International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 6 (June 2023), Pages: 71-79

----------------------------------------------

 Original Research Paper

The exponentiated new exponential-gamma distribution: Properties and applications

 Author(s): 

 Lulah Alnaji 1, *, Amani S. Alghamdi 2

 Affiliation(s):

 1Department of Mathematics, University of Hafr Al Batin, Hafar Al-Batin, Saudi Arabia
 2Department of Statistics, King Abdulaziz University, Jeddah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-3367-192X

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.06.009

 Abstract:

We propose a novel lifetime model by extending the new exponential-gamma distribution to the exponentiated new exponential-gamma distribution. This extension allows for the derivation of a more flexible density function that combines the characteristics of the exponential and gamma distributions. We present various statistical properties of the newly proposed method, including the cumulative function, probability density function, moment-generating function, and moments. Additionally, we discuss the estimation of parameters using maximum likelihood. To compare the performance of our newly developed model with existing probability distributions (gamma, exponential, Lindley, generalized gamma, generalization of the generalized gamma, and new exponential-gamma distribution), we employ model selection criteria such as the Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICC), and the Bayesian Information Criterion (BIC). The application of these criteria to different models demonstrates that our proposed model outperforms the other six models across various datasets. For instance, in the first dataset, the AIC, AICC, and BIC values for our model are 366.975, 373.805, and 373.805, respectively, whereas the values for the other six models (exponential, Lindley, generalized gamma, generalization of the generalized gamma) range from 503.012 to 834.327. We conduct simulation studies to assess the efficiency of our proposed model. Furthermore, we apply the proposed method to three real data applications to further examine its effectiveness. It is important to note that the quantile function of the proposed model does not have a closed-form solution, requiring the computation of the quantile function through the Newton-Raphson iterative approach.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Exponentiated, Exponential, Gamma, Moment-generating function, ๐‘Ÿ๐‘กโ„Ž moment

 Article History: Received 9 December 2022, Received in revised form 6 April 2023, Accepted 8 April 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alnaji L and Alghamdi AS (2023). The exponentiated new exponential-gamma distribution: Properties and applications. International Journal of Advanced and Applied Sciences, 10(6): 71-79

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 

----------------------------------------------    

 References (27)

  1. Abdullahi I and Phaphan W (2022). Some properties of the new mixture of generalized gamma distribution. Lobachevskii Journal of Mathematics, 43(9): 2349-2359. https://doi.org/10.1134/S1995080222120022   [Google Scholar]
  2. Akaike H (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716–723. https://doi.org/10.1109/TAC.1974.1100705   [Google Scholar]
  3. Dahiya RC and Gurland J (1972). Goodness of fit tests for the gamma and exponential distributions. Technometrics, 14(3): 791-801. https://doi.org/10.1080/00401706.1972.10488967   [Google Scholar]
  4. DiDonato AR and Morris Jr AH (1986). Computation of the incomplete gamma function ratios and their inverse. ACM Transactions on Mathematical Software, 12(4): 377-393. https://doi.org/10.1145/22721.23109   [Google Scholar]
  5. Eghwerido JT, Nzei LC, and Zelibe SC (2022). The alpha power extended generalized exponential distribution. Journal of Statistics and Management Systems, 25(1): 187-210. https://doi.org/10.1080/09720510.2021.1872692   [Google Scholar]
  6. Ekhosuehi N and Opone F (2018). A three parameter generalized Lindley distribution: Properties and application. Statistica, 78(3): 233-249.   [Google Scholar]
  7. Ghitany ME (1998). On a recent generalization of gamma distribution. Communications in Statistics-Theory and Methods, 27(1): 223-233. https://doi.org/10.1080/03610929808832662   [Google Scholar]
  8. Gupta RC, Gupta PL, and Gupta RD (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and Methods, 27(4): 887-904. https://doi.org/10.1080/03610929808832134   [Google Scholar]
  9. Gupta RD and Kundu D (2001). Generalized exponential distribution: Different method of estimations. Journal of Statistical Computation and Simulation, 69(4): 315-337. https://doi.org/10.1080/00949650108812098   [Google Scholar]
  10. Hurvich CM and Tsai CL (1993). A corrected Akaike information criterion for vector autoregressive model selection. Journal of Time Series Analysis, 14(3): 271-279. https://doi.org/10.1111/j.1467-9892.1993.tb00144.x   [Google Scholar]
  11. Ieren TG, Kromtit FM, Agbor BU, Eraikhuemen IB, and Koleoso PO (2019). A power Gompertz distribution: Model, properties and application to bladder cancer data. Asian Research Journal of Mathematics, 15(2): 1-14. https://doi.org/10.9734/arjom/2019/v15i230146   [Google Scholar]
  12. Ijaz M, Asim SM, Farooq M, Khan SA, and Manzoor S (2020). A gull alpha power Weibull distribution with applications to real and simulated data. PLOS ONE, 15(6): e0233080. https://doi.org/10.1371/journal.pone.0233080   [Google Scholar] PMid:32530965 PMCid:PMC7292407
  13. Ikechukwu AF and Eghwerido JT (2022). Transmuted shifted exponential distribution and applications. Journal of Statistics and Management Systems, 25(4): 857-878. https://doi.org/10.1080/09720510.2021.1958517   [Google Scholar]
  14. Kayid M (2022). Applications of bladder cancer data using a modified log-logistic model. Applied Bionics and Biomechanics, 2022: 6600278. https://doi.org/10.1155/2022/6600278   [Google Scholar] PMid:35154377 PMCid:PMC8828332
  15. Khan MS, King R, and Hudson IL (2017). Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data. Communications in Statistics-Simulation and Computation, 46(6): 4377-4398. https://doi.org/10.1080/03610918.2015.1118503   [Google Scholar]
  16. Lee ET and Wang J (2003). Statistical methods for survival data analysis. Volume 476, John Wiley and Sons, Hoboken, USA. https://doi.org/10.1002/0471458546   [Google Scholar]
  17. Mubarak AES and Almetwally EM (2021). A new extension exponential distribution with applications of COVID-19 data. Financial and Business Research Journal, 22(1): 444-460. https://doi.org/10.21608/jsst.2021.51484.1178   [Google Scholar]
  18. Nadarajah S and Haghighi F (2011). An extension of the exponential distribution. Statistics, 45(6): 543-558. https://doi.org/10.1080/02331881003678678   [Google Scholar]
  19. Rama S and Kamlesh KS (2019). A generalization of generalized gamma distribution. International Journal of Computational and Theoretical Statistics, 6(1): 33-42. https://doi.org/10.12785/ijcts/060105   [Google Scholar]
  20. Schwarz G (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2): 461-464. https://doi.org/10.1214/aos/1176344136   [Google Scholar]
  21. Stacy EW (1962). A generalization of the gamma distribution. The Annals of Mathematical Statistics, 33(3): 1187-1192. https://doi.org/10.1214/aoms/1177704481   [Google Scholar]
  22. Susanto I, Iriawan N, and Kuswanto H (2022). On the Bayesian mixture of generalized linear models with gamma-distributed responses. Econometrics, 10(4): 32. https://doi.org/10.3390/econometrics10040032   [Google Scholar]
  23. Team RC (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.   [Google Scholar]
  24. Thom HC (1958). A note on the gamma distribution. Monthly Weather Review, 86(4): 117-122. https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2   [Google Scholar]
  25. Umar MA and Yahya WB (2021). A new poison-exponential-gamma distribution for modelling count data with applications. https://doi.org/10.2139/ssrn.3971601   [Google Scholar]
  26. Urama KU, Onyeagu SI, and Eze FC (2021). The transmuted Kumaraswamy pareto distribution. Earthline Journal of Mathematical Sciences, 6(2): 325-358. https://doi.org/10.34198/ejms.6221.325358   [Google Scholar]
  27. Yakubu OM, Mohammed YA, and Imam A (2022). A mixture of gamma-gamma, loglogistic-gamma distributions for the analysis of heterogenous survival data. International Journal of Mathematical Research, 11(1): 1-9. https://doi.org/10.18488/24.v11i1.2924   [Google Scholar]