International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 1 (January 2024), Pages: 150-160

----------------------------------------------

 Original Research Paper

Optimizing semantic error detection through weighted federated machine learning: A comprehensive approach

 Author(s): 

 Naila Samar Naz 1, Sagheer Abbas 1, Muhammad Adnan Khan 2, 3, 4, *, Zahid Hassan 1, Mazhar Bukhari 5, Taher M. Ghazal 6, 7

 Affiliation(s):

 1School of Computer Science, National College of Business Administration and Economics, Lahore, Pakistan
 2School of Computing, Skyline University College, Sharjah, UAE
 3Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam, South Korea
 4Riphah School of Computing and Innovation, Faculty of Computing, Riphah International University, Lahore, Pakistan
 5Department of Computer Sciences, The Institute of Management Sciences, Lahore, Pakistan
 6Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
 7Applied Science Research Center, Applied Science Private University, Amman, Jordan

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-4854-9935

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.01.018

 Abstract

Recently, the improvement of network technology and the spread of digital documents have made the technology for automatically correcting English texts very important. In English language processing, finding and fixing mistakes in the meaning of words is a very interesting and important job. It is also important to fix wrong data in cleaning data. Usually, systems that find errors need the user to set up rules or statistical information. To build a good system for finding mistakes in meaning, it must be able to spot errors and odd details. Many things can make the meaning of a sentence unclear. Therefore, this study suggests using a system that finds semantic errors with the help of weighted federated machine learning (SED-WFML). This system also connects to the web ontology's classes and features that are important for the area of knowledge in natural language processing (NLP) text documents. This helps identify correct and incorrect sentences in the document, which can be used for many purposes like checking documents automatically, translating, and more. During its training and checking stages, the new model identified correct and incorrect sentences with an accuracy of 95.6% and 94.8%, respectively, which is better than earlier methods.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Artificial neural network, Semantic error detection, Federated learning, Natural language processing, SED-WFML

 Article history

 Received 30 August 2023, Received in revised form 18 December 2023, Accepted 9 January 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Naz NS, Abbas S, Khan MA, Hassan Z, Bukhari M, and Ghazal TM (2024). Optimizing semantic error detection through weighted federated machine learning: A comprehensive approach. International Journal of Advanced and Applied Sciences, 11(1): 150-160

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9

----------------------------------------------   

 References (23)

  1. Abad G, Picek S, Ramírez-Durán VJ, and Urbieta A (2021). On the security and privacy in federated learning. ArXiv Preprint ArXiv:2112.05423. https://doi.org/10.48550/arXiv.2112.05423   [Google Scholar]
  2. Ahmad G, Khan MA, Abbas S, Athar A, Khan BS, and Aslam MS (2019). Automated diagnosis of hepatitis b using multilayer Mamdani fuzzy inference system. Journal of Healthcare Engineering, 2019: 6361318. https://doi.org/10.1155/2019/6361318   [Google Scholar] PMid:30867895 PMCid:PMC6379845
  3. Akmandor AO, Ortiz J, Manotas I, Ko B, and Jha NK (2020). SECRET: Semantically enhanced classification of real-world tasks. IEEE Transactions on Computers, 70(3): 440-456. https://doi.org/10.1109/TC.2020.2989642   [Google Scholar]
  4. Alhaidari F, Almotiri SH, Al Ghamdi MA, Khan MA, Rehman A, Abbas S, and Rahman AU (2021). Intelligent software-defined network for cognitive routing optimization using deep extreme learning machine approach. Computers, Materials and Continua, 67(1): 1269-1285. https://doi.org/10.32604/cmc.2021.013303   [Google Scholar]
  5. Ali L, Alnawayseh SE, Salahat M, Ghazal TM, Tomh MA, and Mago B (2023). AI-based intelligent model to predict epidemics using machine learning technique. Intelligent Automation and Soft Computing, 36(1): 1095-1104. https://doi.org/10.32604/iasc.2023.031335   [Google Scholar]
  6. Bibi R, Saeed Y, Zeb A, Ghazal TM, Rahman T, Said RA, and Khan MA (2021). Edge AI-based automated detection and classification of road anomalies in VANET using deep learning. Computational Intelligence and Neuroscience, 2021: 6262194. https://doi.org/10.1155/2021/6262194   [Google Scholar] PMid:34630550 PMCid:PMC8494564
  7. Chen S, Chen Z, Sun H, and Su Y (2023). Error detection for text-to-SQL semantic parsing. ArXiv Preprint ArXiv:2305.13683. https://doi.org/10.48550/arXiv.2305.13683   [Google Scholar]
  8. Deng L and Liu Y (2018). A joint introduction to natural language processing and to deep learning. In: Deng L and Liu Y (Eds.), Deep learning in natural language processing: 1-22. Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-10-5209-5   [Google Scholar]
  9. Fu Y, Liang K, and Xu J (2023). MLog: Mogrifier LSTM-based Log anomaly detection approach using semantic representation. IEEE Transactions on Services Computing, 16(5): 3537-3549. https://doi.org/10.1109/TSC.2023.3289488   [Google Scholar]
  10. Gutierrez F, Dou D, de Silva N, and Fickas S (2017). Online reasoning for semantic error detection in text. Journal on Data Semantics, 6: 139-153. https://doi.org/10.1007/s13740-017-0079-6   [Google Scholar]
  11. Hu Y, Ge H, Wang H, and Wang D (2021). Spectral efficiency of network-assisted full-duplex for cell-free massive MIMO system under pilot contamination. IEEE Access, 9: 110826-110841. https://doi.org/10.1109/ACCESS.2021.3100491   [Google Scholar]
  12. Kamal M and Himel AS (2023). Redefining modern marketing: An analysis of AI and NLP's influence on consumer engagement, strategy, and beyond. Eigenpub Review of Science and Technology, 7(1): 203-223.   [Google Scholar]
  13. Khan F, Khan MA, Abbas S, Athar A, Siddiqui SY, Khan AH, and Hussain M (2020). Cloud-based breast cancer prediction empowered with soft computing approaches. Journal of Healthcare Engineering, 2020: 8017496. https://doi.org/10.1155/2020/8017496   [Google Scholar] PMid:32509260 PMCid:PMC7254089
  14. Li X, Gu Y, Dvornek N, Staib LH, Ventola P, and Duncan JS (2020). Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Medical Image Analysis, 65: 101765. https://doi.org/10.1016/j.media.2020.101765   [Google Scholar] PMid:32679533 PMCid:PMC7569477
  15. McCarthy LM, Kalinyak-Fliszar M, Kohen F, and Martin N (2017). Effects of semantic context on access to words of low imageability in deep-phonological dysphasia: A treatment case study. Aphasiology, 31(5): 542-562. https://doi.org/10.1080/02687038.2016.1208803   [Google Scholar] PMid:28659653 PMCid:PMC5484078
  16. McKinnon ET, Fridriksson J, Basilakos A, Hickok G, Hillis AE, Spampinato MV, Gleichgerrcht E, Rorden C, Jensen JH, Helpern JA, and Bonilha L (2018). Types of naming errors in chronic post-stroke aphasia are dissociated by dual stream axonal loss. Scientific Reports, 8(1): 14352. https://doi.org/10.1038/s41598-018-32457-4   [Google Scholar] PMid:30254222 PMCid:PMC6156587
  17. Oueida S, Kotb Y, Aloqaily M, Jararweh Y, and Baker T (2018). An edge computing based smart healthcare framework for resource management. Sensors, 18(12): 4307. https://doi.org/10.3390/s18124307   [Google Scholar] PMid:30563267 PMCid:PMC6308405
  18. Rehman A, Athar A, Khan MA, Abbas S, Fatima A, and Saeed A (2020). Modelling, simulation, and optimization of diabetes type II prediction using deep extreme learning machine. Journal of Ambient Intelligence and Smart Environments, 12(2): 125-138. https://doi.org/10.3233/AIS-200554   [Google Scholar]
  19. Siddiqui SY, Khan MA, Abbas S, and Khan F (2022). Smart occupancy detection for road traffic parking using deep extreme learning machine. Journal of King Saud University-Computer and Information Sciences, 34(3): 727-733. https://doi.org/10.1016/j.jksuci.2020.01.016   [Google Scholar]
  20. Tabassum N, Ditta A, Alyas T, Abbas S, Alquhayz H, Mian NA, and Khan MA (2021). Prediction of cloud ranking in a hyperconverged cloud ecosystem using machine learning. Computers, Materials and Continua, 67(3): 3129-3141. https://doi.org/10.32604/cmc.2021.014729   [Google Scholar]
  21. Tong H, Yang Z, Wang S, Hu Y, Semiari O, Saad W, and Yin C (2021). Federated learning for audio semantic communication. Frontiers in Communications and Networks, 2: 734402. https://doi.org/10.3389/frcmn.2021.734402   [Google Scholar]
  22. Yang C and Huang C (2023). Natural language processing (NLP) in aviation safety: Systematic review of research and outlook into the future. Aerospace, 10(7): 600. https://doi.org/10.3390/aerospace10070600   [Google Scholar]
  23. Zribi CBO (2023). “Easy” meta-embedding for detecting and correcting semantic errors in Arabic documents. Multimedia Tools and Applications, 82: 21161–21175. https://doi.org/10.1007/s11042-023-14553-4   [Google Scholar]