International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 11 (November 2023), Pages: 165-170

----------------------------------------------

 Original Research Paper

MHD boundary layer flow due to an exponentially stretching surface through porous medium with radiation effect

 Author(s): 

 Faisal Salah *, Ahmad Almohammadi

 Affiliation(s):

 Department of Mathematics, College of Science and Arts, Rabigh, King Abdul-Aziz University, Jeddah, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-0410-001X

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2023.11.020

 Abstract

The purpose of this article is to study the boundary layer flow and heat transfer of the MHD second-grade fluid. By utilizing similarity transformations, the governing equations are transformed into a set of non-linear ordinary differential equations. To get semi-analytical formulations of velocity, temperature, and other variables, we use the homotopy analysis technique (HAM). Then, we employ the Wolfram Language function NSolve to get the solutions. The main finding of the present work is that the flow variables have been influenced by the magnetic field parameter, the porous parameter, and the radiation parameter.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Second-grade fluid, MHD, Heat transfer

 Article history

 Received 8 May 2023, Received in revised form 5 October 2023, Accepted 3 November 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Salah F and Almohammadi A (2023). MHD boundary layer flow due to an exponentially stretching surface through porous medium with radiation effect. International Journal of Advanced and Applied Sciences, 10(11): 165-170

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 

 Tables

 Table 1 Table 2 

----------------------------------------------   

 References (26)

  1. Bidin B and Nazar R (2009). Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. European Journal of Scientific Research, 33(4): 710-717.   [Google Scholar]
  2. Chhabra RP and Richardson JF (1999). Non-Newtonian flow in the process industries: fundamentals and engineering applications. Butterworth-Heinemann, Oxford, UK.   [Google Scholar]
  3. Daniel YS, Aziz ZA, Ismail Z, and Salah F (2017). Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification. Chinese Journal of Physics, 55(3): 630-651. https://doi.org/10.1016/j.cjph.2017.04.001   [Google Scholar]
  4. Elbashbeshy EMA (2001). Heat transfer over an exponentially stretching continuous surface with suction. Archives of Mechanics, 53(6): 643-651.   [Google Scholar]
  5. Emam TG and Elmaboud YA (2017). Three-dimensional magneto-hydrodynamic flow over an exponentially stretching surface. International Journal of Heat and Technology, 35(4): 987-996. https://doi.org/10.18280/ijht.350435   [Google Scholar]
  6. Hayat T, Javed T, and Abbas Z (2008). Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space. International Journal of Heat and Mass Transfer, 51(17-18): 4528-4534. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.022   [Google Scholar]
  7. Hsieh JC, Chen TS, and Armaly BF (1993). Nonsimilarity solutions for mixed convection from vertical surfaces in porous media: Variable surface temperature or heat flux. International Journal of Heat and Mass Transfer, 36(6): 1485-1493. https://doi.org/10.1016/S0017-9310(05)80059-6   [Google Scholar]
  8. Kalpana G, Madhura KR, and Kudenatti RB (2022). Numerical study on the combined effects of Brownian motion and thermophoresis on an unsteady magnetohydrodynamics nanofluid boundary layer flow. Mathematics and Computers in Simulation, 200: 78-96. https://doi.org/10.1016/j.matcom.2022.04.010   [Google Scholar]
  9. Kausar MS, Hussanan A, Waqas M, and Mamat M (2022). Boundary layer flow of micropolar nanofluid towards a permeable stretching sheet in the presence of porous medium with thermal radiation and viscous dissipation. Chinese Journal of Physics, 78: 435-452. https://doi.org/10.1016/j.cjph.2022.06.027   [Google Scholar]
  10. Kefayati GR (2016). Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. International Journal of Heat and Mass Transfer, 92: 1066-1089. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.078   [Google Scholar]
  11. Khan Z, ul Haq S, Ali F, and Andualem M (2022). Free convection flow of second grade dusty fluid between two parallel plates using Fick’s and Fourier’s laws: A fractional model. Scientific Reports, 12: 3448. https://doi.org/10.1038/s41598-022-06153-3   [Google Scholar] PMid:35236870 PMCid:PMC8891311
  12. Khashi'ie NS, Arifin NM, and Pop I (2022). Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria Engineering Journal, 61(3): 1938-1945. https://doi.org/10.1016/j.aej.2021.07.032   [Google Scholar]
  13. Liu CJ, Wang D, Xie F, and Yang T (2020). Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces. Journal of Functional Analysis, 279(7): 108637. https://doi.org/10.1016/j.jfa.2020.108637   [Google Scholar]
  14. Magyari E and Keller B (1999). Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Journal of Physics D: Applied Physics, 32: 577. https://doi.org/10.1088/0022-3727/32/5/012   [Google Scholar]
  15. Nakayama A and Koyama H (1987). Effect of thermal stratification on free convection within a porous medium. Journal of Thermophysics and Heat Transfer, 1(3): 282-285. https://doi.org/10.2514/3.40   [Google Scholar]
  16. Pal D (2010). Magnetohydrodynamic non-Darcy mixed convection heat transfer from a vertical heated plate embedded in a porous medium with variable porosity. Communications in Nonlinear Science and Numerical Simulation, 15(12): 3974-3987. https://doi.org/10.1016/j.cnsns.2010.02.003   [Google Scholar]
  17. Reddy BP, Makinde OD, and Hugo A (2022). A computational study on diffusion-thermo and rotation effects on heat generated mixed convection flow of MHD Casson fluid past an oscillating porous plate. International Communications in Heat and Mass Transfer, 138: 106389. https://doi.org/10.1016/j.icheatmasstransfer.2022.106389   [Google Scholar]
  18. Roy NC and Pop I (2020). Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet. The European Physical Journal Plus, 135: 768. https://doi.org/10.1140/epjp/s13360-020-00788-9   [Google Scholar]
  19. Shah NA, Yook SJ, and Tosin O (2022). Analytic simulation of thermophoretic second-grade fluid flow past a vertical surface with variable fluid characteristics and convective heating. Scientific Reports, 12: 5445. https://doi.org/10.1038/s41598-022-09301-x   [Google Scholar] PMid:35361813 PMCid:PMC8971449
  20. Sheikholeslami M (2018). Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Computing and Applications, 30: 1055-1064. https://doi.org/10.1007/s00521-016-2740-7   [Google Scholar]
  21. Sheikholeslami M (2019a). New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Computer Methods in Applied Mechanics and Engineering, 344: 319-333. https://doi.org/10.1016/j.cma.2018.09.044   [Google Scholar]
  22. Sheikholeslami M (2019b). Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Computer Methods in Applied Mechanics and Engineering, 344: 306-318. https://doi.org/10.1016/j.cma.2018.09.042   [Google Scholar]
  23. Trüesdell C and Noll W (1965). The nonlinear field theories of mechanics, Handbuch der Physics V1. Springer-Verlag, Berlin, Germany. https://doi.org/10.1007/978-3-642-46015-9_1   [Google Scholar]
  24. Urgorri FR, Moreno C, Fernández-Berceruelo I, and Rapisarda D (2021). The influence of MHD boundary layers on tritium permeation in PbLi flows for fusion breeding blankets. International Journal of Heat and Mass Transfer, 181: 121906. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121906   [Google Scholar]
  25. Vajravelu K and Roper T (1999). Flow and heat transfer in a second-grade fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 34(6): 1031-1036. https://doi.org/10.1016/S0020-7462(98)00073-0   [Google Scholar]
  26. Zainal NA, Nazar R, Naganthran K, and Pop I (2021). MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 31(3): 858-879. https://doi.org/10.1108/HFF-03-2020-0126   [Google Scholar]