International Journal of


EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
line decor

 Volume 10, Issue 6 (June 2023), Pages: 1-7


 Original Research Paper

Raspberry Pi-based wireless automatic assistance control system used by health center staff


 Rosa Perez-Siguas *, Eduardo Matta-Solis, Hernan Matta-Solis, Lourdes Matta-Zamudio


 TIC Research Center: Ehealth and eEducation, Instituto Peruano de Salud Familiar, Lima, Peru

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile:

 Digital Object Identifier:


The ongoing COVID-19 pandemic has severely strained healthcare systems worldwide, necessitating the implementation of various biosecurity measures by governments to mitigate further virus transmission. Consequently, researchers have increasingly focused on developing automation technologies to minimize direct human contact. However, within healthcare centers, some work assistance processes still rely on inefficient methods wherein each worker fills out an assistance form in the presence of a supervisor. This outdated approach not only leads to time wastage but also introduces errors in the records. To address this issue, we propose the development of a wireless automatic attendance control system utilizing a Raspberry Pi device. This system will be implemented for the staff of healthcare centers, enabling them to record their entry and exit times using either a mobile device or a fingerprint reader. The recorded data will be accessible through a user interface and securely stored in the cloud. By adopting this system, it will be possible to monitor and enforce labor discipline among workers automatically. Through the implementation of the attendance control system, we have observed its optimal functionality, achieving an efficiency rate of 97.16% in registering and storing the entry and exit times of all workers in the database. This level of efficiency is deemed acceptable, given the swift and secure nature of the process.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (

 Keywords: COVID-19 pandemic, Biosecurity measures, Automation technologies, Attendance control system, Raspberry Pi device

 Article History: Received 25 July 2022, Received in revised form 12 February 2023, Accepted 2 April 2023


No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


 Perez-Siguas R, Matta-Solis E, Matta-Solis H, and Matta-Zamudio L (2023). Raspberry Pi-based wireless automatic assistance control system used by health center staff. International Journal of Advanced and Applied Sciences, 10(6): 1-7

 Permanent Link to this page


 Fig. 1 Fig. 2 Fig. 3 


 Table 1 Table 2 Table 3 Table 4 Table 5 


 References (16)

  1. Ahmed FY, Aik KLT, Radzi AS, and Salleh MD (2019). Develop attendance management system with feedback and complaint management function. In the 7th Conference on Systems, Process and Control, IEEE, Melaka, Malaysia: 248-252.   [Google Scholar] PMid:30656658
  2. Bastidas Gavilanes JR (2019). Registro de asistencia de alumnos por medio de reconocimiento facial utilizando visión artificial. M.Sc. Thesis, Universidad Técnica de Ambato, Ambato, Ecuador.   [Google Scholar]
  3. Cedeño NJV, Cuenca MFV, Mojica ÁAD, and Portillo MT (2020). Afrontamiento del COVID-19: Estrés, miedo, ansiedad y depresión. Enfermería Investiga, 5(3): 63-70.   [Google Scholar]
  4. Chen Y and Li X (2021). Research and development of attendance management system based on face recognition and RFID technology. In the International Conference on Information Communication and Software Engineering, IEEE, Chengdu, China: 112-116.   [Google Scholar]
  5. Chicaiza Moncayo KDR and Cordero Cerezo GA (2021). Desarrollo sistema Web para monitoreo de temperatura corporal con dispensador automático gel antibacterial para prevenir contagios COVID-19 locales comerciales en Guayaquil mediante el uso de Arduino. Bachelor's Thesis, Universidad de Guayaquil, Guayaquil, Ecuador.   [Google Scholar]
  6. De La Espriella-Babiloni A (2019). Comparación entre tecnologías emergentes y tradicionales en automatización e instrumentación industrial. Sostenibilidad, Tecnología y Humanismo, 10(1): 70-77.   [Google Scholar]
  7. Hapani S, Prabhu N, Parakhiya N, and Paghdal M (2018). Automated attendance system using image processing. In the 4th International Conference on Computing Communication Control and Automation, IEEE, Pune, India: 1-5.   [Google Scholar]
  8. Hegade PC, Toney G, Markal NB, and Sangolli AP (2021). Non-contact temperature detection, face mask detection, and attendance updation system using facial recognition technique. In the International Conference on Electronics, Computing and Communication Technologies, IEEE, Bangalore, India: 1-4.   [Google Scholar]
  9. Maguiña Vargas C (2020). Reflexiones sobre el COVID-19, el colegio médico del Perú y la salud pública. Acta Médica Peruana, 37(1): 8-10.   [Google Scholar]
  10. Maguiña Vargas C and Palacios-Celi M (2020). The management of COVID-19: A dilemma between science and therapeutic art. Acta Medica Peruana, 37(2): 228-230.   [Google Scholar]
  11. Oo SB, Oo NHM, Chainan S, Thongniam A, and Chongdarakul W (2018). Cloud-based web application with NFC for employee attendance management system. In the International Conference on Digital Arts, Media and Technology (ICDAMT), IEEE, Phayao, Thailand: 162-167.   [Google Scholar]
  12. Perez MDR, Fuertes AG, and Farronan EVR (2021). Challenges of human talent management in times of the COVID 19 pandemic. Revista Universidad Y Sociedad, 13(6):232-236.   [Google Scholar]
  13. Quiroz Carrillo CG, Pareja Cruz A, Valencia Ayala E, Enriquez Valencia YP, De Leon Delgado J, and Aguilar Ramirez P (2020). Un nuevo coronavirus, una nueva enfermedad: COVID-19. Horizonte Médico (Lima), 20(2): e1208.   [Google Scholar]
  14. Román F, Forés A, Calandri I, Gautreaux R, Antúnez A, Ordehi D, and Allegri R (2020). Resiliencia de docentes en distanciamiento social preventivo obligatorio durante la pandemia de COVID-19. Journal of Neuroeducation, 1(1): 76-87.   [Google Scholar]
  15. Shereen MA, Khan S, Kazmi A, Bashir N, and Siddique R (2020). COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24: 91-98.   [Google Scholar] PMid:32257431 PMCid:PMC7113610
  16. Sudibyo RW, Funabiki N, and Kao WC (2018). A proposal of hardware channel bonding for IEEE802. 11N wireless network using Raspberry PI. In the IEEE International Conference on Consumer Electronics-Taiwan, IEEE, Taichung, Taiwan: 1-2.   [Google Scholar]