International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 11 (November 2023), Pages: 190-201

----------------------------------------------

 Original Research Paper

An elementary study of the industrialized preparation of 1,1-difluoro acetone: Starting material of fluoropyrazole succinate dehydrogenase inhibitor

 Author(s): 

 WeiKang Lin 1, *, Puivun Chai 1, Lei Cao 2, Le Kang 3, Xiaoming Jiang 4

 Affiliation(s):

 1Department of Chemical and Petroleum Engineering, Faculty of Engineering Technology and Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
 2Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, 223800 Suqian, Jiangsu, China
 3School of Pharmacy, Henan University of Chinese Medicine, 450046 Zhengzhou, Henan, China
 4Department of Research and Development, Zhejiang Yuntao Biotechnology Co., Ltd., 312369 Shaoxiang, Zhejiang, China

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2960-6447

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2023.11.024

 Abstract

In recent years, the development and increasing market presence of fungicides incorporating a fluoropyrazole ring, recognized as succinate dehydrogenase inhibitor fungicides, has gained momentum. The fluoropyrazole ring stands as the foundational nucleus of these fungicides, with its production cost being a pivotal concern for chemical industries. Significantly, the cost of 1,1-difluoro acetone largely influences this manufacturing cost. A cost-effective availability of 1,1-difluoro acetone could revolutionize the current methodologies for fluoropyrazole ring synthesis, primarily due to its enhanced safety and environmental sustainability. This study introduces an industrialized production methodology for 1,1-difluoro acetone, underlining its economic efficiency. Originating from ethyl acetoacetate, dibromide is synthesized in n-heptanol through the Oxone/KBr system. Following a fluorine-bromine exchange reaction with potassium fluoride, difluoride is obtained. Subsequent hydrolysis of the difluoride using 50% sulfuric acid leads to the formation of 1,1-difluoro acetone. Notably, while bromination and fluorination stages employ tubular reactors, hydrolysis, and decarboxylation are achieved in standard reactors. Optimal bromination conditions were identified as 2.2 equivalent bromination reagent, temperature>60℃, and atmospheric pressure. The fluorination conditions mirror those of bromination, with the fluorinating agent being 2.2 equivalent and a reaction temperature of 150℃. For hydrolysis and decarboxylation, 50% sulfuric acid concentration at 90℃ was optimal, yielding a crude product with a 99.60% G.C. content and a 91.25% efficiency. The outlined production process of 1,1-difluoro acetone boasts remarkable cost efficiency and procedural simplicity, positioning it favorably for industrial applications. This innovative approach promises significant manufacturing cost reductions, endowing fungicides with a fluoropyrazole ring a competitive edge in the market. Such advancements are anticipated to foster market expansion, ultimately benefiting agricultural practitioners.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Bromination, Fluorination, β-Ketoacid esters, 1,1-difluoro acetone, Succinate dehydrogenase inhibitor

 Article history

 Received 24 June 2023, Received in revised form 19 October 2023, Accepted 7 November 2023

 Acknowledgment 

We thank Mr. Mingchun Wang, chairman of Suqian Keylab Biochemical Co., Ltd., for his financial support.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Lin W, Chai P, Cao L, Kang L, and Jiang X (2023). An elementary study of the industrialized preparation of 1,1-difluoro acetone: Starting material of fluoropyrazole succinate dehydrogenase inhibitor. International Journal of Advanced and Applied Sciences, 10(11): 190-201

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 

 Tables

 No Table

----------------------------------------------   

 References (34)

  1. Aufiero M and Gilmour R (2018). Informing molecular design by stereoelectronic theory: The fluorine gauche effect in catalysis. Accounts of Chemical Research, 51(7): 1701-1710. https://doi.org/10.1021/acs.accounts.8b00192   [Google Scholar] PMid:29894155
  2. Azeez S, Chaudhary P, Sureshbabu P, Sabiah S, and Kandasamy J (2018). Potassium persulfate‐promoted N‐nitrosation of secondary and tertiary amines with nitromethane under mild conditions. Asian Journal of Organic Chemistry, 7(10): 2113-2119. https://doi.org/10.1002/ajoc.201800437   [Google Scholar]
  3. Borges RBM, Nonato RC, Fujimoto TM, Bricio BGM, Rochetto Doubek UL, and Tomaz E (2021). Toluene degradation by heterogeneous photocatalysis assisted with ozone in a tubular reactor: Analysis over the reactor length. Environmental Science and Pollution Research, 28: 24216-24223. https://doi.org/10.1007/s11356-021-13574-6   [Google Scholar] PMid:33754267
  4. Budde-Rodriguez S, Pasche JS, Shahoveisi F, Mallik I, and Gudmestad NC (2022). Aggressiveness of small-spored Alternaria spp. and their sensitivity to succinate dehydrogenase inhibitor fungicides. Plant Disease, 106(7): 1919-1928. https://doi.org/10.1094/PDIS-10-21-2292-RE   [Google Scholar] PMid:34978878
  5. Buß O, Voss M, Delavault A, Gorenflo P, Syldatk C, Bornscheuer U, and Rudat J (2018). β-phenylalanine ester synthesis from stable β-keto ester substrate using engineered ω-transaminases. Molecules, 23(5): 1211. https://doi.org/10.3390/molecules23051211   [Google Scholar] PMid:29783679 PMCid:PMC6100204
  6. Camiletti BX, Lichtemberg PS, Paredes JA, Carraro TA, Velascos J, and Michailides TJ (2022). Characterization, pathogenicity, and fungicide sensitivity of Alternaria isolates associated with preharvest fruit drop in California citrus. Fungal Biology, 126(4): 277-289. https://doi.org/10.1016/j.funbio.2022.02.003   [Google Scholar] PMid:35314059
  7. Chen X, Fan K, Liu Y, Li Y, Liu X, Feng W, and Wang X (2022). Recent advances in fluorinated graphene from synthesis to applications: Critical review on functional chemistry and structure engineering. Advanced Materials, 34(1): 2101665. https://doi.org/10.1002/adma.202101665   [Google Scholar] PMid:34658081
  8. Deaton DN, Guo Y, Hancock AP, Schulte C, Shearer BG, Smith ED, Stewart EL, and Thomson SA (2021). 1,3 1, 3 di-substituted cyclobutane or azetidine derivatives as hematopoietic prostaglandin D synthase inhibitors. U.S. Patent No. 11,053,234, Patent and Trademark Office, Washington D.C., USA.   [Google Scholar]
  9. Franco M, Chairez I, Poznyak T, and Poznyak A (2012). BTEX decomposition by ozone in gaseous phase. Journal of Environmental Management, 95: S55-S60. https://doi.org/10.1016/j.jenvman.2011.09.009   [Google Scholar] PMid:22030087
  10. Ghasempour L, Asghari S, Tajbakhsh M, and Mohseni M (2021). Preparation of new spiropyrazole, pyrazole and hydantoin derivatives and investigation of their antioxidant and antibacterial activities. Chemistry and Biodiversity, 18(9): e2100197. https://doi.org/10.1002/cbdv.202100197   [Google Scholar] PMid:34272925
  11. Golovanov AA, Odin IS, Gusev DM, Vologzhanina AV, Sosnin IM, and Grabovskiy SA (2021). Reactivity of cross-conjugated enynones in cyclocondensations with hydrazines: Synthesis of pyrazoles and pyrazolines. The Journal of Organic Chemistry, 86(10): 7229-7241. https://doi.org/10.1021/acs.joc.1c00569   [Google Scholar] PMid:33955756
  12. Han FZ, Li LL, Jia LN, and Hu XP (2022). Catalyst-free nitration of the aliphatic CH bonds of tertiary β-keto esters with tert-butyl nitrite: Access to α-quaternary α-amino acid precursors. Tetrahedron Letters, 99: 153844. https://doi.org/10.1016/j.tetlet.2022.153844   [Google Scholar]
  13. Hsu SC, Don TM, and Chiu WY (2002). Free radical degradation of chitosan with potassium persulfate. Polymer Degradation and Stability, 75(1): 73-83. https://doi.org/10.1016/S0141-3910(01)00205-1   [Google Scholar]
  14. Körbahti BK and Tanyolac A (2009). Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor. Journal of Hazardous Materials, 170(2-3): 771-778. https://doi.org/10.1016/j.jhazmat.2009.05.032   [Google Scholar] PMid:19524357
  15. Li J, Guo R, Ma Q, Nengzi LC, and Cheng X (2019). Efficient removal of organic contaminant via activation of potassium persulfate by γ-Fe2O3/α-MnO2 nanocomposite. Separation and Purification Technology, 227: 115669. https://doi.org/10.1016/j.seppur.2019.06.007   [Google Scholar]
  16. Li X, Gao X, Hu S, Hao X, Li G, Chen Y, Liu Z, Li Y, Miao J, Gu B, and Liu X (2022). Resistance to pydiflumetofen in Botrytis cinerea: Risk assessment and detection of point mutations in SDH genes that confer resistance. Pest Management Science, 78(4): 1448-1456. https://doi.org/10.1002/ps.6762   [Google Scholar] PMid:34927349
  17. Lin HR (2001). Solution polymerization of acrylamide using potassium persulfate as an initiator: Kinetic studies, temperature and pH dependence. European Polymer Journal, 37(7): 1507-1510. https://doi.org/10.1016/S0014-3057(00)00261-5   [Google Scholar]
  18. Lindén M, Schunk SA, and Schüth F (1998). In situ X-ray diffraction study of the initial stages of formation of MCM-41 in a tubular reactor. Angewandte Chemie International Edition, 37(6): 821-823. https://doi.org/10.1002/(SICI)1521-3773(19980403)37:6<821::AID-ANIE821>3.0.CO;2-I   [Google Scholar]
  19. Loui HJ and Schneider C (2022). Cooperative palladium/Brønsted acid catalysis toward the highly enantioselective allenylation of β-keto esters. Organic Letters, 24(7): 1496-1501. https://doi.org/10.1021/acs.orglett.2c00179   [Google Scholar] PMid:35171616
  20. Mani P, Kim Y, Lakhera SK, Neppolian B, and Choi H (2021). Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon. Chemosphere, 277: 130225. https://doi.org/10.1016/j.chemosphere.2021.130225   [Google Scholar] PMid:34384167
  21. Marival-Hodebar L, Tordeux M, Wakselman C, Dias M, Mornet R, and Laloue M (1999). Fluorinated isopentenyladenines: Synthesis and cytokinin activity. Israel Journal of Chemistry, 39(2): 155-161. https://doi.org/10.1002/ijch.199900020   [Google Scholar]
  22. Memon AA, Memon MA, Bhatti K, Khan I, Alshammari N, Al-Johani AS, Hamadneh NN, and Andualem M (2022). Thermal decomposition of propylene oxide with different activation energy and Reynolds number in a multicomponent tubular reactor containing a cooling jacket. Scientific Reports, 12(1): 4169. https://doi.org/10.1038/s41598-022-06481-4   [Google Scholar] PMid:35264611 PMCid:PMC8907222
  23. Miskolczi N, Buyong F, Angyal A, Williams PT, and Bartha L (2010). Two stages catalytic pyrolysis of refuse derived fuel: Production of biofuel via syncrude. Bioresource Technology, 101(22): 8881-8890. https://doi.org/10.1016/j.biortech.2010.06.103   [Google Scholar] PMid:20663664
  24. Narender N, Srinivasu P, Ramakrishna Prasad M, Kulkarni SJ, and Raghavan KV (2002). An efficient and regioselective oxybromination of aromatic compounds using potassium bromide and Oxone®. Synthetic Communications, 32(15): 2313-2318. https://doi.org/10.1081/SCC-120006001   [Google Scholar]
  25. Prajapat AL and Gogate PR (2019). Depolymerization of carboxymethyl cellulose using hydrodynamic cavitation combined with ultraviolet irradiation and potassium persulfate. Ultrasonics Sonochemistry, 51: 258-263. https://doi.org/10.1016/j.ultsonch.2018.10.009   [Google Scholar] PMid:30322765
  26. Shuchi SB, Suhan MBK, Humayun SB, Haque ME, and Islam MS (2021). Heat-activated potassium persulfate treatment of Sudan Black B dye: Degradation kinetic and thermodynamic studies. Journal of Water Process Engineering, 39: 101690. https://doi.org/10.1016/j.jwpe.2020.101690   [Google Scholar]
  27. Su Z, Zhang Q, Zhao Q, Liu W, Zhao T, Wang H, Li J, and Xu J (2021). Synthesis and properties of sildenafil isostere. Archiv der Pharmazie, 354(10): 2100145. https://doi.org/10.1002/ardp.202100145   [Google Scholar] PMid:34131943
  28. Surya Prakash GK, Zibinsky M, Upton TG, Kashemirov BA, McKenna CE, Oertell K, Goodman MF, Batra VK, Pedersen LC, Beard WA, and Shock DD (2010). Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene) triphosphoric acid. Proceedings of the National Academy of Sciences, 107(36): 15693-15698. https://doi.org/10.1073/pnas.1007430107   [Google Scholar] PMid:20724659 PMCid:PMC2936638
  29. Tyutereva YE, Sherin PS, Polyakova EV, Grivin VP, Plyusnin VF, Shuvaeva OV, Xu J, Wu F, and Pozdnyakov IP (2021). Synergetic effect of potassium persulfate on photodegradation of para-arsanilic acid in Fe(III) oxalate system. Journal of Photochemistry and Photobiology A: Chemistry, 420: 113507. https://doi.org/10.1016/j.jphotochem.2021.113507   [Google Scholar]
  30. Wang C, Zhou J, Luo C, Wang C, and Zhang X (2020). Synergist effect of potassium periodate and potassium persulfate on improving removal rate of ruthenium during chemical mechanical polishing. Materials Science and Engineering: B, 262: 114764. https://doi.org/10.1016/j.mseb.2020.114764   [Google Scholar]
  31. Wang J, Liu X, Zhang X, Du S, Han X, Li JQ, Xiao Y, Xu Z, Wu Q, Xu L, and Qin Z (2021). Fungicidal action of the triphenylphosphonium-driven succinate dehydrogenase inhibitors is mediated by reactive oxygen species and suggests an effective resistance management strategy. Journal of Agricultural and Food Chemistry, 70(1): 111-123. https://doi.org/10.1021/acs.jafc.1c05784   [Google Scholar] PMid:34878279
  32. Zhang W, Lou S, Liu Y, and Xu Z (2013). Palladium-catalyzed chelation-assisted aromatic C–H nitration: Regiospecific synthesis of nitroarenes free from the effect of the orientation rules. The Journal of Organic Chemistry, 78(12): 5932-5948. https://doi.org/10.1021/jo400594j   [Google Scholar] PMid:23688006
  33. Zhao C, Li Y, Liang Z, Gao L, Han C, and Wu X (2022). Molecular mechanisms associated with the resistance of Rhizoctonia solani AG-4 isolates to the succinate dehydrogenase inhibitor thifluzamide. Phytopathology®, 112(3): 567-578. https://doi.org/10.1094/PHYTO-06-21-0266-R   [Google Scholar] PMid:34615378
  34. Zhu Y, Wang F, Zhou B, Chen H, Yuan R, Zhang Y, Geng H, Liu Y, and Wang H (2022). Photo-assisted Fe2+ modified molybdenum disulfide activated potassium persulfate to degrade sulfadiazine: Insights into the degradation pathway and mechanism from density functional theory. Chemical Engineering Journal, 435: 134904. https://doi.org/10.1016/j.cej.2022.134904   [Google Scholar]