International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 7 (July 2021), Pages: 50-66

----------------------------------------------

 Review Paper

 Title: Utilization of ICT and AI techniques in harnessing residential energy consumption for an energy-aware smart city: A review

 Author(s): Danish Mahmood 1, *, Shahzad Latif 1, Aamir Anwar 1, 2, Syed Jawad Hussain 1, N. Z. Jhanjhi 3, Najm Us Sama 4, Mamoona Humayun 5

 Affiliation(s):

 1Department of Computer Science, SZABIST Islamabad Campus, Islamabad, Pakistan
 2Department of Computer Science, Barani Institute of IT, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
 3School of Computer Science and Engineering, SCE, Taylor’s University, Subang Jaya, Malaysia
 4Department of Computer Science, Jouf University, Sakakah, Saudi Arabia
 5Department of Information systems, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-2511-6638

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.07.007

 Abstract:

Fusion of Information and Communication Technologies (ICT) in traditional grid infrastructure makes it possible to share certain messages and information within the system that leads to optimized use of energy. Furthermore, using Computational Intelligence (CI) in the said domain opens new horizons to preserve electricity as well as the price of consumed electricity effectively. Hence, Energy Management Systems (EMSs) play a vital role in energy economics, consumption efficiency, resourcefulness, grid stability, reliability, and scalability of power systems. The residential sector has its high impact on global energy consumption. Curtailing and shifting load of the residential sector can result in solving major global problems and challenges. Moreover, the residential sector is more flexible in reshaping power consumption patterns. Using Demand Side Management (DSM), end users can manipulate their power consumption patterns such that electricity bills, as well as Peak to Average Ratio (PAR), are reduced. Therefore, it can be stated that Home Energy Management Systems (HEMSs) is an important part of ground-breaking smart grid technology. This article gives an extensive review of DSM, HEMS methodologies, techniques, and formulation of optimization problems. Concluding the existing work in energy management solutions, challenges and issues, and future research directions are also presented. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Smart grid, Home area networks, Optimization techniques, Home energy management systems, Smart meters

 Article History: Received 26 December 2020, Received in revised form 15 March 2021, Accepted 27 March 2021

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Mahmood D, Latif S, and Anwar A et al. (2021). Utilization of ICT and AI techniques in harnessing residential energy consumption for an energy-aware smart city: A review. International Journal of Advanced and Applied Sciences, 8(7): 50-66

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 

 Tables

 Table 1 Table 2 Table 3 Table 4  

----------------------------------------------

 References (112)

  1. Abedi A, Gaudard L, and Romerio F (2019). Review of major approaches to analyze vulnerability in power system. Reliability Engineering and System Safety, 183: 153-172. https://doi.org/10.1016/j.ress.2018.11.019   [Google Scholar]
  2. Afzalan M and Jazizadeh F (2019). Residential loads flexibility potential for demand response using energy consumption patterns and user segments. Applied Energy, 254: 113693. https://doi.org/10.1016/j.apenergy.2019.113693   [Google Scholar]
  3. Agneessens J, Vandoorn T, Meersman B, and Vandevelde L (2011). The use of binary particle swarm optimization to obtain a demand side management system. In the Renewable Power Generation IET Conference, IET, Edinburgh, UK: 1-6. https://doi.org/10.1049/cp.2011.0228   [Google Scholar]
  4. Ahmed MS, Mohamed A, Khatib T, Shareef H, Homod RZ, and Abd Ali J (2017). Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy and Buildings, 138: 215-227. https://doi.org/10.1016/j.enbuild.2016.12.052   [Google Scholar]
  5. Akrami A, Doostizadeh M, and Aminifar F (2019). Power system flexibility: An overview of emergence to evolution. Journal of Modern Power Systems and Clean Energy, 7(5): 987-1007. https://doi.org/10.1007/s40565-019-0527-4   [Google Scholar]
  6. Al-Badi AH, Ahshan R, Hosseinzadeh N, Ghorbani R, and Hossain E (2020). Survey of smart grid concepts and technological demonstrations worldwide emphasizing on the Oman perspective. Applied System Innovation, 3(1): 5. https://doi.org/10.3390/asi3010005   [Google Scholar]
  7. Albu MM, Sănduleac M, and Stănescu C (2016). Syncretic use of smart meters for power quality monitoring in emerging networks. IEEE Transactions on Smart Grid, 8(1): 485-492.  https://doi.org/10.1109/TSG.2016.2598547   [Google Scholar]
  8. Ali SS and Choi BJ (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics, 9(6): 1030. https://doi.org/10.3390/electronics9061030   [Google Scholar]
  9. Alkawsi GA, Ali N, Mustafa AS, Baashar Y, Alhussian H, Alkahtani A, and Ekanayake J (2021). A hybrid SEM-neural network method for identifying acceptance factors of the smart meters in Malaysia: Challenges perspective. Alexandria Engineering Journal, 60(1): 227-240. https://doi.org/10.1016/j.aej.2020.07.002   [Google Scholar]
  10. Almusaylim AZ, Jhanjhi NZ, and Alhumam A (2020). Detection and mitigation of RPL rank and version number attacks in the internet of things: SRPL-RP. Sensors, 20(21): 5997. https://doi.org/10.3390/s20215997   [Google Scholar] PMid:33105891 PMCid:PMC7660197
  11. Alquthami T, AlAmoudi A, Alsubaie AM, Jaber AB, Alshlwan N, Anwar M, and Al Husaien S (2020). Analytics framework for optimal smart meters data processing. Electrical Engineering, 102: 1241-1251. https://doi.org/10.1007/s00202-020-00949-0   [Google Scholar]
  12. Arteconi A, Ciarrocchi E, Pan Q, Carducci F, Comodi G, Polonara F, and Wang R (2017). Thermal energy storage coupled with PV panels for demand side management of industrial building cooling loads. Applied Energy, 185: 1984-1993. https://doi.org/10.1016/j.apenergy.2016.01.025   [Google Scholar]
  13. Avancini DB, Rodrigues JJ, Martins SG, Rabêlo RA, Al-Muhtadi J, and Solic P (2019). Energy meters evolution in smart grids: A review. Journal of Cleaner Production, 217: 702-715. https://doi.org/10.1016/j.jclepro.2019.01.229   [Google Scholar]
  14. Bae H, Yoon J, Lee Y, Lee J, Kim T, Yu J, and Cho S (2014). User-friendly demand side management for smart grid networks. In The International Conference on Information Networking, IEEE, Phuket, Thailand: 481-485. https://doi.org/10.1109/ICOIN.2014.6799728   [Google Scholar]
  15. Baharlouei Z, Hashemi M, Narimani H, and Mohsenian-Rad H (2013). Achieving optimality and fairness in autonomous demand response: Benchmarks and billing mechanisms. IEEE Transactions on Smart Grid, 4(2): 968-975. https://doi.org/10.1109/TSG.2012.2228241   [Google Scholar]
  16. Bahmanyar A, Jamali S, Estebsari A, Pons E, Bompard E, Patti E, and Acquaviva A (2016). Emerging smart meters in electrical distribution systems: Opportunities and challenges. In the 24th Iranian Conference on Electrical Engineering, IEEE, Shiraz, Iran: 1082-1087. https://doi.org/10.1109/IranianCEE.2016.7585682   [Google Scholar]
  17. Behera S, Pattnaik BS, Reza M, and Roy DS (2016). Predicting consumer loads for improved power scheduling in smart homes. In: Behera H and Mohapatra D (Eds.), The computational intelligence in data mining: 463-473. Volume 2, Springer, New Delhi. India. https://doi.org/10.1007/978-81-322-2731-1_44   [Google Scholar]
  18. Beier J, Thiede S, and Herrmann C (2017). Energy flexibility of manufacturing systems for variable renewable energy supply integration: Real-time control method and simulation. Journal of Cleaner Production, 141: 648-661. https://doi.org/10.1016/j.jclepro.2016.09.040   [Google Scholar]
  19. Belaid F and Youssef M (2017). Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria. Energy Policy, 102: 277-287. https://doi.org/10.1016/j.enpol.2016.12.012   [Google Scholar]
  20. Belhaiza S and Baroudi U (2014). A game theoretic model for smart grids demand management. IEEE Transactions on Smart Grid, 6(3): 1386-1393. https://doi.org/10.1109/TSG.2014.2376632   [Google Scholar]
  21. Bhati A, Hansen M, and Chan CM (2017). Energy conservation through smart homes in a smart city: A lesson for Singapore households. Energy Policy, 104: 230-239. https://doi.org/10.1016/j.enpol.2017.01.032   [Google Scholar]
  22. Borges FA, Fernandes RA, Silva IN, and Silva CB (2015). Feature extraction and power quality disturbances classification using smart meters signals. IEEE Transactions on Industrial Informatics, 12(2): 824-833. https://doi.org/10.1109/TII.2015.2486379   [Google Scholar]
  23. Cetin KS, Tabares-Velasco PC, and Novoselac A (2014). Appliance daily energy use in new residential buildings: Use profiles and variation in time-of-use. Energy and Buildings, 84: 716-726. https://doi.org/10.1016/j.enbuild.2014.07.045   [Google Scholar]
  24. Chavali P, Yang P, and Nehorai A (2014). A distributed algorithm of appliance scheduling for home energy management system. IEEE Transactions on Smart Grid, 5(1): 282-290. https://doi.org/10.1109/TSG.2013.2291003   [Google Scholar]
  25. Chen Y, Zhao J, Lai Z, Wang Z, and Xia H (2019). Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis. Renewable Energy, 140: 341-353. https://doi.org/10.1016/j.renene.2019.03.058   [Google Scholar]
  26. Derakhshan G, Shayanfar HA, and Kazemi A (2016). The optimization of demand response programs in smart grids. Energy Policy, 94: 295-306. https://doi.org/10.1016/j.enpol.2016.04.009   [Google Scholar]
  27. Dileep G (2020). A survey on smart grid technologies and applications. Renewable Energy, 146: 2589-2625. https://doi.org/10.1016/j.renene.2019.08.092   [Google Scholar]
  28. Essayeh C, El-Fenni MR, and Dahmouni H (2016). Towards an intelligent home energy management system for smart Microgrid applications. In the International Wireless Communications and Mobile Computing Conference, IEEE, Paphos, Cyprus: 1051-1056. https://doi.org/10.1109/IWCMC.2016.7577204   [Google Scholar]
  29. Fadlullah ZM, Quan DM, Kato N, and Stojmenovic I (2013). GTES: An optimized game-theoretic demand-side management scheme for smart grid. IEEE Systems Journal, 8(2): 588-597. https://doi.org/10.1109/JSYST.2013.2260934   [Google Scholar]
  30. Fan W, Liu N, and Zhang J (2016). An event-triggered online energy management algorithm of smart home: Lyapunov optimization approach. Energies, 9(5): 381. https://doi.org/10.3390/en9050381   [Google Scholar]
  31. Farmanbar M, Parham K, Arild Ø, and Rong C (2019). A widespread review of smart grids towards smart cities. Energies, 12(23): 4484. https://doi.org/10.3390/en12234484   [Google Scholar]
  32. Fletcher J and Malalasekera W (2016). Development of a user-friendly, low-cost home energy monitoring and recording system. Energy, 111: 32-46. https://doi.org/10.1016/j.energy.2016.05.027   [Google Scholar]
  33. Gholinejad HR, Loni A, Adabi J, and Marzband M (2020). A hierarchical energy management system for multiple home energy hubs in neighborhood grids. Journal of Building Engineering, 28: 101028. https://doi.org/10.1016/j.jobe.2019.101028   [Google Scholar]
  34. Haes Alhelou H, Hamedani-Golshan ME, Njenda TC, and Siano P (2019). A survey on power system blackout and cascading events: Research motivations and challenges. Energies, 12(4): 682. https://doi.org/10.3390/en12040682   [Google Scholar]
  35. Haider HT, See OH, and Elmenreich W (2016). A review of residential demand response of smart grid. Renewable and Sustainable Energy Reviews, 59: 166-178. https://doi.org/10.1016/j.rser.2016.01.016   [Google Scholar]
  36. Han DM and Lim JH (2010). Smart home energy management system using IEEE 802.15. 4 and zigbee. IEEE Transactions on Consumer Electronics, 56(3): 1403-1410. https://doi.org/10.1109/TCE.2010.5606276   [Google Scholar]
  37. Hansen TM, Chong EK, Suryanarayanan S, Maciejewski AA, and Siegel HJ (2016). A partially observable markov decision process approach to residential home energy management. IEEE Transactions on Smart Grid, 9(2): 1271-1281. https://doi.org/10.1109/TSG.2016.2582701   [Google Scholar]
  38. Hu Q and Li F (2013). Hardware design of smart home energy management system with dynamic price response. IEEE Transactions on Smart grid, 4(4): 1878-1887. https://doi.org/10.1109/TSG.2013.2258181   [Google Scholar]
  39. Huang Y, Wang L, Guo W, Kang Q, and Wu Q (2016). Chance constrained optimization in a home energy management system. IEEE Transactions on Smart Grid, 9(1): 252-260. https://doi.org/10.1109/TSG.2016.2550031   [Google Scholar]
  40. Humayun M, Jhanjhi N, Alruwaili M, Amalathas SS, Balasubramanian V, and Selvaraj B (2020a). Privacy protection and energy optimization for 5g-aided industrial internet of things. IEEE Access, 8: 183665-183677. https://doi.org/10.1109/ACCESS.2020.3028764   [Google Scholar]
  41. Humayun M, Jhanjhi NZ, and Alamri MZ (2020c). Smart secure and energy efficient scheme for e-health applications using IoT: A review. International Journal of Computer Science and Network Security, 20(4): 55-74.   [Google Scholar]
  42. Humayun M, Jhanjhi NZ, Hamid B, and Ahmed G (2020b). Emerging smart logistics and transportation using IoT and blockchain. IEEE Internet of Things Magazine, 3(2): 58-62. https://doi.org/10.1109/IOTM.0001.1900097   [Google Scholar]
  43. Hussain SJ, Irfan M, Jhanjhi NZ, Hussain K, and Humayun M (2020). Performance enhancement in wireless body area networks with secure communication. Wireless Personal Communications, 116: 1-22. https://doi.org/10.1007/s11277-020-07702-7   [Google Scholar]
  44. Jacob S, Alagirisamy M, Menon VG, Kumar BM, Jhanjhi NZ, Ponnusamy V, and Balasubramanian V (2020). An adaptive and flexible brain energized full body exoskeleton with IoT edge for assisting the paralyzed patients. IEEE Access, 8: 100721-100731. https://doi.org/10.1109/ACCESS.2020.2997727   [Google Scholar]
  45. Jhanjhi NZ, Almusalli FA, Brohi SN, and Abdullah A (2018). Middleware power saving scheme for mobile applications. In the 4th International Conference on Advances in Computing, Communication and Automation, IEEE, Subang Jaya, Malaysia: 1-6. https://doi.org/10.1109/ICACCAF.2018.8776711   [Google Scholar]
  46. Kaczmarczyk V, Fiedler P, and Bradáč Z (2016). Thermostatically controlled appliances in the home area network model. IFAC-PapersOnLine, 49(25): 247-253. https://doi.org/10.1016/j.ifacol.2016.12.042   [Google Scholar]
  47. Kempton W and Letendre SE (1997). Electric vehicles as a new power source for electric utilities. Transportation Research Part D: Transport and Environment, 2(3): 157-175. https://doi.org/10.1016/S1361-9209(97)00001-1   [Google Scholar]
  48. Khan I (2019). Energy-saving behaviour as a demand-side management strategy in the developing world: The case of Bangladesh. International Journal of Energy and Environmental Engineering, 10(4): 493-510. https://doi.org/10.1007/s40095-019-0302-3   [Google Scholar]
  49. Khomami HP and Javidi MH (2013). An efficient home energy management system for automated residential demand response. In the 13th International Conference on Environment and Electrical Engineering, IEEE, Wroclaw, Poland: 307-312. https://doi.org/10.1109/EEEIC-2.2013.6737927   [Google Scholar]
  50. Kim SC, Ray P, and Reddy SS (2019). Features of smart grid technologies: An overview. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 17(2): 169-180.   [Google Scholar]
  51. Kunwar N, Yash K, and Kumar R (2013). Area-load based pricing in DSM through ANN and heuristic scheduling. IEEE Transactions on Smart Grid, 4(3): 1275-1281. https://doi.org/10.1109/TSG.2013.2262059   [Google Scholar]
  52. Lee S, Kim J, and Shon T (2016). User privacy-enhanced security architecture for home area network of Smartgrid. Multimedia Tools and Applications, 75(20): 12749-12764. https://doi.org/10.1007/s11042-016-3252-2   [Google Scholar]
  53. Liu Z, Zhang Y, Wang Y, Wei N, and Gu C (2020). Development of the interconnected power grid in Europe and suggestions for the energy internet in China. Global Energy Interconnection, 3(2): 111-119. https://doi.org/10.1016/j.gloei.2020.05.003   [Google Scholar]
  54. Mahmood D, Javaid N, Alrajeh N, Khan ZA, Qasim U, Ahmed I, and Ilahi M (2016c). Realistic scheduling mechanism for smart homes. Energies, 9(3): 202. https://doi.org/10.3390/en9030202   [Google Scholar]
  55. Mahmood D, Javaid N, and Ilahi M (2016a). Home energy management using multi agent system for web based grids. In the International Conference on Frontiers of Information Technology, IEEE, Islamabad, Pakistan: 342-347. https://doi.org/10.1109/FIT.2016.069   [Google Scholar] PMid:27832044
  56. Mahmood D, Javaid N, Nouman U, Urrahman A, Khan ZA, and Qasim U (2016b). Comparative analysis of energy management solutions focusing practical implementation. In the 10th International Conference on Complex, Intelligent, and Software Intensive Systems, IEEE, Fukuoka, Japan, 271-277. https://doi.org/10.1109/CISIS.2016.126   [Google Scholar] PMid:28280431 PMCid:PMC5321247
  57. Manic M, Amarasinghe K, Rodriguez-Andina JJ, and Rieger C (2016). Intelligent buildings of the future: Cyberaware, deep learning powered, and human interacting. IEEE Industrial Electronics Magazine, 10(4): 32-49. https://doi.org/10.1109/MIE.2016.2615575   [Google Scholar]
  58. Marzband M, Alavi H, Ghazimirsaeid SS, Uppal H, and Fernando T (2017). Optimal energy management system based on stochastic approach for a home Microgrid with integrated responsive load demand and energy storage. Sustainable Cities and Society, 28: 256-264. https://doi.org/10.1016/j.scs.2016.09.017   [Google Scholar]
  59. Mauser I, Müller J, Allerding F, and Schmeck H (2016). Adaptive building energy management with multiple commodities and flexible evolutionary optimization. Renewable Energy, 87: 911-921. https://doi.org/10.1016/j.renene.2015.09.003   [Google Scholar]
  60. Meng FL and Zeng XJ (2014). An optimal real-time pricing for demand-side management: A Stackelberg game and genetic algorithm approach. In the International Joint Conference on Neural Networks, IEEE, Beijing, China: 1703-1710. https://doi.org/10.1109/IJCNN.2014.6889608   [Google Scholar]
  61. Meng FL and Zeng XJ (2015). A profit maximization approach to demand response management with customers behaviour learning in smart grid. IEEE Transactions on Smart Grid, 7(3): 1516-1529. https://doi.org/10.1109/TSG.2015.2462083   [Google Scholar]
  62. Mesarić P and Krajcar S (2015). Home demand side management integrated with electric vehicles and renewable energy sources. Energy and Buildings, 108: 1-9. https://doi.org/10.1016/j.enbuild.2015.09.001   [Google Scholar]
  63. Mishra SK, Mishra S, Alsayat A, Jhanjhi NZ, Humayun M, Sahoo KS, and Luhach AK (2020). Energy-aware task allocation for multi-cloud networks. IEEE Access, 8: 178825-178834. https://doi.org/10.1109/ACCESS.2020.3026875   [Google Scholar]
  64. Missaoui R, Joumaa H, Ploix S, and Bacha S (2014). Managing energy smart homes according to energy prices: Analysis of a building energy management system. Energy and Buildings, 71: 155-167. https://doi.org/10.1016/j.enbuild.2013.12.018   [Google Scholar]
  65. Molokomme DN, Chabalala CS, and Bokoro PN (2020). A review of cognitive radio smart grid communication infrastructure systems. Energies, 13(12): 3245. https://doi.org/10.3390/en13123245   [Google Scholar]
  66. Moretti M, Djomo SN, Azadi H, May K, De Vos K, Van Passel S, and Witters N (2017). A systematic review of environmental and economic impacts of smart grids. Renewable and Sustainable Energy Reviews, 68: 888-898. https://doi.org/10.1016/j.rser.2016.03.039   [Google Scholar]
  67. Nekouei E, Alpcan T, and Chattopadhyay D (2014). Game-theoretic frameworks for demand response in electricity markets. IEEE Transactions on Smart Grid, 6(2): 748-758. https://doi.org/10.1109/TSG.2014.2367494   [Google Scholar]
  68. Nguyen HK, Song JB, and Han Z (2012). Demand side management to reduce peak-to-average ratio using game theory in smart grid. In the Proceedings IEEE INFOCOM Workshops, IEEE, Orlando, USA: 91-96. https://doi.org/10.1109/INFCOMW.2012.6193526   [Google Scholar] PMCid:PMC3619971
  69. Niyato D, Xiao L, and Wang P (2011). Machine-to-machine communications for home energy management system in smart grid. IEEE Communications Magazine, 49(4): 53-59. https://doi.org/10.1109/MCOM.2011.5741146   [Google Scholar]
  70. Nunna HK, Battula S, Doolla S, and Srinivasan D (2016). Energy management in smart distribution systems with vehicle-to-grid integrated microgrids. IEEE Transactions on Smart Grid, 9(5): 4004-4016. https://doi.org/10.1109/TSG.2016.2646779   [Google Scholar]
  71. Olatomiwa L, Mekhilef S, Ismail MS, and Moghavvemi M (2016). Energy management strategies in hybrid renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 62: 821-835. https://doi.org/10.1016/j.rser.2016.05.040   [Google Scholar]
  72. Olsen DJ, Sarker MR, and Ortega-Vazquez MA (2016). Optimal penetration of home energy management systems in distribution networks considering transformer aging. IEEE Transactions on Smart Grid, 9(4): 3330-3340. https://doi.org/10.1109/TSG.2016.2630714   [Google Scholar]
  73. Palensky P and Dietrich D (2011). Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Transactions on Industrial Informatics, 7(3): 381-388. https://doi.org/10.1109/TII.2011.2158841   [Google Scholar]
  74. Pires VF, Cordeiro A, Roncero-Clemente C, and Martins JF (2019). Control strategy for a four-wire t-type qZSI based PV system to support grids with unbalanced non-linear loads. In the 13th International Conference on Compatibility, Power Electronics and Power Engineering, IEEE, Sonderborg, Denmark: 1-6. https://doi.org/10.1109/CPE.2019.8862353   [Google Scholar] PMCid:PMC6535083
  75. Proietti S, Sdringola P, Castellani F, Astolfi D, and Vuillermoz E (2017). On the contribution of renewable energies for feeding a high altitude smart mini grid. Applied Energy, 185: 1694-1701. https://doi.org/10.1016/j.apenergy.2015.12.056   [Google Scholar]
  76. Rasheed MB, Javaid N, Ahmad A, Jamil M, Khan ZA, Qasim U, and Alrajeh N (2016). Energy optimization in smart homes using customer preference and dynamic pricing. Energies, 9(8): 593. https://doi.org/10.3390/en9080593   [Google Scholar]
  77. Rasheed MB, Javaid N, Ahmad A, Khan ZA, Qasim U, and Alrajeh N (2015). An efficient power scheduling scheme for residential load management in smart homes. Applied Sciences, 5(4): 1134-1163. https://doi.org/10.3390/app5041134   [Google Scholar]
  78. Razmjoo A, Kaigutha LG, Rad MV, Marzband M, Davarpanah A, and Denai M (2020). A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renewable Energy, 164: 46-57. https://doi.org/10.1016/j.renene.2020.09.042   [Google Scholar]
  79. Rehman A, Rauf A, Ahmad M, Chandio AA, and Deyuan Z (2019). The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: Evidence from Pakistan. Environmental Science and Pollution Research, 26(21): 21760-21773. https://doi.org/10.1007/s11356-019-05550-y   [Google Scholar] PMid:31134543
  80. Saad AA, Faddel S, and Mohammed O (2019). A secured distributed control system for future interconnected smart grids. Applied Energy, 243: 57-70. https://doi.org/10.1016/j.apenergy.2019.03.185   [Google Scholar]
  81. Saghezchi FB, Saghezchi FB, Nascimento A, and Rodriguez J (2014). Game theory and pricing strategies for demand-side management in the smart grid. In the 9th International Symposium on Communication Systems, Networks and Digital Sign, IEEE, Manchester, UK: 883-887. https://doi.org/10.1109/CSNDSP.2014.6923953   [Google Scholar]
  82. Saha A, Kuzlu M, Pipattanasomporn M, and Rahman S (2016). Enabling residential demand response applications with a zigbee-based load controller system. Intelligent Industrial Systems, 2(4): 303-318. https://doi.org/10.1007/s40903-016-0059-4   [Google Scholar]
  83. Salpakari J and Lund P (2016). Optimal and rule-based control strategies for energy flexibility in buildings with PV. Applied Energy, 161: 425-436. https://doi.org/10.1016/j.apenergy.2015.10.036   [Google Scholar]
  84. Sama NU, Zen K, Rahman AU, and Bibi B (2019a). Routing hole mitigation by edge based multi-hop cluster-based routing protocol in wireless sensor network. International Journal of Computer Science and Network Security, 19(1): 253-260.   [Google Scholar]
  85. Sama NU, Zen KB, Rahman AU, and Din AU (2019b). Energy-aware routing hole detection algorithm in the hierarchical wireless sensor network. International Journal of Advanced Computer Science and Applications, 10: 249-253. https://doi.org/10.14569/IJACSA.2019.0100332   [Google Scholar]
  86. Samadi A, Saidi H, Latify MA, and Mahdavi M (2020). Home energy management system based on task classification and the resident’s requirements. International Journal of Electrical Power and Energy Systems, 118: 105815. https://doi.org/10.1016/j.ijepes.2019.105815   [Google Scholar]
  87. Santos SF, Fitiwi DZ, Cruz MR, Cabrita CM, and Catalão JP (2017). Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems. Applied Energy, 185: 44-55. https://doi.org/10.1016/j.apenergy.2016.10.053   [Google Scholar]
  88. Saponara S, Saletti R, and Mihet-Popa L (2019). Hybrid micro-grids exploiting renewables sources, battery energy storages, and bi-directional converters. Applied Sciences, 9(22): 4973. https://doi.org/10.3390/app9224973   [Google Scholar]
  89. Sarker E, Halder P, Seyedmahmoudian M, Jamei E, Horan B, Mekhilef S, and Stojcevski A (2021). Progress on the demand side management in smart grid and optimization approaches. International Journal of Energy Research, 45(1): 36-64. https://doi.org/10.1002/er.5631   [Google Scholar]
  90. Sehar F, Pipattanasomporn M, and Rahman S (2016). An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings. Applied Energy, 173: 406-417. https://doi.org/10.1016/j.apenergy.2016.04.039   [Google Scholar]
  91. Sharma K and Saini LM (2017). Power-line communications for smart grid: Progress, challenges, opportunities and status. Renewable and Sustainable Energy Reviews, 67: 704-751. https://doi.org/10.1016/j.rser.2016.09.019   [Google Scholar]
  92. Shateri M, Messina F, Piantanida P, and Labeau F (2020). Real-time privacy-preserving data release for smart meters. IEEE Transactions on Smart Grid, 11(6): 5174-5183. https://doi.org/10.1109/TSG.2020.3005634   [Google Scholar]
  93. Sianaki OA and Masoum MA (2013). A fuzzy TOPSIS approach for home energy management in smart grid with considering householders' preferences. In the IEEE PES Innovative Smart Grid Technologies Conference, IEEE, Washington, USA: 1-6. https://doi.org/10.1109/ISGT.2013.6497819   [Google Scholar]
  94. Singhal V, Jain SS, Anand D, Singh A, Verma S, Rodrigues JJ, and Iwendi C (2020). Artificial intelligence enabled road vehicle-train collision risk assessment framework for unmanned railway level crossings. IEEE Access, 8: 113790-113806. https://doi.org/10.1109/ACCESS.2020.3002416   [Google Scholar]
  95. Soliman HM and Leon-Garcia A (2014). Game-theoretic demand-side management with storage devices for the future smart grid. IEEE Transactions on Smart Grid, 5(3): 1475-1485. https://doi.org/10.1109/TSG.2014.2302245   [Google Scholar]
  96. Song L, Xiao Y, and van der Schaar M (2014). Non-stationary demand side management method for smart grids. In the IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Florence, Italy: 7759-7763. https://doi.org/10.1109/ICASSP.2014.6855110   [Google Scholar]
  97. Sovacool BK and Del Rio DDF (2020). Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renewable and Sustainable Energy Reviews, 120: 109663. https://doi.org/10.1016/j.rser.2019.109663   [Google Scholar]
  98. Stephens ER, Smith DB, and Mahanti A (2014). Game theoretic model predictive control for distributed energy demand-side management. IEEE Transactions on Smart Grid, 6(3): 1394-1402. https://doi.org/10.1109/TSG.2014.2377292   [Google Scholar]
  99. Subbiah R, Lum K, Marathe A, and Marathe M (2013). Activity based energy demand modeling for residential buildings. In the IEEE PES Innovative Smart Grid Technologies Conference, IEEE, Washington, USA: 1-6. https://doi.org/10.1109/ISGT.2013.6497822   [Google Scholar]
  100. Tang R, Wang S, and Li H (2019). Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids. Applied Energy, 250: 118-130. https://doi.org/10.1016/j.apenergy.2019.04.177   [Google Scholar]
  101. Tsai CW, Pelov A, Chiang MC, Yang CS, and Hong TP (2014). Computational awareness for smart grid: A review. International Journal of Machine Learning and Cybernetics, 5(1): 151-163. https://doi.org/10.1007/s13042-013-0185-1   [Google Scholar]
  102. Tushar MHK and Assi C (2017). Volt-VAR control through joint optimization of capacitor bank switching, renewable energy, and home appliances. IEEE Transactions on Smart Grid, 9(5): 4077-4086. https://doi.org/10.1109/TSG.2017.2648509   [Google Scholar]
  103. Whiffen TR, Naylor S, Hill J, Smith L, Callan PA, Gillott M, and Riffat SB (2016). A concept review of power line communication in building energy management systems for the small to medium sized non-domestic built environment. Renewable and Sustainable Energy Reviews, 64: 618-633. https://doi.org/10.1016/j.rser.2016.06.069   [Google Scholar]
  104. Xiang Y, Liu J, and Liu Y (2015). Robust energy management of microgrid with uncertain renewable generation and load. IEEE Transactions on Smart Grid, 7(2): 1034-1043. https://doi.org/10.1109/TSG.2014.2385801   [Google Scholar]
  105. Yaagoubi N and Mouftah HT (2014). User-aware game theoretic approach for demand management. IEEE Transactions on Smart Grid, 6(2): 716-725. https://doi.org/10.1109/TSG.2014.2363098   [Google Scholar]
  106. Yao E, Samadi P, Wong VW, and Schober R (2015). Residential demand side management under high penetration of rooftop photovoltaic units. IEEE Transactions on Smart Grid, 7(3): 1597-1608. https://doi.org/10.1109/TSG.2015.2472523   [Google Scholar]
  107. Yao H and Zang C (2021). The spatiotemporal characteristics of electrical energy supply-demand and the green economy outlook of Guangdong Province, China. Energy, 214: 118891. https://doi.org/10.1016/j.energy.2020.118891   [Google Scholar]
  108. Zen K and Ur-Rahman A (2017). An extensive survey on performance comparison of routing protocols in wireless sensor network. Journal of Applied Sciences, 17(5): 238-245. https://doi.org/10.3923/jas.2017.238.245   [Google Scholar]
  109. Zhang N, Ochoa LF, and Kirschen DS (2011). Investigating the impact of demand side management on residential customers. In the 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, IEEE, Manchester, UK: 1-6. https://doi.org/10.1109/ISGTEurope.2011.6162699   [Google Scholar]
  110. Zhao J, Liu J, Qin Z, and Ren K (2016a). Privacy protection scheme based on remote anonymous attestation for trusted smart meters. IEEE Transactions on Smart Grid, 9(4): 3313-3320. https://doi.org/10.1109/TSG.2016.2626317   [Google Scholar]
  111. Zhao Z, Agbossou K, and Cardenas A (2016b). Connectivity for home energy management applications. In the IEEE PES Asia-Pacific Power and Energy Engineering Conference, IEEE, Xi'an, China: 2175-2180. https://doi.org/10.1109/APPEEC.2016.7779872   [Google Scholar]
  112. Zhao Z, Lee WC, Shin Y, and Song KB (2013). An optimal power scheduling method for demand response in home energy management system. IEEE Transactions on Smart Grid, 4(3): 1391-1400. https://doi.org/10.1109/TSG.2013.2251018   [Google Scholar]