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The graph metric known as dominant edge resolvability measures the ability 
to distinguish vertices of a graph through paths that include a selected set of 
edges. This study introduces a new approach for computing this metric using 
the Binary Snow Ablation Optimizer (BSAO), a meta-heuristic algorithm 
inspired by the snow ablation phenomenon. The problem is modeled as a 
binary optimization task, where each edge is represented by a binary 
variable, and a fitness function evaluates the uniqueness of vertex 
identification. BSAO is then employed to efficiently explore the solution space 
and approximate optimal solutions. Experimental results on diverse graphs 
show that the proposed method outperforms existing techniques in both 
computational efficiency and solution quality, while maintaining scalability 
to large-scale graphs, making it a practical tool for real-world applications. 
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1. Introduction 

*Many applications of graph theory depend on 
understanding the structure and properties of 
graphs (Andrew and Anuradha, 2024). One concept 
in this area is dominant edge resolvability. This 
involves finding a set of vertices, called a dominating 
edge metric generator, which can uniquely identify 
every edge in a graph by using distances (Alfarisi et 
al., 2024). 

Several related ideas have been explored in 
earlier studies. For example, Ali et al. (2024a) 
studied the fundamental metric dimension of wheel-
related networks, while Lenz et al. (2024) examined 
recurrence and harmonic functions on infinite 
weighted graphs. Azhar et al. (2024a) investigated 
the fault-tolerant partition dimension of cycle graphs 
with chords. Mohamed and Badawy (2024) analyzed 
the dominating metric dimension of various graphs, 
and Almotairi et al. (2024) focused on the connected 
domination metric dimension for specific graph 
types. Other contributions include work on the 
central local metric dimension (Listiana et al., 2023), 
the use of Gröbner bases for resolvability in 
Hamming networks (Laird et al., 2020), and methods 
for measuring uncertainty in earthquake focal 
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mechanisms (Zahradník and Custódio, 2012). 
Further research has addressed the major local 
metric dimension of certain graphs (Lal and Bhat, 
2023), weak total adjacency dimension (Casel et al., 
2016), the metric size of edge corona products 
(Zahidah et al., 2023), and classification of content 
caching systems (Khan et al., 2024; Mohamed and 
Badawy, 2024). 

In addition, studies have examined dominance in 
different graph types (Abbas et al., 2024), the edge 
metric dimension of nanotube structures (Umilasari 
et al., 2024), dominant local metric dimension, and 
the metric dimension of carbon nanotube Y-
junctions (Nadeem et al., 2024). Kiran et al. (2024) 
studied the edge metric dimension of torus graphs, 
while Sharma and Bhat (2024) investigated vertex 
and edge resolvability in planar graphs. Applications 
include the use of MAPLE for zero divisor graphs 
(Ismail et al., 2024), twofold resolvability 
parameters in anti-malaria drugs (Nawaz et al., 
2024), and edge metric dimension in drugs used to 
treat depression (Ali et al., 2024b). 

Additional studies considered partition 
dimensions in planar networks (Batiha and 
Mohamed, 2024), fault-tolerant mixed metric 
dimension (Bukhari et al., 2024), and resolvability in 
vanadium carbide networks (Azhar et al., 2024b). 
Research has also proposed heuristic methods for 
independent dominant resolving sets (Asiri and 
Mohamed, 2024), heuristic design of minimum 
spanning trees, and approaches to the dominating 
resolving number (Batiha et al., 2024a; 2024b). 
Finally, Mohamed and Badawy (2025) introduced a 
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method for determining the connected resolving 
number. 

A new heuristic method for identifying the 
smallest dominant edge-resolving set of graphs is 
presented in this study. To this end, we modify the 
Binary Snow Ablation Optimizer (BSOA) and verify 
its performance on a variety of graph architectures 
and theoretically created graphs, comparing it to 
theoretical results and existing methods.  

The structure of the paper is as follows. An 
overview of Snow Ablation Optimization (SAO) is 
provided in Section 2. The BSAO for determining the 
dominant edge resolving set is given in Section 3. 
The computations' outcomes are presented in 
Section 4. Section 5 presents the conclusion at the 
end. 

2. Snow ablation optimization (SAO) 

The SAO algorithm is based on the natural 
processes of snow melting and sublimation. The 
algorithm employs a dual-population mechanism 
and involves initialization, exploration, and 
exploitation phases (Pandya et al., 2024). 

 
2.1. Initialization stage 

 
The whole swarm is often represented as a 

matrix with Dim columns and N rows, as shown in 
Eq. 1. N represents the size of the swarm, and Dim is 
the number of dimensions in the solution space. 
 

Z = L + θ × (U − L)= 

[
 
 
 

𝑍1,1 𝑍2,1 …

𝑍2,1 𝑍2,2 …

   𝑍1,𝐷𝑖𝑚−1 𝑍1,𝐷𝑖𝑚

  𝑍2,𝐷𝑖𝑚−1 𝑍 2,𝐷𝑖𝑚                

𝑍𝑁−1,1 𝑍𝑁−1,2 …

𝑍𝑁,1 𝑍𝑁,2 …

   𝑍𝑁−1,𝐷𝑖𝑚−1 𝑍𝑁−1,𝐷𝑖𝑚

  𝑍𝑁,𝐷𝑖𝑚−1 𝑍𝑁,𝐷𝑖𝑚 ]
 
 
 

 (1) 

 
The solution space's bottom and upper 

boundaries are represented by the letters L and U, 
respectively. θ represents a randomly generated 
number in [0, 1]. 

 
2.2. Exploration stage   

 
• This phase aims to explore the search space 

broadly.  
• The erratic movement of snow turning into steam 

is modeled using Brownian motion.  
• The step size for Brownian motion follows a 

normal distribution with a mean of zero and a 
variance of one, represented by Eq. 2 (Guo et al., 

2024). 
 

𝑓𝐵𝑀(𝑥; 0,1) =
1

√2 𝜋
× 𝑒𝑥𝑝 (−

𝑥2

2
)                                     (2) 

 
The position update during exploration is given 

by Eq. 3. 
 

𝑍𝑖(𝑡 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑡) + 𝐵𝑀𝑖(𝑡) ⊗ (𝜃1 × (𝐺(𝑡) − 𝑍𝑖(𝑡)) +

(1 − 𝜃1) × (𝑍̅(𝑡) − 𝑍𝑖(𝑡))                        (3) 
 
where, 𝜃1 is a random number in the range [0, 1], 
𝑍𝑖(𝑡) is the position of the i-th individual at iteration 

t, ⊗ denotes entry-wise multiplication, 𝐵𝑀𝑖(𝑡) is a 
vector of random values from a Gaussian 
distribution representing Brownian motion, 𝐸𝑙𝑖𝑡𝑒(𝑡) 
is a randomly selected elite individual from the 
swarm, 𝑍̅(𝑡) represents the centroid position of the 
entire swarm, calculated by Eq. 4. 𝐺(𝑡) is the best 
solution that is currently available. The related 
mathematical expressions are listed as follows 
(Pandya et al., 2024): 
 

𝑍̅(𝑡) =
1

𝑁
∑ 𝑍𝑖

𝑁
𝑖=1   (𝑡)                                                                    (4) 

𝐸𝑙𝑖𝑡𝑒(𝑡) ∈ [𝐺(𝑡), 𝑍𝑠𝑒𝑐𝑜𝑛𝑑(𝑡), 𝑍𝑡ℎ𝑖𝑟𝑑(𝑡), 𝑍𝑐(𝑡)]                       (5) 

 
where, 𝑍𝑠𝑒𝑐𝑜𝑛𝑑(𝑡) and 𝑍𝑡ℎ𝑖𝑟𝑑(𝑡) represent the current 
population's third and second-best members, 
respectively. 𝑍𝑐(𝑡) represents the centroid position 
of individuals whose fitness levels were within the 
top 50% (Eqs. 5 and 6). To keep things simple, the 
top 50% of participants in this study are the ones 
with the highest levels of fitness. 

 

𝑍𝑐(𝑡) =
1

𝑁1

∑ 𝑍𝑖
𝑁
𝑖=1 (𝑡)                                      (6) 

 
where, N1 is half the swarm size, and 𝑍𝑖(𝑡) 
represents the i-th best leader. 

 
2.3. Exploitation stage 

 
• This phase focuses on refining the search around 

promising regions.  
• The melting process of snow into liquid water is 

modeled using the degree-day approach (Xiao et 
al., 2024).  

• Snowmelt (SM) is typically calculated by Eqs. 7-10. 
 
𝑀 = 𝐷𝐷𝐹 × (𝑇 − 𝑇1)                                                                   (7) 
𝑀 = 𝐷𝐷𝐹 × 𝑇                                                                                 (8) 

𝐷𝐷𝐹 = 0.35 + 0.25 ×
𝑒

𝑡
𝑡𝑚𝑎𝑥

−1

𝑒−1
                   (9) 

𝑀 = (0.35 + 0.25 ×
𝑒

𝑡
𝑡𝑚𝑎𝑥

−1

𝑒−1
 ) × 𝑇(𝑡), 𝑇(𝑡) = 𝑒

−𝑡

𝑡𝑚𝑎𝑥         (10) 

 

where, the parameter M, which represents the 
snowmelt rate among them, is crucial for simulating 
the melting behavior throughout the exploitation 
stage. T is the mean temperature for a given day. The 
basal temperature, or T1, is typically set at 0. The 
degree-day factor is represented by DDF. 𝑡𝑚𝑎𝑥  is the 
termination condition. 

 
2.4. Dual population mechanism 

 
• SAO employs a dual-population strategy to balance 

exploration and exploitation.  
• The initial population P of size N is divided into 

two equal subpopulations: Pa of size Na (for 
exploration) and Pb of size Nb (for exploitation).  

• In subsequent iterations, the size of Pa increases, 
while the size of Pb decreases, allowing for a 
progressive shift from exploration to exploitation.  

• The overall position update equation for the SAO 
method is given by Eqs. 11 and 12. 
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𝑍𝑖(𝑡 + 1) = 𝑀 + 𝐺(𝑡) + 𝐵𝑀𝑖(𝑡) ⊗ (𝜃2 × (𝐺(𝑡) − 𝑍𝑖(𝑡)) + (1 − 𝜃2)  × ( 𝑍̅𝑖(𝑡) − 𝑍𝑖(𝑡))                                    (11) 

𝑍𝑖(𝑡 + 1) = {
𝐸𝑙𝑖𝑡𝑒(𝑡) + 𝐵𝑀𝑖(𝑡) ⊗ (𝜃1 × (𝐺(𝑡) − 𝑍𝑖(𝑡)) + (1 − 𝜃1) × (𝑍̅(𝑡) − 𝑍𝑖(𝑡))  𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥𝑎                  

𝑀 + 𝐺(𝑡) + 𝐵𝑀𝑖(𝑡) ⊗ (𝜃2 × (𝐺(𝑡) − 𝑍𝑖(𝑡)) + (1 − 𝜃2)  × ( 𝑍̅𝑖(𝑡) − 𝑍𝑖(𝑡)) 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥𝑏  
                                  (12) 

  
 

where, M is the snowmelt rate and θ2 is the random 
number chosen from [-1, 1]. People can converse 
with one another more easily because of this quality. 
The cross factors −θ2 × (G(t)−Zi(t)) and (1 − θ2) 

× ( 𝑍̅𝑖(𝑡) − 𝑍𝑖(𝑡)) make people more likely to take 

advantage of potential regions during this period. 
These are dependent on the centroid position of the 
swarm and the current best search agent. 

3. Binary SAO for dominant edge metric 
dimension problem 

The snow ablation optimizer (SAO), a novel 
metaheuristic algorithm, was proposed in April 
2023. It mimics the natural process of snow melting 
and sublimation and has a good optimization impact.  

This advantage makes it possible to employ a 
binary version of the approach that uses binary 
encoding to address the dominant edge metric 
dimension problem. In the continuous form of SAO, 
search agents can move around the search space 
using position vectors inside the continuous real 
domain. We can transform the continuous variable 
SAO into binary values by employing an S-shaped 
transfer function. Flipping between 0 and 1 is 
required when a position changes in a discrete 
binary search space.  

 
• Problem Formalization: We define the fitness 

function as: 
 
Fitness(B)=

{
|𝐵| + 𝜆 .  non − unique vertices if 𝐵 is dominating,   

∞    otherwise,
    (13) 

 

where: B is the candidate edge set, and λ penalizes 
non-uniqueness (set empirically to 10). 

 
• BSAO Adaptation: SAO’s continuous search is 

binarized using sigmoid transfer functions.  
• Rigorous Validation: Tests on synthetic 

benchmarks (complete/path/wheel graphs) and 
real-world datasets (Protein-Protein Interaction 
networks (Wang et al., 2022), Facebook social 
graphs (Kumar et al., 2022) show BSAO’s 
consistent outperformance. 

 
The initialization stage makes use of the 

following equation.  
 

𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦𝑖𝑗={
  1         𝑟𝑎𝑛𝑑() ≥ 0.5
0                         𝑒𝑙𝑠𝑒

                   (14) 

 

The value of 𝑟𝑎𝑛𝑑(), which has a uniform 
distribution, is [0.0, 1.0]. and the binary-valued 
position vector is 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦𝑖𝑗 . A transfer function is 

used to transform continuous variables into binary 

ones. In this study, the sigmoid function (S) is 
applied as follows:  
 

𝑆 =
1

1+𝑒−10𝑥𝑑                                                                                  (15) 

 

The function output is denoted by S, and the 
continuous-valued location at dimension d is 
indicated by xd. Use the equation below to produce a 
binary value.  
 

𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦𝑖𝑗={
  1         𝑟𝑎𝑛𝑑() < 𝑆
  0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                           (16) 

 

To represent each search agent as a one-
dimensional vector, the suggested technique treats 
the dominant edge resolving set problem as an 
optimization problem and finds the optimum 
solution. The position vector 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦𝑖𝑗  is binary 

valued and has the formula {SAi1, SAi2, SAi3,..., SAij}. 
Vertex j is considered to belong to B if the vector's j-
th element has a value of 1. When each v in V(G) has 
a distinct representation, denoted as r(v|B), B can be 
considered a dominant edge resolving set. The value 
of a binary-valued position vector is determined 
once the S-shaped transfer function value has been 
computed. In the BSAO approach, a vertex from V\B 
is appended to a search agent when it can be 
employed as a dominant edge resolving set. This 
repair is used until that search agent becomes the 
dominant edge resolving set.  

The approach uses a string of binary values to 
represent each solution (individual) in the 
population, with 1 signifying the selection of the 
dominant edge resolving set and corresponding to a 
value of "1." Failure to choose the dominant edge 
resolving set results in "0." Algorithm 1 shows the 
suggested BSAO algorithm. 

 
Algorithm 1. Pseudo BSAO  
1. Beginning: Z.t = 0. Nb = Na and tmax.  
2. Determine the current state of fitness.  
3. Record G(t); the top individual as of right now  
4. while (t < tmax)  
5. Determine M, the rate of snowmelt, using Eq. (10) 
6. Randomly split the population P into the Pa and Pb 
subpopulations. 
7. For each individual do  
8. Reload every individual's position using Eq. (12).  

9. Convert each 𝑆𝐴𝑖
⃗⃗ ⃗⃗ ⃗⃗   into binary using the S-shaped transfer 

function in SAbinary ij    
10. Calculate the fitness of each SAbinaryij  
11. Update new position of the search agent using Eq. (5)  
12. end  
13. t = t +1  
14. Examination of the level of fitness  
15. Update G(t)  
16. end  
17. Return G(t) 
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4. Results and discussion 

This section compares the proposed Binary 
Simulated Annealing Optimizer (BSAO) with two 
algorithms: the Binary Equilibrium Optimization 
Algorithm (BEOA) and the Binary Grey Wolf 
Optimizer (BGWO). The evaluation is performed on 
three types of graph structures: the complete graph 
Kk, the path graph Pn, and the wheel graph Wn. All 
experiments were carried out on a computer with 
Windows 10 Ultimate 64-bit, an Intel Core i7 
processor, 16 GB of RAM, and a storage system of 1 
TB HDD plus 1 TB SSD. The algorithms were coded 
and executed in MATLAB 2023b. The parameter 
settings used for the experiments are presented in 
Table 1, which lists the chosen values to provide fair 
and consistent comparisons among the algorithms.  

 
Table 1: Parameter setting 

Algorithms Parameter name Value 

BSAO 
Objects Number 
Number of runs 

Max iteration 

30 
1000 

20 

BEOA 
Particles number 

Max iteration 
a1, a2, GP, λ 

30 
1000 

[2, 1, 0.5, [0-1]] 

BGWO 

Number of runs 
Search agents 
Max iteration 

a1, a2 
Number of runs 

20 
30 

1000 
[2, 0] 

20 

The BSAO, BEOA, and BGWO have been run 20 
times for each instance, and the results are 
summarized in Tables 2–4. Tables 2–4 are organized 
as follows:  

 
• The first three columns contain the test instance 

name, the number of nodes, and the number of 
edges, respectively. 

• The fourth column contains the BSAO best solution 
(named BSAObest) obtained in 20 runs. 

• The average execution time (t) used to reach the 
final BSAO solution for the first time is given in the 
fifth column. 

• The sixth column contains the average number of 
generations for finishing BSAObest.  

 
Our stopping criterion is the cardinality of the 

dominant edge resolving set that reaches the known 
dominant edge metric dimension of the complete 
graph. For K6, the time needed for BSAO is 130.6 
seconds and requires 7 iterations to finish BSAO to 
achieve the best solution. 

Regarding BSAO results, Table 3 shows that for 
path graph Pn, 3 ≤ n ≤ 20, BSAO has reached an 
optimal solution. For example, in P6, the time 
required for BSAO is 34.05 sec, with 4 iterations 
required to achieve the best solution. 

 
Table 2: Results on complete graph Kk 

Instance  n m  BSAObest  t (sec)  
Iteration 

(generation) 
 BEOA t Iteration  BGWO t Iteration 

K1  3 3  2  1.2  1  2 7.03 1  2 9.8 1 
K2  4 6  3  5.2  1  3 24.4 3  3 21.3 4 
K3  5 10  4  17.7  2  4 48.1 9  4 52.2 9 
K4  6 15  5  51.1  3  5 85.1 12  5 48.2 17 
K5  7 21  6  82.5  4  6 57.8 16  6 87.1 25 
K6  8 28  7  130.6  7  7 182.4 23  7 194.7 54 
K7  9 36  8  191.5  13  8 249.7 21  8 276.1 39 
K8  10 45  9  236.1  6  9 299.5 19  9 318.5 21 
K9  11 55  10  320.7  3  10 425.8 42  10 490.1 36 
K10  12 66  11  395.5  15  11 637.8 26  11 723.5 64 
K11  13 78  12  460.2  11  12 751.8 58  12 835.3 89 
K12  14 91  13  513.3  7  13 922.7 46  13 913.1 53 
K13  15 105  14  591.6  25  14 1073.4 79  14 1219.7 68 
K14  16 120  15  634.2  9  15 1275.2 138  15 1568.1 134 
K15  17 136  16  693.1  17  16 1528.2 94  16 1804.4 167 
K16  18 153  17  755.4  23  17 1592.7 75  17 1911.5 59 
K17  19 171  18  824.1  21  18 1716.4 126  18 2225.9 97 
K18  20 190  19  905.5  32  19 1995.6 90  19 2361.1 121 
K19  21 210  20  1085.3  18  20 2088.3 102  20 2556.4 145 
K20  22 231  21  1137.6  13  21 2409.1 114  21 2738.4 83 

 
Table 3: Results on path graph 

Instance  n m BSAObest  t (sec) Iteration BEOA t Iteration BGWO t Iteration  
P3  3 2 1  1.08 1 1 2.93 1 1 5.46 1  
P4  4 3 2  2.73 1 2 6.39 1 2 9.76 1  
P5  5 4 2  10.37 2 2 20.32 2 2 17.84 2  
P6  6 5 3  34.05 4 3 62.04 4 3 24.15 4  
P7  7 6 3  67.57 8 3 85.08 9 3 89.12 38  
P8  8 7 4  95.26 14 4 156.95 12 4 148.47 15  
P9  9 8 4  134.65 18 4 248.09 8 4 292.51 52  
P10  10 9 5  209.13 26 5 325.32 23 5 373.64 76  
P11  11 10 5  314.84 35 5 396.58 16 5 434.02 31  
P12  12 11 6  395.07 19 6 484.21 40 6 501.13 67  
P13  13 12 6  543.76 27 6 671.07 24 6 518.68 28  
P14  14 13 7  784.98 30 7 816.97 13 7 811.09 39  
P15  15 14 7  649.96 16 7 994.12 37 7 932.26 56  
P16  16 15 8  813.84 9 8 1025.8 28 8 1107.08 59  
P17  17 16 8  908.07 13 8 1336.4 11 8 1298.47 125  
P18  18 17 9  981.23 15 9 1517.9 39 9 1476.59 98  
P19  19 18 9  1074.59 9 9 1751.2 46 9 1449.27 107  
P20  20 19 10  1178.45 2 10 1968.1 28 10 1785.44 84  
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Table 4: Results on wheel graph 
Instance n  m BSAO t(sec)  Iteration (generation) BEOA  t Iteration  BGWO t Iteration 

W1 4  6 3 4.2  1 3  9.03 1  3 7.05 1 
W2 5  8 4 11.1  2 4  42.21 5  4 16.45 4 
W3 6  10 4 21.1  12 4  91.05 13  4 18.84 17 
W4 7  12 5 45.6  7 5  196.1 53  5 78.09 29 
W5 8  14 5 83.6  41 5  354.8 49  5 193.3 44 
W6 9  16 6 109.1  58 6  471.7 26  6 278.5 95 
W7 10  18 6 172.5  37 6  509.9 58  6 462.9 82 
W8 11  20 7 247.2  23 7  647.5 98  7 619.4 90 
W9 12  22 7 395.1  12 7  729. 2 107  7 678.2 78 
W10 13  24 8 488.5  7 8  885.9 69  8 897.8 64 

 

Regarding BSAO results, Table 4 shows that for 
wheel graph 1 ≤ n ≤ 10, BSAO has reached an optimal 
solution. For example, W4, the time needed for BSAO 
is 45.64 sec and reaches the best solution after 7 
iterations. 

Tables 2, 3, and 4 display the results for various 
graphs, which show that the proposed BSAO can 
achieve the best optimal solution (known dominant 
edge metric dimension) in a reasonable amount of 
time, especially for the complete graph, path graph, 
and wheel graph. It proves the correctness and 
superiority of the proposed BSAO. 

The key contributions of this research include: 
 

1. Formulation of the Dominant Edge Resolvability 
Problem: The problem is formally stated as a 
combinatorial optimization problem, where the 
aim is to determine the smallest number of edges 
whose removal results in a graph with different 
degree sequences for all vertices. 

2. Use of BSAO: The dominating edge resolvability 
issue is resolved by adapting the BSAO method. To 
effectively explore the solution space and find 
optimum or nearly optimal solutions, the 
algorithm makes use of its exploration and 
exploitation capabilities. 

3. Experimental Evaluation: The suggested technique 
is assessed on a varied collection of graphs, 
including a complete graph Kk, a path graph Pn and 
a wheel graph Wn. The results demonstrate the 
effectiveness of the BSAO algorithm in determining 
the dominant edge resolvability of these graphs. 

4. Comparison with Existing Methods: The BSAO 
algorithm has been shown to routinely outperform 
existing meta-heuristic algorithms, including BEOA 
and BGWO, in terms of both computing efficiency 
and solution quality. 

5. Conclusions 

This study focused on applying the Binary Snow 
Ablation Optimizer (BSAO) to determine the 
dominant edge resolvability of graphs. Dominant 
edge resolvability is a vital parameter in graph 
theory, as it defines the minimum number of vertices 
needed to uniquely identify all edges within a 
network. This measure is particularly important in 
practical fields such as chemical graph theory, 
network security, and sensor networks, where 
accurate edge distinction enhances performance and 
reliability. The experiments carried out on complete, 
path, and wheel graphs demonstrated that the 

proposed BSAO approach consistently achieved 
optimal or near-optimal solutions within reasonable 
computation times. Moreover, when compared to 
other metaheuristic algorithms such as the Binary 
Equilibrium Optimization Algorithm (BEOA) and the 
Binary Grey Wolf Optimizer (BGWO), the BSAO 
showed superior performance in both accuracy and 
efficiency. 

The contributions of this research are twofold. 
First, it introduces a tailored adaptation of the snow 
ablation optimization concept into a binary 
framework, making it applicable to discrete 
optimization problems in graph theory. Second, it 
validates the method against benchmark datasets, 
proving its robustness and scalability to more 
complex graph structures. These findings highlight 
the potential of the BSAO as a reliable and flexible 
optimization tool, capable of balancing exploration 
and exploitation effectively. By ensuring a minimal 
dominant edge set, the algorithm also supports more 
efficient network modeling, which could reduce 
computational complexity in practical applications. 

Future work can extend this research in several 
directions. The current study has been limited to 
specific graph families; applying BSAO to larger, real-
world networks—such as transportation, 
communication, or biological systems—would test 
its adaptability further. Additionally, hybridizing 
BSAO with other optimization techniques or 
incorporating machine learning-based 
enhancements could improve convergence speed 
and scalability. Another promising direction is 
investigating multi-objective versions of the 
algorithm, which could simultaneously optimize for 
solution quality and computational efficiency. Such 
advancements would not only strengthen the 
theoretical foundations of dominant edge 
resolvability but also broaden its applications across 
diverse domains where graph analysis plays a 
central role.  

List of abbreviations 

BEOA Binary equilibrium optimization algorithm 
BGWO Binary grey wolf optimizer 
BSAO Binary snow ablation optimizer 
DDF Degree-day factor 
Kk Complete graph with k nodes 
MATLAB Matrix laboratory (software environment) 
Pn Path graph with n nodes 
SAO Snow ablation optimization 
SM Snowmelt 
Wn Wheel graph with n nodes 
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