International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN: 2313-626X

Volume 4, Issue 10  (October 2017), Pages:  40-45


Original Research Paper

Title: Polystyrene concrete as the structural thermal insulating materia

Author(s): Makhmud Kharun *, Alexander P. Svintsov

Affiliation(s):

Department of Civil Engineering, RUDN University, Moscow, Russia

https://doi.org/10.21833/ijaas.2017.010.007

Full Text - PDF          XML

Abstract:

Polystyrene concrete is an effective and relatively inexpensive insulating and structural material. Works of many specialists are devoted to develop the composition of polystyrene concrete mixture and also to study the physical and mechanical, thermal and technological properties. One of the major problems in production of polystyrene concrete mixture and in formation of its products is the exfoliation property due to the different weight of included components. To overcome this disadvantage, various reinforcing materials, plasticizing and air-entraining additives are added in the polystyrene concrete mixture. We developed a reinforced polystyrene concrete mixture which includes expanded polystyrene, crushed polystyrene, Portland cement type I, gypsum, gaize, chrysotile asbestos fiber, plasticizer aqueous solution of polyacrylamide, carboxymethyl cellulose, tartaric acid, saponified wood resin and water for mixing. The developed composition allows obtaining the polystyrene concrete mix in a simple method with a uniform distribution of granules in volume and with minimal shrinkage deformations, without exfoliation and without grasping within the predictable time that is sufficient for the transport from the production place to the construction site. Our study established that the compressive strengths of test samples (D200, D300, D400, D500, D600, D700, D800, D900, D1000, D1100 kg/m3) are in the range of 0.28 MPa to 4.22 MPa in average, and the thermal conductivity – 0.073 to 0.3 W/(m.°C) depending on the average density of polystyrene concrete. The developed polystyrene concrete mix can be used for the production of thermal insulating and structural thermal insulating material of buildings of various purposes. 

© 2017 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Polystyrene concrete, Density, Exfoliation, Strength, Thermal conductivity

Article History: Received 11 January 2017, Received in revised form 25 July 2017, Accepted 29 July 2017

Digital Object Identifier: 

https://doi.org/10.21833/ijaas.2017.010.007

Citation:

Kharun M and Svintsov AP (2017). Polystyrene concrete as the structural thermal insulating materia. International Journal of Advanced and Applied Sciences, 4(10): 40-45

Permanent Link:

http://www.science-gate.com/IJAAS/V4I10/Kharun.html


References (28)

  1. Ayse KAYA and Filiz KAR (2016). Properties of concrete containing waste expanded polystyrene and natural resin. Construction and Building Materials, 105: 572-578. https://doi.org/10.1016/j.conbuildmat.2015.12.177 
  2. Bhutta MAR, Ohama Y, and Tsuruta K (2011). Strength properties of polymer mortar panels using methyl methacrylate solution of waste expanded polystyrene as binder. Construction and Building Materials, 25(2): 779-784. https://doi.org/10.1016/j.conbuildmat.2010.07.006 
  3. Chen W, Hao H, Hughes D, Shi Y, Cui J, and Li ZX (2015). Static and dynamic mechanical properties of expanded polystyrene. Materials and Design, 69: 170-180. https://doi.org/10.1016/j.matdes.2014.12.024 
  4. Chernyshov VN, Golikov DO, and Chernyshov AV (2009). Метод и система оперативного контроля теплофизических характеристик строительных материалов [Technique and system for operation monitoring of thermo-physical properties of construction materials]. Transactions of Tambov State Technical University, 15(1): 85-91. Available online at: http://vestnik.tstu.ru/rus/t_15/pdf/15_1_012.pdf     
  5. Cui C, Huang Q, Li D, Quan C, and Li H (2016). Stress–strain relationship in axial compression for EPS concrete. Construction and Building Materials, 105: 377-383. https://doi.org/10.1016/j.conbuildmat.2015.12.159 
  6. Dvorkin LI, Dvorkin OL, Garnitsry YuV, and Kochkarev GV (2015). Методика проектирования состава полистиролбетона с заданными свойствами [The design method of polystyrene composition with the desired properties]. Concrete Technologies, 1-2: 42-46. Available online at: https://elibrary.ru/item.asp?id=23067683     
  7. Ershov MN and Vilman YA (2012). Технология облицовки 25-этажного монолитного железобетонного жилого дома. стройка глазами ученых [Technology of facing of the 25-storied cast-in-situ reinforced concrete residential building, Construction in the eyes of scientists]. Mechanization of Construction, 10: 24-31. Available online at: https://elibrary.ru/item.asp?id=18036356     
  8. Ferrándiz-Mas V and García-Alcocel E (2013). Durability of expanded polystyrene mortars. Construction and Building Materials, 46: 175-182. https://doi.org/10.1016/j.conbuildmat.2013.04.029 
  9. Ferrándiz-Mas V, Sarabia LA, Ortiz MC, Cheeseman CR, and García-Alcocel E (2016). Design of bespoke lightweight cement mortars containing waste expanded polystyrene by experimental statistical methods. Materials and Design, 89: 901-912. https://doi.org/10.1016/j.matdes.2015.10.044 
  10. Karpov DF, Pavlov MV, Koryukin SI, Mnushin NV, and Sorogin AS (2014). Устройство и способ комплексного определения основных теплофизических свойств строительных материалов [Apparatus for measuring thermophysical properties of construction materials]. Transactions of Tomsk State University of Architecture and Building, 3(44): 135-144. Available online at: https://elibrary.ru/item.asp?id=21613799 
  11. Kirichenko VA and Krylov BA (2013). Новая технология изготовления трехслойных панелей для наружных стен с высокими теплозащитными свойствами [New technology for manufacturing three-layer panels for external walls with high heat-protective properties]. Concrete Technologies, 6(83): 45-47. Available online at: https://elibrary.ru/item.asp?id=22517270 
  12. Kovylin AV and Fokin VM (2010). Методика определения коэффициентов теплопроводности, теплоусвоения, тепловой инерции, температуропроводности и объемной теплоемкости строительных и теплоизоляционных материалов методом неразрушающего контроля [Methodology of determination of heat conductivity, thermal absorptivity, coefficient of thermal inertia, thermal conductivity and volumetric heat capacity of construction and heat-insulating materials using the nondestructive method of testing]. Transactions of Volgograd State University of Architecture and Building, 19: 112-117. Available online at: https://elibrary.ru/item.asp?id=15164682 
  13. Leshchenko MV and Semko VA (2015). Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete. Magazine of Civil Engineering, 8(60): 44-55. https://doi.org/10.5862/MCE.60.6 
  14. Puzanov BA (2007). Армированная полистиролбетонная смесь, способ приготовления смеси, способ изготовления теплоизоляционных изделий, панель и блок (варианты) [Reinforced polystyrene concrete mixture, the method of producing the mixture, the ability to manufacturing the insulation products, panel and block (options)]. Patent of the Russian Federation No. 2309134. Available online at: http://www.freepatent.ru/patents/2309134 
  15. Rakhmanov VA (2009). Расчетный метод определения состава полистиролбетона с требуемой прочностью и минимальной плотностью [Calculation method of determination of polystyrene concrete compositon with required strength and minimal density]. Industrial and Civil Engineering, 7: 45-47. Available online at: https://elibrary.ru/item.asp?id=12567548     
  16. Rakhmanov VA (2011). Инновационная технология полистиролбетона с оптимальными свойствами [Innovative technology of polystyrene concrete with optimal properties]. Construction Materials, Equipment, Technologies of XXI Century, 9(152): 37-41. Available online at: http://stroymat21.ru/pdf/2011_09/37-41.pdf     
  17. Rakhmanov VA (2011). Энергосбережение в строительстве на основе применения инновационной технологии изготовления особо легких полистиролбетонов [Energy saving in construction through the application of innovative manufacturing technology of highly lightweight polystyrene concrete]. Industrial and Civil Engineering, 8: 61-62. Available online at: https://elibrary.ru/item.asp?id=16559168     
  18. Rakhmanov VA, Rossovsky VN, Kozlovsky AI, Deviatov VV, and Lanyuk AN (2000). Состав для изготовления полистиролбетонной смеси [Component for the production of polystyrene concrete mixture]. Patent of the Russian Federation No. 2150446. Available online at: http://www.freepatent.ru/patents/2150446     
  19. Remezova TI (2009). Технология возведения теплоэффективных керамзитобетонных монолитных наружных стен с вертикальными цилиндрическими каналами, заполненными полистиролбетоном [The technology of erecting the thermo-effective claydite concrete monolithic external walls with vertical cylyndrical canals filled with polystyrene-concrete]. Transactions of Tomsk State University of Architecture and Building, 3: 111-117. Available online at: https://elibrary.ru/item.asp?id=12938963     
  20. Sadrmomtazi A, Sobhani J, Mirgozar MA, and Najimi M (2012). Properties of multi-strength grade EPS concrete containing silica fume and rice husk ash. Construction and Building Materials, 35: 211-219. https://doi.org/10.1016/j.conbuildmat.2012.02.049 
  21. San-Antonio-Gonzalez A, Merino MDR, Arrebola CV, and Villoria-Saez P (2015). Lightweight material made with gypsum and extruded polystyrene waste with enhanced thermal behaviour. Construction and Building Materials, 93: 57-63. https://doi.org/10.1016/j.conbuildmat.2015.05.040 
  22. Sokov VN and Beglyarov AE (2015). Особенности формирования структуры бетона в гидротеплосиловом поле [Specific features of concrete structure formation in a hydro-heat-power field]. Scientific Review, 10(1): 139-142. Available online at: https://elibrary.ru/item.asp?id=24110112     
  23. Svintsov AP, Masri GKS, Kalashnikova LG, and Egorova NA (2016). Армированная гипсополистиролбетонная смесь [Reinforced gypsum-polystyrene concrete mixture]. Patent of the Russian Federation No. 2577348. Available online at: http://www.freepatent.ru/patents/2577348     
  24. Tang WC, Cui HZ, and Wu M (2014). Creep and creep recovery properties of polystyrene aggregate concrete. Construction and Building Materials, 51: 338-343. https://doi.org/10.1016/j.conbuildmat.2013.10.093 
  25. Urkhanova LA and Tsydypova AT (2014). Использование химических добавок, применяемых в дорожном строительстве для получения конструкционно-теплоизоляционного полистиролбетона [The use of chemical additives applied in road construction for structural heat-insulating polystyrene concrete]. Transactions of East-Siberian State University of Technology and Management, 2: 58-62. Available online at: https://elibrary.ru/item.asp?id=21531330 
  26. Wang R and Meyer C (2012). Performance of cement mortar made with recycled high impact polystyrene. Cement and Concrete Composites, 34(9): 975-981. https://doi.org/10.1016/j.cemconcomp.2012.06.014
  27. Yarmakovsky VN, Kostin AN, Fotin OV, and Kondyurin AE (2014). Теплоэффективные наружные стены зданий, возводимые с использованием монолитного полистиролбетона с высокопоризованной и пластифицированной матрицей [Thermal efficiency of the exterior walls of buildings, erected with the use of polystyrene concrete reinforced with the highly pored and plasticized matrix]. Housing Construction, 6: 18-23. Available online at: https://elibrary.ru/item.asp?id=21649241     
  28. Zhurba OV, Shchukina EG, N.V. Arkhincheeva NV, Zayakhanov ME, and Shchukin EA (2007). Конструкционно-теплоизоляционный полистиролбетон на основе регенерированного сырья [Structural insulating polystyrene concrete based on recycled raw materials]. Construction Materials, 3: 50-52. Available online at: https://elibrary.ru/item.asp?id=9474767