International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 4 (April 2025), Pages: 19-23

----------------------------------------------

 Original Research Paper

On α-compact sets in ideal topological spaces

 Author(s): 

 Eman Almuhur 1, *, Mona Khandaqji 1, Mona Bin-Asfour 2, Manal Al-Labadi 3, Wasim Audeh 3

 Affiliation(s):

 1Department of Mathematics, Faculty of Science, Applied Science Private University, Amman, Jordan
 2Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
 3Department of Mathematics, Faculty of Arts and Sciences, University of Petra, Amman, Jordan

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-9837-4179

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2025.04.003

 Abstract

This paper examines the properties of α-continuous functions modulo (J, I) that map a countably α-compact ideal space (X, τ, J) to an ideal space (Y, σ, I), where Y is an α-closed subset of the Cartesian product (X × Y, τ × σ, J × I). It is shown that if (X, τ, J) has a weight of at least ℵ₀, it is the α-continuous image of a closed subspace of the cube D{ℵ₀}. Additionally, an α-continuous function f: (X, τ, J) → (Y, σ, I), where Y is countably α-compact, can be extended under specific conditions. The concept of α-pseudocompactness is introduced in an ideal topological space (X, τ, J), and it is established that countably α-pseudocompactness is neither finitely multiplicative nor hereditary with respect to α-closed sets. Furthermore, it is proven that an α-continuous function modulo ideals mapping a Tychonoff ideal space to a countably α-pseudocompact space is perfect, and the Tychonoff space itself is countably α-pseudocompac.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 α-continuous functions, Ideal topological spaces, α-pseudocompactness, Countably α-compact spaces, Tychonoff spaces

 Article history

 Received 2 November 2024, Received in revised form 6 March 2025, Accepted 7 April 2025

 Acknowledgment

The researchers acknowledge Applied Science Private University, University of Petra, Jordan, and Imam Mohammad Ibn Saud Islamic University, Saudi Arabia, for the full support granted to this research article.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Almuhur E, Khandaqji M, Bin-Asfour M, Al-Labadi M, and Audeh W (2025). On α-compact sets in ideal topological spaces. International Journal of Advanced and Applied Sciences, 12(4): 19-23

 Permanent Link to this page

 Figures

 No Figure

 Tables

 No Table

----------------------------------------------   

 References (15)

  1. Almuhur E and Al-Labadi M (2022). On irresolute functions in ideal topological spaces. Thermal Science, 26(Spec. issue 2): 703-709. https://doi.org/10.2298/TSCI22S2703A   [Google Scholar]
  2. Almuhur E and Bin-Asfour M (2022). α-continuous functions and countably α-compact sets in ideal topological spaces. Journal of Southwest Jiaotong University 57(6): 1126-1131. https://doi.org/10.35741/issn.0258-2724.57.6.98   [Google Scholar]
  3. Al-Omari A (2019). Soft topology in ideal topological spaces. Hacettepe Journal of Mathematics and Statistics, 48(5): 1277-1285. https://doi.org/10.15672/HJMS.2018.557   [Google Scholar]
  4. Altawallbeh Z (2020). More on almost countably compact spaces. Italian Journal of Pure and Applied Mathematics, 43: 177-184.   [Google Scholar]
  5. Banakh T and Bardyla S (2019). Characterizing chain-finite and chain-compact topological semilattices. Semigroup Forum, 98(2): 234-250. https://doi.org/10.1007/s00233-018-9921-x   [Google Scholar]
  6. Császár Á (2007). Normal generalized topologies. Acta Mathematica Hungarica, 115(4): 309-313. https://doi.org/10.1007/s10474-007-5249-9   [Google Scholar]
  7. Dunham W (1977). T1/2-spaces. Kyungpook Mathematical Journal, 17(2): 161–169.   [Google Scholar]
  8. Dunham W (1982). A new closure operator for non-T1 topologies. Kyungpook Mathematical Journal, 22(1): 55-60.   [Google Scholar]
  9. Janković D and Hamlett TR (1990). New topologies from old via ideals. The American Mathematical Monthly, 97(4): 295-310. https://doi.org/10.1080/00029890.1990.11995593   [Google Scholar]
  10. Kuratowski K (1966). Topology. Academic Press, New York, USA.   [Google Scholar]
  11. Levine N (1963). Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70(1): 36-41. https://doi.org/10.1080/00029890.1963.11990039   [Google Scholar]
  12. Levine N (1970). Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19: 89-96. https://doi.org/10.1007/BF02843888   [Google Scholar]
  13. Njȧstad O (1965). On some classes of nearly open sets. Pacific Journal of Mathematics, 15(3): 961-970. https://doi.org/10.2140/pjm.1965.15.961   [Google Scholar]
  14. Tyagi BK and Chauhan H (2016). On generalized closed sets in generalized topological spaces. Cubo (Temuco), 18(1): 27-45. https://doi.org/10.4067/S0719-06462016000100003   [Google Scholar]
  15. Vaidyanathaswamy R (1944). The localisation theory in set-topology. Proceedings of the Indian Academy of Sciences-Section A, 20: 51-61. https://doi.org/10.1007/BF03048958   [Google Scholar]