International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 4 (April 2025), Pages: 164-172

----------------------------------------------

 Original Research Paper

The impact of visual and multimodal representations in mathematics on cognitive load and problem-solving skills

 Author(s): 

 Marthinus Yohanes Ruamba, Yohanes Leonardus Sukestiyarno *, Rochmad Rochmad, Tri Sri Noor Asih

 Affiliation(s):

  Faculty of Mathematics and Natural Science, Semarang State University, Semarang, Indonesia

 Full text

    Full Text - PDF

 * Corresponding Author. 

   Corresponding author's ORCID profile:  https://orcid.org/0000-0003-2377-5872

 Digital Object Identifier (DOI)

  https://doi.org/10.21833/ijaas.2025.04.018

 Abstract

This study investigates how visual and multi-modal representations can reduce cognitive load and enhance problem-solving skills in mathematics. Through a systematic literature review following the PRISMA methodology, we analyzed studies (2014–2023) on the effects of visual, symbolic, and interactive representations in supporting mathematical understanding. Findings reveal that digital tools and multi-modal approaches significantly improve students' grasp of abstract concepts while increasing engagement and motivation. The study emphasizes adapting instructional design to learners' cognitive needs across educational levels, advocating for interactive strategies to strengthen critical thinking and retention. Future research should explore long-term impacts and extend to diverse cultural and educational contexts.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Cognitive load reduction, Multimodal learning, Mathematics education, Visual representations, Problem-solving skills

 Article history

 Received 30 November 2024, Received in revised form 6 April 2025, Accepted 25 April 2025

 Acknowledgment

No Acknowledgment.

  Compliance with ethical standards

  Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Ruamba MY, Sukestiyarno YL, Rochmad R, and Asih TSN (2025). The impact of visual and multimodal representations in mathematics on cognitive load and problem-solving skills. International Journal of Advanced and Applied Sciences, 12(4): 164-172

  Permanent Link to this page

 Figures

  Fig. 1  Fig. 2  

 Tables

  Table 1

----------------------------------------------   

 References (46)

  1. Ainsworth S (2014). The multiple representation principle in multimedia learning. In: Mayer RE (Ed.), The Cambridge handbook of multimedia learning: 464-486. Cambridge University Press, Cambridge, UK.  https://doi.org/10.1017/CBO9781139547369.024    [Google Scholar]
  2. Asmara AS, Waluya SB, Suyitno H, Junaedi I, and Ardiyanti Y (2024). Developing patterns of students' mathematical literacy processes: Insights from cognitive load theory and design-based research. Infinity Journal, 13(1): 197-214.  https://doi.org/10.22460/infinity.v13i1.p197-214    [Google Scholar]
  3. Attout L, Noel MP, Nassogne MC, and Rousselle L (2017). The role of short-term memory and visuo-spatial skills in numerical magnitude processing: Evidence from Turner syndrome. PLOS ONE, 12(2): e0171454.  https://doi.org/10.1371/journal.pone.0171454    [Google Scholar] PMid:28222116 PMCid:PMC5319680
  4. Ayabe H, Manalo E, and Vries ED (2022). Problem-appropriate diagram instruction for improving mathematical word problem solving. Frontiers in Psychology, 13: 992625.  https://doi.org/10.3389/fpsyg.2022.992625    [Google Scholar] PMid:36262435 PMCid:PMC9574201
  5. Bennett IJ and Stark CE (2016). Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study. Neurobiology of Learning and Memory, 129: 107-112.  https://doi.org/10.1016/j.nlm.2015.06.014    [Google Scholar] PMid:26149893 PMCid:PMC4699874
  6. Ceulemans K, Molderez I, and Van Liedekerke L (2015). Sustainability reporting in higher education: A comprehensive review of the recent literature and paths for further research. Journal of Cleaner Production, 106: 127-143.  https://doi.org/10.1016/j.jclepro.2014.09.052    [Google Scholar]
  7. Choi JW, Cha KS, and Kim KH (2019). Covert intention to answer to self‐referential questions is represented in alpha‐band local and interregional neural synchronies. Computational Intelligence and Neuroscience, 2019(1): 7084186. https://doi.org/10.1155/2019/7084186    [Google Scholar] PMid:30723496 PMCid:PMC6339759
  8. Debrenti E (2024). Game-based learning experiences in primary mathematics education. Frontiers in Education, 9: 1331312.  https://doi.org/10.3389/feduc.2024.1331312    [Google Scholar]
  9. Fischer F, Kollar I, Stegmann K, and Wecker C (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1): 56-66.  https://doi.org/10.1080/00461520.2012.748005    [Google Scholar] PMid:23378679 PMCid:PMC3557614
  10. Hahn L and Klein P (2023). The impact of multiple representations on students' understanding of vector field concepts: Implementation of simulations and sketching activities into lecture-based recitations in undergraduate physics. Frontiers in Psychology, 13: 1012787.  https://doi.org/10.3389/fpsyg.2022.1012787    [Google Scholar] PMid:36687809 PMCid:PMC9849893
  11. Hardman KO, Vergauwe E, and Ricker TJ (2017). Categorical working memory representations are used in delayed estimation of continuous colors. Journal of Experimental Psychology: Human Perception and Performance, 43(1): 30-54.  https://doi.org/10.1037/xhp0000290    [Google Scholar] PMid:27797548 PMCid:PMC5179301
  12. Kaur H, Vig R, Kumar N, Sharma A, Dogra A, and Goyal B (2024). Multimodal medical image fusion utilizing two-scale image decomposition via saliency detection. Current Medical Imaging, 20(1): e15734056260083.  https://doi.org/10.2174/0115734056269626231201042100    [Google Scholar] PMid:38284702
  13. Kuznetsova E, Liashenko A, Zhozhikashvili N, and Arsalidou M (2024). Giftedness identification and cognitive, physiological and psychological characteristics of gifted children: A systematic review. Frontiers in Psychology, 15: 1411981.  https://doi.org/10.3389/fpsyg.2024.1411981    [Google Scholar] PMid:39635703 PMCid:PMC11615676
  14. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, and Moher D (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. BMJ, 339: b2700.  https://doi.org/10.1136/bmj.b2700    [Google Scholar] PMid:19622552 PMCid:PMC2714672
  15. Liu S, Feng J, Yang Z, Luo Y, Wan Q, Shen X, and Sun J (2024). COMET: "Cone of experience" enhanced large multimodal model for mathematical problem generation. Science China Information Sciences, 67: 220108.  https://doi.org/10.1007/s11432-024-4242-0    [Google Scholar]
  16. Liu Y, Ma W, Guo X, Lin X, Wu C, and Zhu T (2021). Impacts of color coding on programming learning in multimedia learning: Moving toward a multimodal methodology. Frontiers in Psychology, 12: 773328.  https://doi.org/10.3389/fpsyg.2021.773328    [Google Scholar] PMid:34925175 PMCid:PMC8677832
  17. Luzón JM and Letón E (2015). Use of animated text to improve the learning of basic mathematics. Computers and Education, 88: 119-128.  https://doi.org/10.1016/j.compedu.2015.04.016    [Google Scholar]
  18. Maboudi H, Shimazaki H, Amari SI, and Soltanian-Zadeh H (2016). Representation of higher-order statistical structures in natural scenes via spatial phase distributions. Vision Research, 120: 61-73.  https://doi.org/10.1016/j.visres.2015.06.009    [Google Scholar] PMid:26278166
  19. Maries A and Singh C (2023). Helping students become proficient problem solvers part II: An example from waves. Education Sciences, 13(2): 138.  https://doi.org/10.3390/educsci13020138    [Google Scholar]
  20. Mayer RE and Moreno R (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1): 43-52.  https://doi.org/10.1207/S15326985EP3801_6    [Google Scholar]
  21. McCrink K and Galamba J (2015). The impact of symbolic and non-symbolic quantity on spatial learning. PLOS ONE, 10(3): e0119395.  https://doi.org/10.1371/journal.pone.0119395    [Google Scholar] PMid:25748826 PMCid:PMC4351879
  22. Mongeon P and Paul-Hus A (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106: 213-228.  https://doi.org/10.1007/s11192-015-1765-5    [Google Scholar]
  23. Moreno R and Mayer RE (2007). Interactive multimodal learning environments: Special issue on interactive learning environments: Contemporary issues and trends. Educational Psychology Review, 19: 309-326.  https://doi.org/10.1007/s10648-007-9047-2    [Google Scholar]
  24. Naseem U, Khushi M, Dunn AG, and Kim J (2023). K-PathVQA: Knowledge-aware multimodal representation for pathology visual question answering. IEEE Journal of Biomedical and Health Informatics, 28(4): 1886-1895. https://doi.org/10.1109/JBHI.2023.3294249    [Google Scholar] PMid:37432797
  25. Ngu BH (2019). Solution representations of percentage change problems: The pre-service primary teachers' mathematical thinking and reasoning. International Journal of Mathematical Education in Science and Technology, 50(2): 260-276.  https://doi.org/10.1080/0020739X.2018.1494860    [Google Scholar]
  26. Paas F, Renkl A, and Sweller J (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1): 1-4.  https://doi.org/10.1207/S15326985EP3801_1    [Google Scholar]
  27. Paivio A (1990). Mental representations: A dual coding approach. Oxford University Press, Oxford, UK.  https://doi.org/10.1093/acprof:oso/9780195066661.001.0001    [Google Scholar]
  28. Palmisano A, Hoops S, Watson LT, Jones TC Jr, Tyson JJ, and Shaffer CA (2014). Multistate model builder (MSMB): A flexible editor for compact biochemical models. BMC Systems Biology, 8: 42.  https://doi.org/10.1186/1752-0509-8-42    [Google Scholar] PMid:24708852 PMCid:PMC4234935
  29. Reisslein J, Johnson AM, and Reisslein M (2014). Color coding of circuit quantities in introductory circuit analysis instruction. IEEE Transactions on Education, 58(1): 7-14.  https://doi.org/10.1109/TE.2014.2312674    [Google Scholar]
  30. Richland LE, Begolli KN, Simms N, Frausel RR, and Lyons EA (2017). Supporting mathematical discussions: The roles of comparison and cognitive load. Educational Psychology Review, 29: 41-53.  https://doi.org/10.1007/s10648-016-9382-2    [Google Scholar]
  31. Richland LE, Begolli KN, Simms N, Frausel RR, and Lyons EA (2017). Supporting mathematical discussions: The roles of comparison and cognitive load. Educational Psychology Review, 29: 41-53.  https://doi.org/10.1007/s10648-016-9382-2    [Google Scholar]
  32. Saha S, Jindal K, Shakti D, Tewary S, and Sardana V (2022). Chirplet transform‐based machine‐learning approach towards classification of cognitive state change using galvanic skin response and photoplethysmography signals. Expert Systems, 39(6): e12958.  https://doi.org/10.1111/exsy.12958    [Google Scholar]
  33. Schnotz W and Kürschner C (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19: 469-508.  https://doi.org/10.1007/s10648-007-9053-4    [Google Scholar]
  34. Sheridan R, van Rooijen M, Giles O, Mushtaq F, Steenbergen B, Mon-Williams M, and Waterman A (2017). Counting on the mental number line to make a move: Sensorimotor ('pen') control and numerical processing. Experimental Brain Research, 235: 3141-3152.  https://doi.org/10.1007/s00221-017-5019-z    [Google Scholar] PMid:28752328 PMCid:PMC5603638
  35. Sirock J, Vogel M, and Seufert T (2023). Analyzing and supporting mental representations and strategies in solving Bayesian problems. Frontiers in Psychology, 14: 1085470.  https://doi.org/10.3389/fpsyg.2023.1085470    [Google Scholar] PMid:37397310 PMCid:PMC10311000
  36. Sweller J (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2): 257-285.  https://doi.org/10.1016/0364-0213(88)90023-7    [Google Scholar]
  37. Sweller J (2010). Cognitive load theory: Recent theoretical advances. In: Plass JL, Moreno R, and Brünken R (Eds.), Cognitive load theory: 29–47. Cambridge University Press, Cambridge, UK.  https://doi.org/10.1017/CBO9780511844744.004    [Google Scholar]
  38. Sweller J (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68: 1-16.  https://doi.org/10.1007/s11423-019-09701-3    [Google Scholar]
  39. Thomas J and Harden A (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8: 45.  https://doi.org/10.1186/1471-2288-8-45    [Google Scholar] PMid:18616818 PMCid:PMC2478656
  40. Tso TY, Feng-Lin L, and Lei KH (2022). Effects of embodied dynamic visualization on middle-school students' learning of algebraic manipulation. Journal of Research in Education Sciences, 67(4): 285-318.  https://doi.org/10.6209/JORIES.202212_67(4).0009    [Google Scholar]
  41. van Lieshout EC and Xenidou-Dervou I (2018). Pictorial representations of simple arithmetic problems are not always helpful: A cognitive load perspective. Educational Studies in Mathematics, 98: 39-55.  https://doi.org/10.1007/s10649-017-9802-3    [Google Scholar]
  42. Waisman I, Leikin M, Shaul S, and Leikin R (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12: 669-696.  https://doi.org/10.1007/s10763-014-9513-5    [Google Scholar]
  43. Wang J, Peng J, Feng X, He G, Wu J, and Yan K (2013). Image fusion with nonsubsampled contourlet transform and sparse representation. Journal of Electronic Imaging, 22(4): 043019.  https://doi.org/10.1117/1.JEI.22.4.043019    [Google Scholar]
  44. Xian Y and Tian Y (2019). Self-guiding multimodal LSTM—When we do not have a perfect training dataset for image captioning. IEEE Transactions on Image Processing, 28(11): 5241-5252.  https://doi.org/10.1109/TIP.2019.2917229    [Google Scholar] PMid:31135361
  45. Xiao Y and Watson M (2019). Guidance on conducting a systematic literature review. Journal of Planning Education and Research, 39(1): 93-112.  https://doi.org/10.1177/0739456X17723971    [Google Scholar]
  46. Yan M, Lv Z, Sun W, and Bi N (2020). An improved common spatial pattern combined with channel-selection strategy for electroencephalography-based emotion recognition. Medical Engineering and Physics, 83: 130-141.  https://doi.org/10.1016/j.medengphy.2020.05.006    [Google Scholar] PMid:32475767