International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 5 (May 2023), Pages: 195-202

----------------------------------------------

 Original Research Paper

Implementation and analysis of symmetrical signals in the sequency domain

 Author(s): 

 Dur-e-Jabeen 1, *, M. Ghazanfar Monir 2, M. Rafiullah 3, Faiza Waqqas 1, Habib Shaukat 1

 Affiliation(s):

 1Department of Electronic Engineering, Sir Syed University of Engineering and Technology, Karachi, Pakistan
 2Department of Electronic Engineering, Muhammad Ali Jinnah University, Karachi, Pakistan
 3Department of Mathematics, COMSATS University Islamabad, Lahore, Pakistan

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6743-2911

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.05.023

 Abstract:

Every transform has unique attributes and traits that are crucial to reducing computing costs and offering simple solutions. Many different frequency domain transformations, for instance, have properties that can be used in a variety of signal processing applications and analyses. Some of the Complex Hadamard Transform's variants' sequencies can be compared to those of the Discrete Fourier Transforms. It is proven the characteristics of the Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform symmetry. These qualities are crucial for signal analysis and image processing. Due to duplicate spectra across the origin, it reduces computational complexity, makes an analytical analysis for symmetric signals simpler, and needs less storage. Its analysis shows that the Discrete Fourier Transform and this Complex Hadamard Transform version exhibit similar symmetry tendencies. By using elementary signals in the time domain to connect the positive and negative sequencies with their associated phasor conceptions, sequency domain spectra are used to highlight these properties. As a result of image representation, relative spectra are represented in related domains. Transform can be used to extract and analyze various aspects from a wide range of medical images.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Symmetry properties, Real values, Imaginary values, Complex axis, Phasor rotations

 Article History: Received 23 October 2022, Received in revised form 23 February 2023, Accepted 29 March 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Dur-e-Jabeen, Monir MG, Rafiullah M, Waqqas F, and Shaukat H (2023). Implementation and analysis of symmetrical signals in the sequency domain. International Journal of Advanced and Applied Sciences, 10(5): 195-202

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 

 Tables

 Table 1  

----------------------------------------------    

 References (23)

  1. Asli BHS and Flusser J (2017). New discrete orthogonal moments for signal analysis. Signal Processing, 141: 57-73. https://doi.org/10.1016/j.sigpro.2017.05.023   [Google Scholar]
  2. Aung A (2009). Sequency-ordered complex Hadamard transforms and their applications to communications and signal processing. Ph.D. Dissertation, Nanyang Technological University, Singapore, Singapore.   [Google Scholar]
  3. Aung A, Ng BP, and Rahardja S (2008). Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications. IEEE Transactions on Signal Processing, 56(8): 3562-3571. https://doi.org/10.1109/TSP.2008.923195   [Google Scholar]
  4. Aung A, Ng BP, and Rahardja S (2009). Conjugate symmetric sequency-ordered complex Hadamard transform. IEEE Transactions on Signal Processing, 57(7): 2582-2593. https://doi.org/10.1109/TSP.2009.2017572   [Google Scholar]
  5. Bahrami S and Naderi M (2014). Encryption of video main frames in the field of DCT transform using A5/1 and W7 stream encryption algorithms. Arabian Journal for Science and Engineering, 39(5): 4077-4088. https://doi.org/10.1007/s13369-014-1077-8   [Google Scholar]
  6. Dur-e-Jabeen and Monir G (2016). Two‐dimensional spatiochromatic signal processing using concept of phasors in sequency domain. Electronics Letters, 52(11): 968-970. https://doi.org/10.1049/el.2016.0059   [Google Scholar]
  7. Dur-e-Jabeen, Kumar K, Haseeb A, and Faizan M (2017). Spectral analysis of chirp and sinusoidal signals in complex domain. In the 10th International Conference on Electrical and Electronics Engineering, IEEE, Bursa, Turkey: 1137-1140.   [Google Scholar]
  8. Dur-e-Jabeen, Monir G, and Azim F (2016). Sequency domain signal processing using complex Hadamard transform. Circuits, Systems, and Signal Processing, 35(5): 1783-1793. https://doi.org/10.1007/s00034-015-0138-x   [Google Scholar]
  9. Kyochi S and Tanaka Y (2014). General factorization of conjugate-symmetric Hadamard transforms. IEEE Transactions on Signal Processing, 62(13): 3379-3392. https://doi.org/10.1109/TSP.2014.2326620   [Google Scholar]
  10. Li X, Hu G, Zhu J, Zuo W, Wang M, and Zhang L (2020). Learning symmetry consistent deep CNNs for face completion. IEEE Transactions on Image Processing, 29: 7641-7655. https://doi.org/10.1109/TIP.2020.3005241   [Google Scholar]
  11. Mahmmod BM, Ramli ARB, Abdulhussain SH, Al‐Haddad SAR, and Jassim WA (2018). Signal compression and enhancement using a new orthogonal‐polynomial‐based discrete transform. IET Signal Processing, 12(1): 129-142. https://doi.org/10.1049/iet-spr.2016.0449   [Google Scholar]
  12. McCabe A, Caelli T, West G, and Reeves A (2000). Theory of spatiochromatic image encoding and feature extraction. Journal of the Optical Society of America A, 17(10): 1744-1754. https://doi.org/10.1364/JOSAA.17.001744   [Google Scholar] PMid:11028522
  13. Pei SC, Wen CC, and Ding JJ (2014). Conjugate symmetric discrete orthogonal transform. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(4): 284-288. https://doi.org/10.1109/TCSII.2014.2305011   [Google Scholar]
  14. Proakis JG (2007). Digital signal processing: Principles, algorithms, and applications. 4th Edition, Pearson Education India, Delhi, India.   [Google Scholar]
  15. Qiao YL, Gao L, Liu SZ, Liu L, Lai YK, and Chen X (2022). Learning-based intrinsic reflectional symmetry detection. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2022.3172361   [Google Scholar] PMid:35522628
  16. Rahardja S and Falkowski BJ (1999). Family of unified complex Hadamard transforms. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(8): 1094-1100. https://doi.org/10.1109/82.782059   [Google Scholar]
  17. Rehman MU and Mehmood A (2018). Approximating structured singular values for discrete Fourier transformation matrices. International Journal of Advanced and Applied Sciences, 5(12): 119-125. https://doi.org/10.21833/ijaas.2018.12.014   [Google Scholar]
  18. Rosell-Tarragó G and Díaz-Guilera A (2021). Quasi-symmetries in complex networks: A dynamical model approach. Journal of Complex Networks, 9(3): cnab025. https://doi.org/10.1093/comnet/cnab025   [Google Scholar]
  19. Shukla D and Sharma M (2018). A new approach for scene-based digital video watermarking using discrete wavelet transforms. International Journal of Advanced and Applied Sciences, 5(2): 148-160. https://doi.org/10.21833/ijaas.2018.02.022   [Google Scholar]
  20. Sreedharan JK, Turowski K, and Szpankowski W (2020). Revisiting parameter estimation in biological networks: Influence of symmetries. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(3): 836-849. https://doi.org/10.1109/TCBB.2020.2980260   [Google Scholar] PMid:32175871 PMCid:PMC8555700
  21. Tian C, Zhang Q, Sun G, Song Z, and Li S (2018). FFT consolidated sparse and collaborative representation for image classification. Arabian Journal for Science and Engineering, 43(2): 741-758. https://doi.org/10.1007/s13369-017-2696-7   [Google Scholar]
  22. Usman SM, Latif S, and Beg A (2020). Principle components analysis for seizures prediction using wavelet transform. International Journal of Advanced and Applied Sciences, 6(3): 50-55. https://doi.org/10.21833/ijaas.2019.03.008   [Google Scholar]
  23. Wu J, Wang L, Yang G, Senhadji L, Luo L, and Shu H (2012). Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(6): 1321-1334. https://doi.org/10.1109/TCSI.2011.2173386   [Google Scholar]