International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 4 (April 2023), Pages: 114-120

----------------------------------------------

 Original Research Paper

 Comparison of machine learning techniques for rainfall-runoff modeling in Punpun river basin, India

 Author(s): 

 Shashi Shankar Ojha *, Vivekanand Singh, Thendiyath Roshni

 Affiliation(s):

 Department of Civil Engineering, National Institute of Technology, Patna, Bihar 800005, India

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-3289-1018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.04.014

 Abstract:

Machine learning (ML) models have emerged as potential methods for rainfall-runoff modeling in recent decades. The appeal of ML models for such applications is owing to their competitive performance when compared to alternative approaches, ease of application, and lack of rigorous distributional assumptions, among other attributes. Despite the promising results, most ML models for rainfall-runoff applications have been limited to areas where rainfall is the primary source of runoff. The potential of Random Forest (RF), a popular ML method, for rainfall-runoff prediction in the Punpun river basin, India, is investigated in this paper. The correlation coefficient (R), Root mean squared error (RMSE), Mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE) are four statistical metrics used to compare RF performance to that of alternative ML models. Model evaluation metrics indicate that RF outperforms all others. In the RF model, we got the best NSE score of 0.795. These findings offer new perspectives on how to apply RF-based rainfall-runoff modeling effectively.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Machine learning, Random forest, Rainfall-runoff modeling

 Article History: Received 22 June 2022, Received in revised form 13 October 2022, Accepted 18 January 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Ojha SS, Singh V, and Roshni T (2023). Comparison of machine learning techniques for rainfall-runoff modeling in Punpun river basin, India. International Journal of Advanced and Applied Sciences, 10(4): 114-120

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2

 Tables

 Table 1 Table 2 Table 3 

----------------------------------------------    

 References (29)

  1. Adnan RM, Petroselli A, Heddam S, Santos CAG, and Kisi O (2021). Comparison of different methodologies for rainfall–runoff modeling: Machine learning vs conceptual approach. Natural Hazards, 105(3): 2987-3011. https://doi.org/10.1007/s11069-020-04438-2   [Google Scholar]
  2. Al-Juboori AM (2022). Solving complex rainfall-runoff processes in semi-arid regions using hybrid heuristic model. Water Resources Management, 36(2): 717-728. https://doi.org/10.1007/s11269-021-03053-5   [Google Scholar]
  3. Basha CZ, Bhavana N, Bhavya P, and Sowmya V (2020). Rainfall prediction using machine learning and deep learning techniques. In the International Conference on Electronics and Sustainable Communication Systems (ICESC), IEEE, Coimbatore, India: 92-97. https://doi.org/10.1109/ICESC48915.2020.9155896   [Google Scholar]
  4. Breiman L (2001). Random forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324   [Google Scholar]
  5. Cramer S, Kampouridis M, Freitas AA, and Alexandridis AK (2017). An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Systems with Applications, 85: 169-181. https://doi.org/10.1016/j.eswa.2017.05.029   [Google Scholar]
  6. Feng P, Wang B, Li Liu D, and Yu Q (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agricultural Systems, 173: 303-316. https://doi.org/10.1016/j.agsy.2019.03.015   [Google Scholar]
  7. Hosseini SM and Mahjouri N (2016). Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling. Applied Soft Computing, 38: 329-345. https://doi.org/10.1016/j.asoc.2015.09.049   [Google Scholar]
  8. Janizadeh S, Avand M, Jaafari A, Phong TV, Bayat M, Ahmadisharaf E, and Lee S (2019). Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustainability, 11(19): 5426. https://doi.org/10.3390/su11195426   [Google Scholar]
  9. Kumar A, Kumar P, and Singh VK (2019). Evaluating different machine learning models for runoff and suspended sediment simulation. Water Resources Management, 33(3): 1217-1231. https://doi.org/10.1007/s11269-018-2178-z   [Google Scholar]
  10. Maulud D and Abdulazeez AM (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4): 140-147. https://doi.org/10.38094/jastt1457   [Google Scholar]
  11. Mohammadi B (2021). A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7: 98. https://doi.org/10.1007/s40899-021-00584-y   [Google Scholar]
  12. Mosavi A, Ozturk P, and Chau KW (2018). Flood prediction using machine learning models: Literature review. Water, 10(11): 1536. https://doi.org/10.3390/w10111536   [Google Scholar]
  13. Niu WJ, Feng ZK, Feng BF, Min YW, Cheng CT, and Zhou JZ (2019). Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir. Water, 11(1): 88. https://doi.org/10.3390/w11010088   [Google Scholar]
  14. Nourani V and Komasi M (2013). A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process. Journal of Hydrology, 490: 41-55. https://doi.org/10.1016/j.jhydrol.2013.03.024   [Google Scholar]
  15. Nourani V, Davanlou Tajbakhsh A, Molajou A, and Gokcekus H (2019). Hybrid wavelet-M5 model tree for rainfall-runoff modeling. Journal of Hydrologic Engineering, 24(5): 04019012. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001777   [Google Scholar]
  16. Rhee J and Im J (2017). Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agricultural and Forest Meteorology, 237: 105-122. https://doi.org/10.1016/j.agrformet.2017.02.011   [Google Scholar]
  17. Roushangar K, Alizadeh F, and Nourani V (2018). Improving capability of conceptual modeling of watershed rainfall–runoff using hybrid wavelet-extreme learning machine approach. Journal of Hydroinformatics, 20(1): 69-87. https://doi.org/10.2166/hydro.2017.011   [Google Scholar]
  18. Sedighi F, Vafakhah M, and Javadi MR (2016). Rainfall–runoff modeling using support vector machine in snow-affected watershed. Arabian Journal for Science and Engineering, 41(10): 4065-4076. https://doi.org/10.1007/s13369-016-2095-5   [Google Scholar]
  19. Shamshirband S, Hashemi S, Salimi H, Samadianfard S, Asadi E, Shadkani S, and Chau KW (2020). Predicting standardized streamflow index for hydrological drought using machine learning models. Engineering Applications of Computational Fluid Mechanics, 14(1): 339-350. https://doi.org/10.1080/19942060.2020.1715844   [Google Scholar]
  20. Sharda VN, Prasher SO, Patel RM, Ojasvi PR, and Prakash C (2008). Performance of multivariate adaptive regression splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d'écoulement au sein de micro-bassins versants Himalayens d'altitudes intermédiaires avec peu de données. Hydrological Sciences Journal, 53(6): 1165-1175. https://doi.org/10.1623/hysj.53.6.1165   [Google Scholar]
  21. Shariff NSM and Duzan HMB (2018). An application of proposed ridge regression methods to real data problem. International Journal of Engineering and Technology, 7(4.30): 106-108. https://doi.org/10.14419/ijet.v7i4.30.22061   [Google Scholar]
  22. Srinivasulu S and Jain A (2006). A comparative analysis of training methods for artificial neural network rainfall–runoff models. Applied Soft Computing, 6(3): 295-306. https://doi.org/10.1016/j.asoc.2005.02.002   [Google Scholar]
  23. Sudheer KP, Gosain AK, and Ramasastri KS (2002). A data‐driven algorithm for constructing artificial neural network rainfall‐runoff models. Hydrological Processes, 16(6): 1325-1330. https://doi.org/10.1002/hyp.554   [Google Scholar]
  24. Talei A, Chua LHC, and Wong TS (2010). Evaluation of rainfall and discharge inputs used by adaptive network-based fuzzy inference systems (ANFIS) in rainfall–runoff modeling. Journal of Hydrology, 391(3-4): 248-262. https://doi.org/10.1016/j.jhydrol.2010.07.023   [Google Scholar]
  25. Tașar B, Unes F, and Varcin H (2019). Prediction of the rainfall–runoff relationship using neurofuzzy and support vector machines. In the 2019 Air and Water–Components of the Environment Conference Proceedings, Wessex Institute, Cluj-Napoca, Romania: 237-246. https://doi.org/10.24193/AWC2019_24   [Google Scholar]
  26. Tibshirani R (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society: Series B (Methodological), 58(1): 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x   [Google Scholar]
  27. Vapnik V (1999). The nature of statistical learning theory. Springer Science and Business Media, Berlin, Germany. https://doi.org/10.1007/978-1-4757-3264-1_8   [Google Scholar]
  28. Villarin MC and Rodriguez-Galiano VF (2019). Machine learning for modeling water demand. Journal of Water Resources Planning and Management, 145(5): 04019017. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001067   [Google Scholar]
  29. Xenochristou M, Hutton C, Hofman J, and Kapelan Z (2021). Short-term forecasting of household water demand in the UK using an interpretable machine learning approach. Journal of Water Resources Planning and Management, 147(4): 04021004. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001325   [Google Scholar]