International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 4 (April 2025), Pages: 107-115

----------------------------------------------

 Original Research Paper

Hybrid smart IoT detection and prevention framework for smart cities using blockchain technology

 Author(s): 

 Ahmed Albugmi *

 Affiliation(s):

  Computer and Information Technology Department, The Applied College, King Abdulaziz University, Jeddah, Saudi Arabia

 Full text

    Full Text - PDF

 * Corresponding Author. 

   Corresponding author's ORCID profile:  https://orcid.org/0009-0004-7336-4750

 Digital Object Identifier (DOI)

  https://doi.org/10.21833/ijaas.2025.04.013

 Abstract

The Internet of Things (IoT) and the development of smart cities provide significant opportunities to enhance security and public safety. However, the increasing complexity of smart city technologies makes them more vulnerable to cyber threats. To address this challenge, this study proposes a Hybrid Detection and Prevention IoT Framework (HDPIoTF) based on blockchain technology. The framework integrates IoT and blockchain to ensure a secure and efficient smart city system through six key stages: IoT sensor development, IoT gateways, blockchain networks, smart contracts, security analytics, and real-time notifications. Using design science as the analytical approach, this study aims to enable real-time monitoring, enhance security, automate responses, and improve interoperability. By leveraging blockchain and IoT, the proposed framework strengthens the protection of critical infrastructure while promoting public well-being.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Smart city security, IoT framework, Blockchain integration, Real-time monitoring, Cyber threat prevention

 Article history

 Received 12 November 2024, Received in revised form 1 March 2025, Accepted 21 April 2025

 Acknowledgment

No Acknowledgment.

  Compliance with ethical standards

  Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Albugmi A (2025). Hybrid smart IoT detection and prevention framework for smart cities using blockchain technology. International Journal of Advanced and Applied Sciences, 12(4): 107-115

  Permanent Link to this page

 Figures

  Fig. 1  Fig. 2

 Tables

  Table 1  Table 2  Table 3  Table 4  Table 5

----------------------------------------------   

 References (31)

  1. Adel A and Alani NH (2024). Human-centric collaboration and Industry 5.0 framework in smart cities and communities: Fostering sustainable development goals 3, 4, 9, and 11 in Society 5.0. Smart Cities, 7(4): 1723–1775.  https://doi.org/10.3390/smartcities7040068    [Google Scholar]
  2. Ahmed S and Khan M (2023). Securing the Internet of Things (IoT): A comprehensive study on the intersection of cybersecurity, privacy, and connectivity in the IoT ecosystem. AI, IoT and the Fourth Industrial Revolution Review, 13(9): 1-17.    [Google Scholar]
  3. Alfadli IM, Ghabban FM, Ameerbakhsh O, AbuAli AN, Al-Dhaqm A, and Al-Khasawneh MA (2021). CIPM: Common identification process model for database forensics field. In the 2 nd International Conference on Smart Computing and Electronic Enterprise, IEEE, Cameron Highlands, Malaysia: 72-77.  https://doi.org/10.1109/ICSCEE50312.2021.9498014    [Google Scholar]
  4. Alghamdi S, Albeshri A, and Alhusayni A (2023). Enabling a secure IoT environment using a blockchain-based local-global consensus manager. Electronics, 12(17): 3721.  https://doi.org/10.3390/electronics12173721    [Google Scholar]
  5. Ali A, Razak SA, Othman SH, Marie RR, Al-Dhaqm A, and Nasser M (2021). Validating mobile forensic metamodel using tracing method. In the International Conference of Reliable Information and Communication Technology, Springer International Publishing, Cham, Switzerland, 127: 473-482. https://doi.org/10.1007/978-3-030-98741-1_39    [Google Scholar]
  6. Anawar S, Zakaria NA, Masu’d MZ, Muslim Z, Harum N, and Ahmad R (2019). IoT technological development: Prospect and implication for cyberstability. International Journal of Advanced Computer Science and Applications, 10(2): 428-437.  https://doi.org/10.14569/IJACSA.2019.0100256    [Google Scholar]
  7. Asif M, Aziz Z, Bin Ahmad M, Khalid A, Waris HA, and Gilani A (2022). Blockchain-based authentication and trust management mechanism for smart cities. Sensors, 22(7): 2604.  https://doi.org/10.3390/s22072604    [Google Scholar] PMid:35408219 PMCid:PMC9003294
  8. Avik SC, Biswas S, Ahad MAR, Latif Z, Alghamdi A, Abosaq H, and Bairagi AK (2023). Challenges in blockchain as a solution for IoT ecosystem threats and access control: A survey. Arxiv Preprint Arxiv:2311.15290.  https://doi.org/10.48550/arXiv.2311.15290     [Google Scholar]
  9. Bhardwaj A, Kaushik K, Bharany S, Rehman AU, Hu YC, Eldin ET, and Ghamry NA (2022). IIoT: Traffic data flow analysis and modeling experiment for smart IoT devices. Sustainability, 14(21): 14645.  https://doi.org/10.3390/su142114645    [Google Scholar]
  10. Buyannemekh B and Cook ME (2023). Navigating information technology challenges and priorities: Expanding responsibilities, growing roles, and evolving contexts for city leaders. In the Proceedings of the 24 th Annual International Conference on Digital Government Research, ACM, Gdańsk, Poland: 478-485.  https://doi.org/10.1145/3598469.3598523    [Google Scholar]
  11. Chaabouni N (2020). Intrusion detection and prevention for IoT systems using machine learning. Ph.D. Dissertation, Université de Bordeaux, Bordeaux, France.    [Google Scholar]
  12. Fayad A, Hammi B, and Khatoun R (2018). An adaptive authentication and authorization scheme for IoT’s gateways: A blockchain based approach. In the 3 rd International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC), IEEE, Shanghai, China: 1-7.  https://doi.org/10.1109/SSIC.2018.8556668    [Google Scholar]
  13. Fei W (2022). Raspberry house: An intrusion detection and prevention system for Internet of Things (IoT). M.Sc. Thesis, Dalhousie University, Halifax, Canada.    [Google Scholar]
  14. Khalil U, Malik OA, and Hussain S (2022a). A blockchain footprint for authentication of IoT-enabled smart devices in smart cities: State-of-the-art advancements, challenges and future research directions. IEEE Access, 10: 76805-76823.  https://doi.org/10.1109/ACCESS.2022.3189998    [Google Scholar]
  15. Khalil U, Malik OA, Uddin M, and Chen CL (2022b). A comparative analysis on blockchain versus centralized authentication architectures for IoT-enabled smart devices in smart cities: A comprehensive review, recent advances, and future research directions. Sensors, 22(14): 5168. https://doi.org/10.3390/s22145168    [Google Scholar] PMid:35890848 PMCid:PMC9322843
  16. Khan IU, Ouaissa M, Ouaissa M, Abou El Houda Z, and Ijaz MF (2024). Cyber security for next-generation computing technologies. CRC Press, Boca Raton, USA.    [Google Scholar]
  17. Martins RMS (2018). Secure and high-performance framework for smart cities based on IoT. M.Sc. Thesis, Universidade do Minho, Braga, Portugal.    [Google Scholar]
  18. Mohammad A, Al-Refai H, and Alawneh AA (2022). User authentication and authorization framework in IoT protocols. Computers, 11(10): 147.  https://doi.org/10.3390/computers11100147    [Google Scholar]
  19. Mohammad RMA and Abdulqader MM (2020). Exploring cyber security measures in smart cities. In the 21 st International Arab Conference on Information Technology, IEEE, Giza, Egypt: 1-7.  https://doi.org/10.1109/ACIT50332.2020.9300050    [Google Scholar]
  20. Mudawi T (2020). IoT-HASS: A framework for protecting smart home environment. Ph.D. Dissertation, Dakota State University, Madison, USA.    [Google Scholar]
  21. Muzammal SM and Murugesan RK (2019). A study on secured authentication and authorization in Internet of Things: Potential of blockchain technology. In the International Conference on Advances in Cyber Security, Springer Singapore, Penang, Malaysia: 18-32.  https://doi.org/10.1007/978-981-15-2693-0_2    [Google Scholar]
  22. Polychronaki M, Kogias DG, Leligkou HC, and Karkazis PA (2023). Blockchain technology for access and authorization management in the Internet of Things. Electronics, 12(22): 4606.  https://doi.org/10.3390/electronics12224606    [Google Scholar]
  23. Prathibha L and Fatima K (2018). Exploring security and authentication issues in Internet of Things. In the 2 nd International Conference on Intelligent Computing and Control Systems, IEEE, Madurai, India: 673-678.  https://doi.org/10.1109/ICCONS.2018.8663111    [Google Scholar]
  24. Rao PM and Deebak BD (2023). Security and privacy issues in smart cities/industries: technologies, applications, and challenges. Journal of Ambient Intelligence and Humanized Computing, 14(8): 10517-10553.  https://doi.org/10.1007/s12652-022-03707-1    [Google Scholar]
  25. Rashid MA and Pajooh HH (2019). A security framework for IoT authentication and authorization based on blockchain technology. In the 18 th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13 th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), IEEE, Rotorua, New Zealand: 264-271.  https://doi.org/10.1109/TrustCom/BigDataSE.2019.00043    [Google Scholar]
  26. Sargent RG (2015). Model verification and validation. In: Loper ML (Ed.), Modeling and simulation in the systems engineering life cycle: Core concepts and accompanying lectures: 57-65. Springer, London, UK.  https://doi.org/10.1007/978-1-4471-5634-5_6    [Google Scholar]
  27. Thavamani S and Nandhini C (2023). Major security issues and data protection in cloud computing and IoT. In: Sajid M, Sagar AK, Singh J, Khalaf OI, and Prasad M (Eds.), Intelligent techniques for cyber-physical systems: 317-336. CRC Press, Boca Raton, USA.  https://doi.org/10.1201/9781003438588-18    [Google Scholar]
  28. Tyagi AK (2024). Blockchain and artificial intelligence for cyber security in the era of Internet of Things and Industrial Internet of Things applications. In: Biradar RC, Tabassum N, Hegde N, and Lazarescu M (Eds.), AI and blockchain applications in industrial robotics: 171-199. IGI Global, Hershey, USA.  https://doi.org/10.4018/979-8-3693-0659-8.ch007    [Google Scholar]
  29. Usmani UA, Happonen A, and Watada J (2023). Secure integration of IoT-enabled sensors and technologies: Engineering applications for humanitarian impact. In the 5 th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, IEEE, Istanbul, Turkiye: 1-10.  https://doi.org/10.1109/HORA58378.2023.10156740    [Google Scholar]
  30. Ware JC (2019). Secure authentication mechanisms for smart city IoT infrastructure. M.Sc. Thesis, Utica College, Utica, USA.    [Google Scholar]
  31. Zhonghua C, Goyal SB, and Rajawat AS (2024). Smart contracts attribute-based access control model for security and privacy of IoT system using blockchain and edge computing. The Journal of Supercomputing, 80(2): 1396-1425.  https://doi.org/10.1007/s11227-023-05517-4    [Google Scholar]