International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 3 (March 2022), Pages: 90-99

----------------------------------------------

 Original Research Paper

 Title: Palm print recognition system using siamese network and transfer learning

 Author(s): Aml Fawzy 1, Mohamed Ezz 2, *, Sayed Nouh 1, Gamal Tharwat 1

 Affiliation(s):

 1Systems and Computer Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
 2College of Computer and Information Sciences, Jouf University, Sakaka, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-8571-8828

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.03.011

 Abstract:

This paper proposes a palmprint authentication approach using a one-shot learning technique based on similarity instead of classification (used by most other proposals). The one-shot learning technique uses the siamese network architecture built on top of the pre-trained VGG16 to efficiently reduce the cost and time of training the siamese network. This technique allows the user registration using only one palmprint and then performs the authentication process by performing a siamese similarity measure instead of classification techniques. The proposed model achieved high accuracies scores of 97%, 96.7% for Tongji datasets, 92.3%, 91.9% for PolyU-IITD datasets, 90.9%, 88.3% for CASIA datasets and 95.5% for COEP dataset. These performances were measured based on the testing dataset for unseen persons while the siamese training dataset was applied to different persons. The proposed model uses the pre-trained part of VGG16 as a feature extraction part then feeds the generated feature vector into the Euclidean distance layer that is trained in conjunction with the sigmoid layer to output the final similarity decision. Compared to other models, this proposed model achieved a high average accuracy of 93.2% and 0.19 EER over the available four palm print datasets which is generalized over proposals. All codes are open-source and available online at https://github.com/ProjectsRebository/PalmPrint-recognition-using-Transfer-Learning. 

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Palm print recognition, Pretrained model, Siamese network, Deep learning, Transfer learning

 Article History: Received 21 September 2021, Received in revised form 3 January 2022, Accepted 4 January 2022

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Fawzy A, Ezz M, and Nouh S et al. (2022). Palm print recognition system using siamese network and transfer learning. International Journal of Advanced and Applied Sciences, 9(3): 90-99

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 

 Tables

 Table 1 Table 2 Table 3   

----------------------------------------------    

 References (35)

  1. Abdelwhab A and Viriri S (2018). A survey on soft biometrics for human identification. In: Yang J, Sun PD, Yoon S, Chen Y, and Zhang C (Eds.), Machine learning and biometrics: 37-54. BoD–Books on Demand, Norderstedt, Germany. https://doi.org/10.5772/intechopen.76021   [Google Scholar]
  2. Ali MM, Yannawar PL, and Gaikwad AT (2017). Multi-algorithm of palmprint recognition system based on fusion of local binary pattern and two-dimensional locality preserving projection. Procedia Computer Science, 115: 482-492. https://doi.org/10.1016/j.procs.2017.09.091   [Google Scholar]
  3. Charfi N, Trichili H, Alimi AM, and Solaiman B (2016). Local invariant representation for multi-instance toucheless palmprint identification. In the IEEE International Conference on Systems, Man, and Cybernetics, IEEE, Budapest, Hungary: 003522-003527. https://doi.org/10.1109/SMC.2016.7844778   [Google Scholar]
  4. COEP (2021). COEP palm print database. College of Engineering Pune, Pune, India. Available online at: https://www.coep.org.in/resources/coeppalmprintdatabase
  5. Dian L and Dongmei S (2016). Contactless palmprint recognition based on convolutional neural network. In the IEEE 13th International Conference on Signal Processing, IEEE, Chengdu, China: 1363-1367. https://doi.org/10.1109/ICSP.2016.7878049   [Google Scholar]
  6. Dokmanic I, Parhizkar R, Ranieri J, and Vetterli M (2015). Euclidean distance matrices: Essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6): 12-30. https://doi.org/10.1109/MSP.2015.2398954   [Google Scholar]
  7. Ezz M, Mostafa AM, and Nasr AA (2020). A silent password recognition framework based on lip analysis. IEEE Access, 8: 55354-55371. https://doi.org/10.1109/ACCESS.2020.2982359   [Google Scholar]
  8. Genovese A, Piuri V, Plataniotis KN, and Scotti F (2019). PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition. IEEE Transactions on Information Forensics and Security, 14(12): 3160-3174. https://doi.org/10.1109/TIFS.2019.2911165   [Google Scholar]
  9. IITD (2014). IIT Delhi touch less palmprint database (Version 1.0). Indian Institute of Technology Delhi, New Delhi, India.   [Google Scholar]
  10. Izadpanahkakhk M, Razavi SM, Taghipour-Gorjikolaie M, Zahiri SH, and Uncini A (2019). Novel mobile palmprint databases for biometric authentication. International Journal of Grid and Utility Computing, 10(5): 465-474. https://doi.org/10.1504/IJGUC.2019.102016   [Google Scholar]
  11. Jain AK, Ross A, and Prabhakar S (2004). An introduction to biometric recognition IEEE transactions on circuits and systems for video technology. Special Issue on Image-and Video-Based Biometrics, 14(1): 4-20. https://doi.org/10.1109/TCSVT.2003.818349   [Google Scholar]
  12. Kong A, Zhang D, and Kamel M (2009). A survey of palmprint recognition. Pattern Recognition, 42(7): 1408-1418. https://doi.org/10.1016/j.patcog.2009.01.018   [Google Scholar]
  13. Krizhevsky BA, Sutskever I, and Hinton GE (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84–90. https://doi.org/10.1145/3065386   [Google Scholar]
  14. Kumar A (2018). Toward more accurate matching of contactless palmprint images under less constrained environments? IEEE Transactions on Information Forensics and Security, 14(1): 34-47. https://doi.org/10.1109/TIFS.2018.2837669   [Google Scholar]
  15. Kumar VN and Srinivasan B (2012). Ear biometrics in human identification system. International Journal of Information Technology and Computer Science, 2: 41-47. https://doi.org/10.5815/ijitcs.2012.02.06   [Google Scholar]
  16. Liu N, Liu J, Sun Z, and Tan T (2017). A code-level approach to heterogeneous iris recognition. IEEE Transactions on Information Forensics and Security, 12(10): 2373-2386. https://doi.org/10.1109/TIFS.2017.2686013   [Google Scholar]
  17. Melekhov I, Kannala J, and Rahtu E (2016). Siamese network features for image matching. In the 23rd International Conference on Pattern Recognition, IEEE, Cancun, Mexico: 378-383. https://doi.org/10.1109/ICPR.2016.7899663   [Google Scholar]
  18. Meraoumia A, Kadri F, Bendjenna H, Chitroub S, and Bouridane A (2017). Improving biometric identification performance using PCANet deep learning and multispectral palmprint. In: Jiang R, Al-maadeed S, Bouridane A, Crookes P, and Beghdadi A (Eds.), Biometric security and privacy: 51-69. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-47301-7_3   [Google Scholar]
  19. Moridani MK, Moridani AK, and Gholipour M (2020). Powerful processing to three-dimensional facial recognition using triple information. International Journal of Advances in Applied Sciences, 9(4): 326–332. https://doi.org/10.11591/ijaas.v9.i4.pp326-332   [Google Scholar]
  20. Ramachandra R, Raja KB, Venkatesh S, Hegde S, Dandappanavar SD, and Busch C (2018). Verifying the newborns without infection risks using contactless palm prints. In the International Conference on Biometrics, IEEE, Gold Coast, Australia: 209-216. https://doi.org/10.1109/ICB2018.2018.00040   [Google Scholar]
  21. Ramachandran P, Zoph B, and Le QV (2017). Searching for activation functions. Available online at: https://arxiv.org/abs/1710.05941v2
  22. Rezende E, Ruppert G, Carvalho T, Theophilo A, Ramos F, and de Geus P (2018). Malicious software classification using VGG16 deep neural network’s bottleneck features. In: Latifi S (Ed.), Information technology-new generations: 51-59. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-77028-4_9   [Google Scholar]
  23. Rivaldería N, Gutiérrez-Redomero E, Alonso-Rodríguez C, Dipierri JE, and Martín LM (2017). Study of fingerprints in Argentina population for application in personal identification. Science and Justice, 57(3): 199-208. https://doi.org/10.1016/j.scijus.2017.02.004   [Google Scholar] PMid:28454629
  24. Saied M, Elshenawy A, and Ezz MM (2020). A novel approach for improving dynamic biometric authentication and verification of human using eye blinking movement. Wireless Personal Communications, 115(1): 859-876. https://doi.org/10.1007/s11277-020-07601-x   [Google Scholar]
  25. Saqib S and Kazmi SAR (2018). Recognition of static gestures using correlation and cross-correlation. International Journal of Advances in Applied Sciences, 5(6): 11-18. https://doi.org/10.21833/ijaas.2018.06.002   [Google Scholar]
  26. Shao H, Zhong D, and Du X (2019). Efficient deep palmprint recognition via distilled hashing coding. In the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA. https://doi.org/10.1109/CVPRW.2019.00098   [Google Scholar]
  27. Simonyan K and Zisserman A (2015). Very deep convolutional networks for large-scale image recognition. In the 3rd International Conference on Learning Representations, San Diego, USA: 1-14. Available online at: https://arxiv.org/abs/1409.1556v6 
  28. Sun Z, Tan T, Wang Y, and Li SZ (2005). Ordinal palmprint represention for personal identification [represention read representation]. In the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE, San Diego, USA: 279-284. https://doi.org/10.1109/CVPR.2005.267   [Google Scholar]
  29. Tarawneh AS, Chetverikov D, and Hassanat AB (2018). Pilot comparative study of different deep features for palmprint identification in low-quality images. In the 9th Hungarian Conference on Computer Graphics and Geometry, Budapest, Hungary: 1-6. Available online at: https://arxiv.org/abs/1804.04602v1
  30. Wang L and Geng X (2009). Behavioral biometrics for human identification: Intelligent applications. IGI Global, Pennsylvania, USA. https://doi.org/10.4018/978-1-60566-725-6   [Google Scholar]
  31. Zhang D, Guo Z, Lu G, Zhang L, and Zuo W (2009). An online system of multispectral palmprint verification. IEEE Transactions on Instrumentation and Measurement, 59(2): 480-490. https://doi.org/10.1109/TIM.2009.2028772   [Google Scholar]
  32. Zhang D, Zuo W, and Yue F (2012). A comparative study of palmprint recognition algorithms. ACM Computing Surveys (CSUR), 44(1): 1-37. https://doi.org/10.1145/2071389.2071391   [Google Scholar]
  33. Zhang L, Li L, Yang A, Shen Y, and Yang M (2017). Towards contactless palmprint recognition: A novel device, a new benchmark, and a collaborative representation based identification approach. Pattern Recognition, 69: 199-212. https://doi.org/10.1016/j.patcog.2017.04.016   [Google Scholar]
  34. Zhang Y, Zhang L, Liu X, Zhao S, Shen Y, and Yang Y (2019). Pay by showing your palm: A study of palmprint verification on mobile platforms. In the IEEE International Conference on Multimedia and Expo (ICME), IEEE, Shanghai, China: 862-867. https://doi.org/10.1109/ICME.2019.00153   [Google Scholar]
  35. Zhong D, Yang Y, and Du X (2018). Palmprint recognition using siamese network. In the Chinese Conference on Biometric Recognition, Urumchi, China: 48-55. https://doi.org/10.1007/978-3-319-97909-0_6   [Google Scholar]