International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 7 (July 2023), Pages: 109-126

----------------------------------------------

 Original Research Paper

Predictive modeling of marine fish production in Brunei Darussalam's aquaculture sector: A comparative analysis of machine learning and statistical techniques

 Author(s): 

 Haziq Nazmi, Nor Zainah Siau, Arif Bramantoro *, Wida Susanty Suhaili

 Affiliation(s):

 School of Computing and Informatics, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2772-9427

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.07.013

 Abstract:

The aquaculture industry has witnessed significant global growth, offering opportunities for sustainable fish production. This research delves into the application of data analytics to develop an appropriate predictive model, utilizing diverse machine learning and statistical techniques, to forecast marine fish production within Brunei Darussalam's aquaculture sector. Employing a machine learning-based algorithm, the study aims to achieve enhanced prediction accuracy, thereby providing novel insights into fish production dynamics. The primary objective of this research is to equip the industry with alternative decision-making tools, leveraging predictive modeling, to identify trends and bolster strategic planning in farm activities, ultimately optimizing marine fish aquaculture production in Brunei. The study employs various time series and machine learning techniques to generate a precise predictive model, effectively capturing the inherent seasonal and trend patterns within the time-series data. To construct the model, the research incorporates notable algorithms, including autoregressive integrated moving average (ARIMA), long short-term memory (LSTM), linear regression, random forest, multilayer perceptron (MLP), and Prophet, in conjunction with correlation analysis. Evaluation of the model's performance and selection of the optimal forecasting model are based on mean absolute percentage error (MAPE) and root mean squared error (RMSE) metrics, ensuring a robust analysis of time series data. Notably, this pioneering research stands as the first-ever attempt to forecast marine fish production in Brunei Darussalam, setting a benchmark unmatched by any existing baseline studies conducted in other countries. The experiment's results reveal that straightforward machine learning and statistical techniques, such as ARIMA, linear regression, and random forest, outperform deep learning methods like MLP and LSTM when forecasting univariate time series datasets.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Aquaculture industry, Predictive modeling, Machine learning techniques, Marine fish production, Brunei Darussalam

 Article History: Received 13 December 2022, Received in revised form 18 April 2023, Accepted 19 May 2023

 Acknowledgment 

The authors would like to acknowledge the Department of Fisheries from the Ministry of Primary Resources and Tourism for providing the data to be used in this research. The authors would also like to thank UTB for the Centre grant to fund the whole aquaculture project under the Centre of Innovative Engineering.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Nazmi H, Siau NZ, Bramantoro A, and Suhaili WS (2023). Predictive modeling of marine fish production in Brunei Darussalam's aquaculture sector: A comparative analysis of machine learning and statistical techniques. International Journal of Advanced and Applied Sciences, 10(7): 109-126

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 Fig. 23 Fig. 24 Fig. 25 Fig. 26 Fig. 27 Fig. 28 Fig. 29 Fig. 30 Fig. 31 Fig. 32 Fig. 33 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 

----------------------------------------------   

 References (35)

  1. Abyaneh HZ (2014). Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science and Engineering, 12: 40. https://doi.org/10.1186/2052-336X-12-40   [Google Scholar] PMid:24456676 PMCid:PMC3906747
  2. Alraouji Y and Bramantoro A (2014). International call fraud detection systems and techniques. In the 6th International Conference on Management of Emergent Digital EcoSystems, Association for Computing Machinery, Buraidah, Saudi Arabia: 159-166. https://doi.org/10.1145/2668260.2668272   [Google Scholar]
  3. Arshad N, Samat N, and Lee LK (2022). Insight into the relation between nutritional benefits of aquaculture products and its consumption hazards: A global viewpoint. Frontiers in Marine Science, 9: 925463. https://doi.org/10.3389/fmars.2022.925463   [Google Scholar]
  4. Belyadi H and Haghighat A (2021). Introduction to machine learning and Python. In: Belyadi H and Haghighat A (Eds.), Machine learning guide for oil and gas using Python: 1-55. Gulf Professional Publishing, Houston, USA. https://doi.org/10.1016/B978-0-12-821929-4.00006-8   [Google Scholar]
  5. Bramantoro A, Suhaili WS, and Siau NZ (2022). Precision agriculture through weather forecasting. In the International Conference on Digital Transformation and Intelligence, IEEE, Kuching, Malaysia: 203-208. https://doi.org/10.1109/ICDI57181.2022.10007299   [Google Scholar]
  6. Castán-Lascorz MA, Jiménez-Herrera P, Troncoso A, and Asencio-Cortés G (2022). A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting. Information Sciences, 586: 611-627. https://doi.org/10.1016/j.ins.2021.12.001   [Google Scholar]
  7. Chen L, Yang X, Sun C, Wang Y, Xu D, and Zhou C (2020). Feed intake prediction model for group fish using the MEA-BP neural network in intensive aquaculture. Information Processing in Agriculture, 7(2): 261-271. https://doi.org/10.1016/j.inpa.2019.09.001   [Google Scholar]
  8. Das SK, Xiang TW, Noor NM, De M, Mazumder SK, and Goutham-Bharathi MP (2021). Temperature physiology in grouper (Epinephelinae: Serranidae) aquaculture: A brief review. Aquaculture Reports, 20: 100682. https://doi.org/10.1016/j.aqrep.2021.100682   [Google Scholar]
  9. Dubey AK, Kumar A, García-Díaz V, Sharma AK, and Kanhaiya K (2021). Study and analysis of SARIMA and LSTM in forecasting time series data. Sustainable Energy Technologies and Assessments, 47: 101474. https://doi.org/10.1016/j.seta.2021.101474   [Google Scholar]
  10. Elhassan A, Abu-Soud SM, Alghanim F, and Salameh W (2022). ILA4: Overcoming missing values in machine learning datasets: An inductive learning approach. Journal of King Saud University-Computer and Information Sciences, 34(7): 4284-4295. https://doi.org/10.1016/j.jksuci.2021.02.011   [Google Scholar]
  11. Elsayed S, Thyssens D, Rashed A, Jomaa HS, and Schmidt-Thieme L (2021). Do we really need deep learning models for time series forecasting? ArXiv Preprint ArXiv:2101.02118. https://doi.org/10.48550/arXiv.2101.02118   [Google Scholar]
  12. Estrebillo RA and Hiramoto H (2021). Brunei Darussalam aquaculture feasibility study for investment. ASEAN-Japan Centre: ASEAN Promotion Centre on Trade, Investment and Tourism, Tokyo, Japan.   [Google Scholar]
  13. Fan D, Sun H, Yao J, Zhang K, Yan X, and Sun Z (2021). Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy, 220: 119708. https://doi.org/10.1016/j.energy.2020.119708   [Google Scholar]
  14. Hana KM, Al Faraby S, and Bramantoro A (2020). Multi-label classification of Indonesian hate speech on Twitter using support vector machines. In the International Conference on Data Science and Its Applications, IEEE, Bandung, Indonesia: 1-7. https://doi.org/10.1109/ICoDSA50139.2020.9212992   [Google Scholar]
  15. Hu Z, Zhang Y, Zhao Y, Xie M, Zhong J, Tu Z, and Liu J (2019). A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. Sensors, 19(6): 1420. https://doi.org/10.3390/s19061420   [Google Scholar] PMid:30909468 PMCid:PMC6470961
  16. Hülya S and Abdallah TSY (2021). Aquaculture production of North African countries in the year 2030. Survey in Fisheries Sciences, 8(1): 107-118. https://doi.org/10.18331/SFS2021.8.1.8   [Google Scholar]
  17. Kane MJ, Price N, Scotch M, and Rabinowitz P (2014). Comparison of ARIMA and random forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics, 15: 276. https://doi.org/10.1186/1471-2105-15-276   [Google Scholar] PMid:25123979 PMCid:PMC4152592
  18. Khair U, Fahmi H, Al Hakim S, and Rahim R (2017). Forecasting error calculation with mean absolute deviation and mean absolute percentage error. Journal of Physics: Conference Series, 930: 012002. https://doi.org/10.1088/1742-6596/930/1/012002   [Google Scholar]
  19. Khotimah WN (2014). Aquaculture water quality prediction using smooth SVM. IPTEK Journal of Proceedings Series, 1: 342-345.   [Google Scholar]
  20. Marsal CJ, Jamaludin MH, Anwari AS, and Chowdhury AJK (2023). The potential of aquaculture development in Brunei Darussalam. Agriculture Reports, 2(1): 12-21.   [Google Scholar]
  21. Martínez F, Charte F, Frías MP, and Martínez-Rodríguez AM (2022). Strategies for time series forecasting with generalized regression neural networks. Neurocomputing, 491: 509-521. https://doi.org/10.1016/j.neucom.2021.12.028   [Google Scholar]
  22. Okeke-Ogbuafor N, Stead S, and Gray T (2021). Is inland aquaculture the panacea for Sierra Leone’s decline in marine fish stocks? Marine Policy, 132: 104663. https://doi.org/10.1016/j.marpol.2021.104663   [Google Scholar]
  23. Ouatahar L, Bannink A, Lanigan G, and Amon B (2021). Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems. Science of the Total Environment, 776: 145932. https://doi.org/10.1016/j.scitotenv.2021.145932   [Google Scholar]
  24. Pavlyshenko BM (2019). Machine-learning models for sales time series forecasting. Data, 4(1): 15. https://doi.org/10.3390/data4010015   [Google Scholar]
  25. Petropoulos F, Apiletti D, Assimakopoulos V, Babai MZ, Barrow DK, Taieb SB, Bergmeir C, Bessa RJ, Bijak J, Boylan JE, and Browell J (2022). Forecasting: Theory and practice. International Journal of Forecasting, 38(3): 705-871. https://doi.org/10.1016/j.ijforecast.2021.11.001   [Google Scholar]
  26. Pratondo A and Bramantoro A (2022). Classification of Zophobas morio and Tenebrio molitor using transfer learning. PeerJ Computer Science, 8: e884. https://doi.org/10.7717/peerj-cs.884   [Google Scholar] PMid:35494845 PMCid:PMC9044276
  27. Rahman LF, Marufuzzaman M, Alam L, Bari MA, Sumaila UR, and Sidek LM (2021). Developing an ensembled machine learning prediction model for marine fish and aquaculture production. Sustainability, 13(16): 9124. https://doi.org/10.3390/su13169124   [Google Scholar]
  28. Ramazan ÜNLÜ (2019). A comparative study of machine learning and deep learning for time series forecasting: A case study of choosing the best prediction model for turkey electricity production. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2): 635-646. https://doi.org/10.19113/sdufenbed.494396   [Google Scholar]
  29. Satrio CBA, Darmawan W, Nadia BU, and Hanafiah N (2021). Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science, 179: 524-532. https://doi.org/10.1016/j.procs.2021.01.036   [Google Scholar]
  30. Shen ML, Lee CF, Liu HH, Chang PY, and Yang CH (2021). Effective multinational trade forecasting using LSTM recurrent neural network. Expert Systems with Applications, 182: 115199. https://doi.org/10.1016/j.eswa.2021.115199   [Google Scholar]
  31. Siami-Namini S, Tavakoli N, and Namin AS (2018). A comparison of ARIMA and LSTM in forecasting time series. In the 17th IEEE International Conference on Machine Learning and Applications, IEEE, Orlando, USA: 1394-1401. https://doi.org/10.1109/ICMLA.2018.00227   [Google Scholar]
  32. Taud H and Mas JF (2018). Multilayer perceptron (MLP). In: Camacho Olmedo M, Paegelow M, Mas JF, and Escobar F (Eds.), Geomatic approaches for modeling land change scenarios: 451-455. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-60801-3_27   [Google Scholar]
  33. Yu P, Gao R, Zhang D, and Liu ZP (2021). Predicting coastal algal blooms with environmental factors by machine learning methods. Ecological Indicators, 123: 107334. https://doi.org/10.1016/j.ecolind.2020.107334   [Google Scholar]
  34. Zheng A (2015). Evaluating machine learning models. O'Reilly Media Inc., Sebastopol, USA.   [Google Scholar]
  35. Zhou T, Jiang Z, Liu X, and Tan K (2020). Research on the long-term and short-term forecasts of navigable river’s water-level fluctuation based on the adaptive multilayer perceptron. Journal of Hydrology, 591: 125285. https://doi.org/10.1016/j.jhydrol.2020.125285   [Google Scholar]