International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 12 (December 2022), Pages: 11-24

----------------------------------------------

 Original Research Paper

 Pre-trained convolution neural networks models for content-based medical image retrieval

 Author(s): Ali Ahmed 1, *, Alaa Omran Almagrabi 2, Ahmed Hamza Osman 2

 Affiliation(s):

 1Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia
 2Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-8944-8922

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.12.002

 Abstract:

Content-based image retrieval (CBIR) is a recent method used to retrieve different types of images from repositories. The traditional content-based medical image retrieval (CBMIR) methods commonly used low-level image representation features extracted from color, texture, and shape image descriptors. Since most of these CBMIR systems depend mainly on the extracted features, the methods used in the feature extraction phase are more important. Features extraction methods, which generate inaccurate features, lead to very poor performance retrieval because of semantic gap widening. Hence, there is high demand for independent domain knowledge features extraction methods, which have automatic learning capabilities from input images. Pre-trained deep convolution neural networks (CNNs), the recent generation of deep learning neural networks, could be used to extract expressive and accurate features. The main advantage of these pre-trained CNNs models is the pre-training process for huge image data of thousands of different classes, and their knowledge after the training process could easily be transferred. There are many successful models of pre-trained CNNs models used in the area of medical image retrieval, image classification, and object recognition. This study utilizes two of the most known pre-trained CNNs models; ResNet18 and SqueezeNet for the offline feature extraction stage. Additionally, the highly accurate features extracted from medical images are used for the CBMIR method of medical image retrieval. This study uses two popular medical image datasets; Kvasir and PH2 to show that the proposed methods have good retrieval results. The retrieval performance evaluation measures of our proposed method have average precision of 97.75% and 83.33% for Kvasir and PH2 medical images respectively, and outperform some of the state-of-the-art methods in this field of study because these pre-trained CNNs have well trained layers among a huge number of image types. Finally, intensive statistical analysis shows that the proposed ResNet18-based retrieval method has the best performance for enhancing both recall and precision measures for both medical images.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Pre-trained convolution neural networks, Features extraction, Medical image retrieval

 Article History: Received 20 January 2022, Received in revised form 15 May 2022, Accepted 16 August 2022

 Acknowledgment 

The authors gratefully acknowledge the Deanship of Scientific Research‎ ‎‎(DSR) at King Abdulaziz University‎ for their technical and financial ‎support. ‎ This research was funded by the Deanship of Scientific Research (DSR) at ‎King Abdulaziz University, Jeddah, Saudi Arabia, under ‎Grant No.‎ (G: ‎‎146-830-1441‎093-830-1441).

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Ahmed A, Almagrabi AO, and Osman AH (2022). Pre-trained convolution neural networks models for content-based medical image retrieval. International Journal of Advanced and Applied Sciences, 9(12): 11-24

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 

 Tables

 Table 1 Table 2 Table 3 

----------------------------------------------    

 References (83)

  1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, and Ghemawat S (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems. ArXiv Preprint ArXiv:1603.0446.  https://doi.org/10.48550/arXiv.1603.04467   [Google Scholar]
  2. Abioui H, Idarrou A, Bouzit A, and Mammass D (2018). Automatic image annotation for semantic image retrieval. In the International Conference on Image and Signal Processing, Springer, Cherbourg, France: 129-137. https://doi.org/10.1007/978-3-319-94211-7_15   [Google Scholar]
  3. Ahmed A (2020). Implementing relevance feedback for content-based medical image retrieval. IEEE Access, 8: 79969-79976. https://doi.org/10.1109/ACCESS.2020.2990557   [Google Scholar]
  4. Ahmed A (2021). Pre-trained CNNs Models for content based image retrieval. International Journal of Advanced Computer Science and Applications, 12(7): 200-206. https://doi.org/10.14569/IJACSA.2021.0120723   [Google Scholar]
  5. Ahmed A and El Sadig OB (2019). Heterogeneous multi-classifier method based on weighted voting for breast cancer detection. International Journal on Advanced Science, Engineering and Information Technology, 7(4): 36-41.   [Google Scholar]
  6. Ahmed A and Malebary S (2019). Feature selection and the fusion-based method for enhancing the classification accuracy of SVM for breast cancer detection. International Journal of Computer Science and Network Security, 19(11): 55-60.   [Google Scholar]
  7. Ahmed A and Malebary SJ (2020). Query expansion based on top-ranked images for content-based medical image retrieval. IEEE Access, 8: 194541-194550. https://doi.org/10.1109/ACCESS.2020.3033504   [Google Scholar]
  8. Anitha K and Naresh K (2021). A content-based approach to medical image retrieval. In: Anbarasan K (Ed.), AI innovation in medical imaging diagnostics: 114-136. IGI Global, Hershey, USA. https://doi.org/10.4018/978-1-7998-3092-4.ch007   [Google Scholar] PMid:35635523
  9. Ayyachamy S, Alex V, Khened M, and Krishnamurthi G (2019). Medical image retrieval using ResNet-18. In the Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, International Society for Optics and Photonics, San Diego, USA, 10954: 1095410.   [Google Scholar]
  10. Baur C, Graf R, Wiestler B, Albarqouni S, and Navab N (2020). SteGANomaly: Inhibiting CycleGAN steganography for unsupervised anomaly detection in brain MRI. In the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Lima, Peru: 718-727. https://doi.org/10.1007/978-3-030-59713-9_69   [Google Scholar]
  11. Bhagyalakshmi A and Vijayachamundeeswan V (2014). A survey on content based image retrieval using various operators. In the International Conference on Computer Communication and Systems, IEEE, Chennai, India: 18-23. https://doi.org/10.1109/ICCCS.2014.7068160   [Google Scholar]
  12. Bhandi V and Devi KS (2019). Image retrieval by fusion of features from pre-trained deep convolution neural networks. In the 1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing and Communication Engineering, IEEE, Bangalore, India: 35-40. https://doi.org/10.1109/ICATIECE45860.2019.9063814   [Google Scholar]
  13. Chang SK and Hsu A (1992). Image information systems: Where do we go from here? IEEE Transactions on Knowledge and Data Engineering, 4(5): 431-442. https://doi.org/10.1109/69.166986   [Google Scholar]
  14. Das P and Neelima A (2017). An overview of approaches for content-based medical image retrieval. International Journal of Multimedia Information Retrieval, 6(4): 271-280. https://doi.org/10.1007/s13735-017-0135-x   [Google Scholar]
  15. Deepak S and Ameer PM (2020). Retrieval of brain MRI with tumor using contrastive loss based similarity on GoogLeNet encodings. Computers in Biology and Medicine, 125: 103993. https://doi.org/10.1016/j.compbiomed.2020.103993   [Google Scholar] PMid:32980778
  16. Deng J, Dong W, Socher R, Li LJ, Li K, and Fei-Fei L (2009). ImageNet: A large-scale hierarchical image database. In the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA: 248-255. https://doi.org/10.1109/CVPR.2009.5206848   [Google Scholar]
  17. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, and Darrell T (2014). DeCAF: A deep convolutional activation feature for generic visual recognition. ArXiv Preprint ArXiv:1310.1531. https://doi.org/10.48550/arXiv.1310.1531   [Google Scholar]
  18. Farruggia A, Magro R, and Vitabile S (2014). A text based indexing system for mammographic image retrieval and classification. Future Generation Computer Systems, 37: 243-251. https://doi.org/10.1016/j.future.2014.02.008   [Google Scholar]
  19. Ghahremani M, Ghadiri H, and Hamghalam M (2021). Local features integration for content-based image retrieval based on color, texture, and shape. Multimedia Tools and Applications, 80(18): 28245-28263. https://doi.org/10.1007/s11042-021-10895-z   [Google Scholar]
  20. Godasu R, Zeng D, and Sutrave K (2020). Transfer learning in medical image classification: Challenges and opportunities. In the 15th Annual Conference of the Midwest Association for Information Systems, Des Moines, USA: 1-6.   [Google Scholar]
  21. Gopalakrishnan K, Khaitan SK, Choudhary A, and Agrawal A (2017). Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157: 322-330. https://doi.org/10.1016/j.conbuildmat.2017.09.110   [Google Scholar]
  22. Guo Y, Jia X, and Paull D (2018). Effective sequential classifier training for SVM-based multitemporal remote sensing image classification. IEEE Transactions on Image Processing, 27(6): 3036-3048. https://doi.org/10.1109/TIP.2018.2808767   [Google Scholar] PMid:29994442
  23. Han C, Rundo L, Murao K, Noguchi T, Shimahara Y, Milacski ZÁ, and Satoh SI (2021). MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinformatics, 22(Suppl 2): 31. https://doi.org/10.1186/s12859-020-03936-1   [Google Scholar] PMid:33902457 PMCid:PMC8073969
  24. He K, Zhang X, Ren S, and Sun J (2016). Deep residual learning for image recognition. In the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA: 770-778. https://doi.org/10.1109/CVPR.2016.90   [Google Scholar] PMid:26180094
  25. Hu H, Zheng W, Zhang X, Zhang X, Liu J, Hu W, and Si J (2021). Content‐based gastric image retrieval using convolutional neural networks. International Journal of Imaging Systems and Technology, 31(1): 439-449. https://doi.org/10.1002/ima.22470   [Google Scholar]
  26. Huang K, Li S, Kang X, and Fang L (2016). Spectral–spatial hyperspectral image classification based on KNN. Sensing and Imaging, 17: 1. https://doi.org/10.1007/s11220-015-0126-z   [Google Scholar]
  27. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, and Keutzer K (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. In the 5th International Conference on Learning Representations, Toulon, France: 1-13.   [Google Scholar]
  28. Ibrahim AO, Ahmed A, Abdu A, Abd-alaziz R, Alobeed MA, Saleh AY, and Elsafi A (2019). Classification of mammogram images using radial basis function neural network. In the International Conference of Reliable Information and Communication Technology, Springer, Johor, Malaysia: 311-320. https://doi.org/10.1007/978-3-030-33582-3_30   [Google Scholar]
  29. Jiang D and Kim J (2021). Image retrieval method based on image feature fusion and discrete cosine transform. Applied Sciences, 11(12): 5701. https://doi.org/10.3390/app11125701   [Google Scholar]
  30. Jiji GW and Raj PSJD (2015). Content-based image retrieval in dermatology using intelligent technique. IET Image Processing, 9(4): 306-317. https://doi.org/10.1049/iet-ipr.2013.0501   [Google Scholar]
  31. Kalaivani N, Devi D, Sophia S, Manimaran N, and Kowsalya P (2020). Medical image retrieval using convolution neural networks. IOP Conference Series: Materials Science and Engineering, 994(1): 012038. https://doi.org/10.1088/1757-899X/994/1/012038   [Google Scholar]
  32. Kasban H and Salama DH (2019). A robust medical image retrieval system based on wavelet optimization and adaptive block truncation coding. Multimedia Tools and Applications, 78(24): 35211-35236. https://doi.org/10.1007/s11042-019-08100-3   [Google Scholar]
  33. Khatami A, Babaie M, Tizhoosh HR, Nazari A, Khosravi A, and Nahavandi S (2018). A radon-based convolutional neural network for medical image retrieval. International Journal of Engineering, 31(6): 910-915.   [Google Scholar]
  34. Kodituwakku SR and Selvarajah S (2004). Comparison of color features for image retrieval. Indian Journal of Computer Science and Engineering, 1(3): 207-211.   [Google Scholar]
  35. Kokare M, Chatterji BN, and Biswas PK (2002). A survey on current content based image retrieval methods. IETE Journal of Research, 48(3-4): 261-271. https://doi.org/10.1080/03772063.2002.11416285   [Google Scholar]
  36. Krizhevsky A, Sutskever I, and Hinton GE (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25: 1097-1105.   [Google Scholar]
  37. Li J, Allinson N, Tao D, and Li X (2006). Multitraining support vector machine for image retrieval. IEEE Transactions on Image Processing, 15(11): 3597-3601. https://doi.org/10.1109/TIP.2006.881938   [Google Scholar] PMid:17076417
  38. Liu Y, Zhang D, Lu G, and Ma WY (2007). A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1): 262-282. https://doi.org/10.1016/j.patcog.2006.04.045   [Google Scholar]
  39. Maheshwary P and Srivastava N (2009). Prototype system for retrieval of remote sensing images based on color moment and gray level co-occurrence matrix. International Journal of Computer Science Issues, 3: 20-23.   [Google Scholar]
  40. Mahmud T, Paul B, and Fattah SA (2021). PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Computers in Biology and Medicine, 128: 104119. https://doi.org/10.1016/j.compbiomed.2020.104119   [Google Scholar] PMid:33254083
  41. Marques O and Furht B (2002). Content-based image and video retrieval. Volume 21, Springer Science and Business Media, Berlin, Germany. https://doi.org/10.1007/978-1-4615-0987-5   [Google Scholar]
  42. Mendonça T, Ferreira PM, Marques JS, Marcal AR, and Rozeira J (2013). PH 2-A dermoscopic image database for research and benchmarking. In the 35th annual international conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Osaka, Japan: 5437-5440. https://doi.org/10.1109/EMBC.2013.6610779   [Google Scholar] PMid:24110966
  43. Mizotin M, Benois-Pineau J, Allard M, and Catheline G (2012). Feature-based brain MRI retrieval for Alzheimer disease diagnosis. In the 19th IEEE International Conference on Image Processing, IEEE, Orlando, USA: 1241-1244. https://doi.org/10.1109/ICIP.2012.6467091   [Google Scholar]
  44. Mohammed A, Ahmed A, Mohammed W, Viju GK, and Taha M (2020). Mammogram images classification using linear discriminant analysis. International Research Journal of Engineering and Technology, 7(6): 6656-6662.   [Google Scholar]
  45. Müller H, Michoux N, Bandon D, and Geissbuhler A (2004). A review of content-based image retrieval systems in medical applications-Clinical benefits and future directions. International Journal of Medical Informatics, 73(1): 1-23. https://doi.org/10.1016/j.ijmedinf.2003.11.024   [Google Scholar] PMid:15036075
  46. Nair LR, Subramaniam K, PrasannaVenkatesan GKD, Baskar PS, and Jayasankar T (2021). Essentiality for bridging the gap between low and semantic level features in image retrieval systems: An overview. Journal of Ambient Intelligence and Humanized Computing, 12(6): 5917-5929. https://doi.org/10.1007/s12652-020-02139-z   [Google Scholar]
  47. Oussalah M (2008). Content based image retrieval: Review of state of art and future directions. In the 1st Workshops on Image Processing Theory, Tools and Applications, IEEE, Sousse, Tunisia: 1-10. https://doi.org/10.1109/IPTA.2008.4743799   [Google Scholar]
  48. Pham TD (2020). A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks. Scientific Reports, 10: 16942. https://doi.org/10.1038/s41598-020-74164-z   [Google Scholar] PMid:33037291 PMCid:PMC7547710
  49. Pham TD (2021). Classification of COVID-19 chest X-rays with deep learning: New models or fine tuning? Health Information Science and Systems, 9: 2. https://doi.org/10.1007/s13755-020-00135-3   [Google Scholar] PMid:33235710 PMCid:PMC7680558
  50. Pogorelov K, Randel KR, Griwodz C, Eskeland SL, de Lange T, Johansen D, and Halvorsen P (2017). Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. In the 8th ACM on Multimedia Systems Conference, Association for Computing Machinery, Taipei, Taiwan: 164-169. https://doi.org/10.1145/3083187.3083212   [Google Scholar]
  51. Ponciano-Silva M, Souza JP, Bugatti PH, Bedo MV, Kaster DS, Braga RT, and Traina AJ (2013). Does a CBIR system really impact decisions of physicians in a clinical environment? In the 26th IEEE International Symposium on Computer-Based Medical Systems, IEEE, Porto, Portugal: 41-46. https://doi.org/10.1109/CBMS.2013.6627762   [Google Scholar]
  52. Pourghassem H and Ghassemian H (2008). Content-based medical image classification using a new hierarchical merging scheme. Computerized Medical Imaging and Graphics. 32(8): 651-661. https://doi.org/10.1016/j.compmedimag.2008.07.006   [Google Scholar] PMid:18789648
  53. Qayyum A, Anwar SM, Awais M, and Majid M (2017). Medical image retrieval using deep convolutional neural network. Neurocomputing, 266: 8-20. https://doi.org/10.1016/j.neucom.2017.05.025   [Google Scholar]
  54. Quattoni A, Collins M, and Darrell T (2008). Transfer learning for image classification with sparse prototype representations. In the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Anchorage, USA: 1-8. https://doi.org/10.1109/CVPR.2008.4587637   [Google Scholar]
  55. Quellec G, Lamard M, Cazuguel G, Cochener B, and Roux C (2011). Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Transactions on Image Processing, 21(4): 1613-1623. https://doi.org/10.1109/TIP.2011.2180915   [Google Scholar] PMid:22194244
  56. Rahman MM, Antani SK, and Thoma GR (2011). A learning-based similarity fusion and filtering approach for biomedical image retrieval using SVM classification and relevance feedback. IEEE Transactions on Information Technology in Biomedicine, 15(4): 640-646. https://doi.org/10.1109/TITB.2011.2151258   [Google Scholar] PMid:21690019
  57. Rajam F and Valli S (2013). A survey on content based image retrieval. Life Science Journal, 10(2): 2475-2487.   [Google Scholar]
  58. Rui Y, Huang TS, and Chang SF (1999). Image retrieval: Current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation, 10(1): 39-62. https://doi.org/10.1006/jvci.1999.0413   [Google Scholar]
  59. Rundo L, Tangherloni A, Galimberti S, Cazzaniga P, Woitek R, Sala E, and Mauri G (2019). HaraliCU: GPU-powered Haralick feature extraction on medical images exploiting the full dynamics of gray-scale levels. In the 15th International Conference on Parallel Computing Technologies, Springer, Almaty, Kazakhstan: 304-318. https://doi.org/10.1007/978-3-030-25636-4_24   [Google Scholar]
  60. Safavian SR and Landgrebe D (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3): 660-674. https://doi.org/10.1109/21.97458   [Google Scholar]
  61. Shirkhorshidi AS, Aghabozorgi S, and Wah TY (2015). A comparison study on similarity and dissimilarity measures in clustering continuous data. PLOS ONE, 10(12): e0144059. https://doi.org/10.1371/journal.pone.0144059   [Google Scholar] PMid:26658987 PMCid:PMC4686108
  62. Sidney S (1988). Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York, USA.   [Google Scholar]
  63. Simonyan K and Zisserman A (2014). Very deep convolutional networks for large-scale image recognition. In the International Conference on Learning Representations, San Diego, USA: 1-14.   [Google Scholar]
  64. Smeulders AW, Worring M, Santini S, Gupta A, and Jain R (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12): 1349-1380. https://doi.org/10.1109/34.895972   [Google Scholar]
  65. Sundararajan SK, Sankaragomathi B, and Priya DS (2019). Deep belief CNN feature representation based content based image retrieval for medical images. Journal of Medical Systems, 43: 174. https://doi.org/10.1007/s10916-019-1305-6   [Google Scholar] PMid:31069547
  66. Suykens JA and Vandewalle J (1999). Least squares support vector machine classifiers. Neural Processing Letters. 9(3): 293-300. https://doi.org/10.1023/A:1018628609742   [Google Scholar]
  67. Szegedy C, Ioffe S, Vanhoucke V, and Alemi AA (2017). Inception-v4, inception-ResNet and the impact of residual connections on learning. In the 31st AAAI conference on artificial intelligence, AAAI Press, San Francisco, USA: 4278-4284. https://doi.org/10.1609/aaai.v31i1.11231   [Google Scholar]
  68. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, and Rabinovich A (2015). Going deeper with convolutions. In the 28th IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA: 1-9. https://doi.org/10.1109/CVPR.2015.7298594   [Google Scholar]
  69. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, and Wojna Z (2016). Rethinking the inception architecture for computer vision. In the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA: 2818-2826. https://doi.org/10.1109/CVPR.2016.308   [Google Scholar]
  70. Tamura H and Yokoya N (1984). Image database systems: A survey. Pattern Recognition, 17(1): 29-43. https://doi.org/10.1016/0031-3203(84)90033-5   [Google Scholar]
  71. Tian Y and Fu S (2020). A descriptive framework for the field of deep learning applications in medical images. Knowledge-Based Systems, 210: 106445. https://doi.org/10.1016/j.knosys.2020.106445   [Google Scholar]
  72. Tsai HY, Zhang H, Hung CL, and Min G (2017). GPU-accelerated features extraction from magnetic resonance images. IEEE Access, 5: 22634-22646. https://doi.org/10.1109/ACCESS.2017.2756624   [Google Scholar]
  73. Ucar F and Korkmaz D (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Medical Hypotheses, 140: 109761. https://doi.org/10.1016/j.mehy.2020.109761   [Google Scholar] PMid:32344309 PMCid:PMC7179515
  74. Veltkamp RC and Tanase M (2002). A survey of content-based image retrieval systems. In: Marques O and Furht B (Eds.), Content-based image and video retrieval: 47-101. Volume 21, Springer, Boston, USA. https://doi.org/10.1007/978-1-4615-0987-5_5   [Google Scholar]
  75. Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, and Li J (2014). Deep learning for content-based image retrieval: A comprehensive study. In the 22nd ACM International Conference on Multimedia, Association for Computing Machinery, Orlando, USA: 157-166. https://doi.org/10.1145/2647868.2654948   [Google Scholar] PMid:24955297 PMCid:PMC4050312
  76. Wang XF, Huang DS, Du JX, Xu H, and Heutte L (2008). Classification of plant leaf images with complicated background. Applied Mathematics and Computation. 205(2): 916-926. https://doi.org/10.1016/j.amc.2008.05.108   [Google Scholar]
  77. Weszka JS, Dyer CR, and Rosenfeld A (1976). A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(4): 269-285. https://doi.org/10.1109/TSMC.1976.5408777   [Google Scholar]
  78. Win KY, Maneerat N, Hamamoto K, and Sreng S (2020). Hybrid learning of hand-crafted and deep-activated features using particle swarm optimization and optimized support vector machine for tuberculosis screening. Applied Sciences, 10(17): 5749. https://doi.org/10.3390/app10175749   [Google Scholar]
  79. Yadav SS and Jadhav SM (2019). Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6(1): 1-18. https://doi.org/10.1186/s40537-019-0276-2   [Google Scholar]
  80. Yeung M, Sala E, Schönlieb CB, and Rundo L (2021). Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy. Computers in Biology and Medicine, 137: 104815. https://doi.org/10.1016/j.compbiomed.2021.104815   [Google Scholar] PMid:34507156 PMCid:PMC8505797
  81. Zhang F, Song Y, Cai W, Hauptmann AG, Liu S, Pujol S, and Chen M (2016). Dictionary pruning with visual word significance for medical image retrieval. Neurocomputing, 177: 75-88. https://doi.org/10.1016/j.neucom.2015.11.008   [Google Scholar] PMid:27688597 PMCid:PMC5036942
  82. Zhang K, Zuo W, Chen Y, Meng D, and Zhang L (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7): 3142-3155. https://doi.org/10.1109/TIP.2017.2662206   [Google Scholar] PMid:28166495
  83. Zhang Z, Li W, and Li B (2009). An improving technique of color histogram in segmentation-based image retrieval. In the 5th International Conference on Information Assurance and Security, IEEE, Xi'an, China, 2: 381-384. https://doi.org/10.1109/IAS.2009.156   [Google Scholar]