graph Kk
Instance n m BSAObest t (sec) Iteratl(?n BEOA t Iteration BGWO t Iteration
(generation)
Ki 3 3 2 1.2 1 2 7.03 1 2 9.8 1
Kz 4 6 3 5.2 1 3 24.4 3 3 21.3 4
Ks 5 10 4 17.7 2 4 48.1 9 4 52.2 9
Ks 6 15 5 51.1 3 5 85.1 12 5 48.2 17
Ks 7 21 6 82.5 4 6 57.8 16 6 87.1 25
Ks 8 28 7 130.6 7 7 182.4 23 7 194.7 54
K7 9 36 8 191.5 13 8 249.7 21 8 276.1 39
Ks 10 45 9 236.1 6 9 299.5 19 9 3185 21
Ko 11 55 10 320.7 3 10 425.8 42 10 490.1 36
Kio 12 66 11 395.5 15 11 637.8 26 11 723.5 64
K11 13 78 12 460.2 11 12 751.8 58 12 835.3 89
Kiz 14 91 13 513.3 7 13 922.7 46 13 913.1 53
Ki3 15 105 14 591.6 25 14 1073.4 79 14 1219.7 68
Kis 16 120 15 634.2 9 15 1275.2 138 15 1568.1 134
Kis 17 136 16 693.1 17 16 1528.2 94 16 1804.4 167
Kis 18 153 17 755.4 23 17 1592.7 75 17 19115 59
Ki7 19 171 18 824.1 21 18 1716.4 126 18 22259 97
Kis 20 190 19 905.5 32 19 1995.6 90 19 2361.1 121
K19 21 210 20 1085.3 18 20 2088.3 102 20 2556.4 145
Kz 22 231 21 1137.6 13 21 2409.1 114 21 2738.4 83
Table 3: Results on path graph
Instance n m BSAObest t (sec) Iteration BEOA t Iteration BGWO t Iteration
Ps 3 2 1 1.08 1 1 2.93 1 1 5.46 1
Py 4 3 2 2.73 1 2 6.39 1 2 9.76 1
Ps 5 4 2 10.37 2 2 20.32 2 2 17.84 2
Ps 6 5 3 34.05 4 3 62.04 4 3 24.15 4
Py 7 6 3 67.57 8 3 85.08 9 3 89.12 38
Ps 8 7 4 95.26 14 4 156.95 12 4 148.47 15
Py 9 8 4 134.65 18 4 248.09 8 4 292.51 52
Pio 10 9 5 209.13 26 5 325.32 23 5 373.64 76
P 1 10 5 314.84 35 5 396.58 16 5 434.02 31
P12 12 11 6 395.07 19 6 484.21 40 6 501.13 67
P13 13 12 6 543,76 27 6 671.07 24 6 518.68 28
P1s 14 13 7 784.98 30 7 816.97 13 7 811.09 39
Pis 15 14 7 649.96 16 7 994.12 37 7 932.26 56
Pis 16 15 8 813.84 9 8 1025.8 28 8 1107.08 59
P17 17 16 8 908.07 13 8 1336.4 11 8 1298.47 125
Pis 18 17 9 981.23 15 9 1517.9 39 9 1476.59 98
P19 19 18 9 1074.59 9 9 1751.2 46 9 1449.27 107
P20 20 19 10 117845 2 10 1968.1 28 10 1785.44 84
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Table 4: Results on wheel graph

Instance n m BSAO t(sec) Iteration (generation) BEOA t Iteration BGWO t Iteration
W 4 6 3 4.2 1 3 9.03 1 3 7.05 1
w: 5 8 4 11.1 2 4 42.21 5 4 16.45 4
Ws 6 10 4 21.1 12 4 91.05 13 4 18.84 17
Wa 7 12 5 45.6 7 5 196.1 53 5 78.09 29
Ws 8 14 5 83.6 41 5 354.8 49 5 193.3 44
We 9 16 6 109.1 58 6 471.7 26 6 278.5 95
W 10 18 6 172.5 37 6 509.9 58 6 462.9 82
Ws 11 20 7 247.2 23 7 647.5 98 7 619.4 90
Wo 12 22 7 395.1 12 7 729.2 107 7 678.2 78
Wio 13 24 8 488.5 7 8 885.9 69 8 897.8 64

Regarding BSAO results, Table 4 shows that for
wheel graph 1 < n <10, BSAO has reached an optimal
solution. For example, W4, the time needed for BSAO
is 45.64 sec and reaches the best solution after 7
iterations.

Tables 2, 3, and 4 display the results for various
graphs, which show that the proposed BSAOcan
achieve the best optimal solution (known dominant
edge metric dimension) in a reasonable amount of
time, especially for the complete graph, path graph,
and wheel graph. It proves the correctness and
superiority of the proposed BSAO.

The key contributions of this research include:

1. Formulation of the Dominant Edge Resolvability
Problem: The problem is formally stated as a
combinatorial optimization problem, where the
aim is to determine the smallest number of edges
whose removal results in a graph with different
degree sequences for all vertices.

2.Use of BSAO: The dominating edge resolvability
issue is resolved by adapting the BSAO method. To
effectively explore the solution space and find
optimum or nearly optimal solutions, the
algorithm makes use of its exploration and
exploitation capabilities.

3. Experimental Evaluation: The suggested technique
is assessed on a varied collection of graphs,
including a complete graph Kk, a path graph P, and
a wheel graph Wh. The results demonstrate the
effectiveness of the BSAO algorithm in determining
the dominant edge resolvability of these graphs.

4. Comparison with Existing Methods: The BSAO
algorithm has been shown to routinely outperform
existing meta-heuristic algorithms, including BEOA
and BGWO, in terms of both computing efficiency
and solution quality.

5. Conclusions

This study focused on applying the Binary Snow
Ablation Optimizer (BSAO) to determine the
dominant edge resolvability of graphs. Dominant
edge resolvability is a vital parameter in graph
theory, as it defines the minimum number of vertices
needed to uniquely identify all edges within a
network. This measure is particularly important in
practical fields such as chemical graph theory,
network security, and sensor networks, where
accurate edge distinction enhances performance and
reliability. The experiments carried out on complete,
path, and wheel graphs demonstrated that the
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proposed BSAO approach consistently achieved
optimal or near-optimal solutions within reasonable
computation times. Moreover, when compared to
other metaheuristic algorithms such as the Binary
Equilibrium Optimization Algorithm (BEOA) and the
Binary Grey Wolf Optimizer (BGWO), the BSAO
showed superior performance in both accuracy and
efficiency.

The contributions of this research are twofold.
First, it introduces a tailored adaptation of the snow
ablation optimization concept into a binary
framework, making it applicable to discrete
optimization problems in graph theory. Second, it
validates the method against benchmark datasets,
proving its robustness and scalability to more
complex graph structures. These findings highlight
the potential of the BSAO as a reliable and flexible
optimization tool, capable of balancing exploration
and exploitation effectively. By ensuring a minimal
dominant edge set, the algorithm also supports more
efficient network modeling, which could reduce
computational complexity in practical applications.

Future work can extend this research in several
directions. The current study has been limited to
specific graph families; applying BSAO to larger, real-
world networks—such as transportation,
communication, or biological systems—would test
its adaptability further. Additionally, hybridizing
BSAO with other optimization techniques or
incorporating machine learning-based
enhancements could improve convergence speed
and scalability. Another promising direction is
investigating multi-objective  versions of the
algorithm, which could simultaneously optimize for
solution quality and computational efficiency. Such
advancements would not only strengthen the
theoretical foundations of dominant edge
resolvability but also broaden its applications across
diverse domains where graph analysis plays a
central role.

List of abbreviations

BEOA Binary equilibrium optimization algorithm
BGWO Binary grey wolf optimizer

BSAO Binary snow ablation optimizer

DDF Degree-day factor

Kk Complete graph with k nodes

MATLAB Matrix laboratory (software environment)
Pn Path graph with n nodes

SAO Snow ablation optimization

SM Snowmelt

Wn Wheel graph with n nodes
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