International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 4 (April 2021), Pages: 110-116

----------------------------------------------

 Original Research Paper

 Title: The effects of age, gender, education, and APOE on the transitions from a cognitively normal state to mild cognitive impairment and dementia

 Author(s): Badr Alnasser *

 Affiliation(s):

 Department of Health Management, College of Public Health and Health Informatics, University of Ha’il, Ha’il, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-7787-7412

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.04.013

 Abstract:

To determine the effects of a number of risk factors on the transition from a cognitively normal state to mild cognitive impairment (MCI), as transient states, and then to dementia and death, as absorbing states. The study used the data of 8,456 subjects obtained from the Uniform Data Set (UDS) conducted by the National Alzheimer Coordinating Center (NACC), and categorized them into four cognitive states; normal and MCI (transient states), dementia, and death (absorbing states). Then, statistical analysis was conducted to obtain how age, gender, educational attainment, and presence of apolipoprotein 4 allele (APOE) affect the odds of transitioning from one cognitive state to another, and to death as a competing state. Both age and APOE risk had profound effects on the cognitive transition of subjects from one state to another, and to a lesser extent, gender and education attainment. This study has contributed more evidence that risk factors like age, presence of apolipoprotein 4 allele (APOE), and to a lesser extent, education and gender have significant effects in all or some of the transitions from one cognitive state to another among elderly people. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Risk factors, Elderly, Apolipoprotein 4 allele, Cognitive impairment, Dementia

 Article History: Received 16 September 2020, Received in revised form 23 December 2020, Accepted 31 December 2020

 Acknowledgment:

The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD).

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Alnasser B (2021). The effects of age, gender, education, and APOE on the transitions from a cognitively normal state to mild cognitive impairment and dementia. International Journal of Advanced and Applied Sciences, 8(4): 110-116

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2

----------------------------------------------

 References (34)

  1. Abner EL, Nelson PT, Schmitt FA, Browning SR, Fardo DW, Wan L, and Van Eldik LJ (2014). Self-reported head injury and risk of late-life impairment and AD pathology in an AD center cohort. Dementia and Geriatric Cognitive Disorders, 37(5-6): 294-306. https://doi.org/10.1159/000355478   [Google Scholar] PMid:24401791 PMCid:PMC4057973
  2. ADEAR (2012). Assessing risk factors for cognitive decline and dementia. Alzheimer's Disease Education and Referral Center, Silver Spring, Washington, USA.   [Google Scholar]
  3. Alzheimer's Association (2015). Women with mild cognitive impairment decline twice as fast as men with the condition; women at significantly higher risk for cognitive and functional decline after surgery/general anesthesia. Alzheimer's Association, Chicago, USA.   [Google Scholar]
  4. ASC (2013). What is dementia? Alzheimer's Society Charity, London, UK. Available online at: https://www.alzheimers.org.uk/site/scripts/documents_info.php?documentID=106
  5. Bonaiuto S, Rocca WA, Lippi A, Giannandrea E, Mele M, Cavarzeran F, and Amaducci L (1995). Education and occupation as risk factors for dementia: A population-based case-control study. Neuroepidemiology, 14(3): 101-109. https://doi.org/10.1159/000109785   [Google Scholar] PMid:7777124
  6. Bruscoli M and Lovestone S (2004). Is MCI really just early dementia? A systematic review of conversion studies. International Psychogeriatrics, 16(2): 129-140. https://doi.org/10.1017/S1041610204000092   [Google Scholar] PMid:15318760
  7. Chêne G, Beiser A, Au R, Preis SR, Wolf PA, Dufouil C, and Seshadri S (2015). Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimer's and Dementia, 11(3): 310-320. https://doi.org/10.1016/j.jalz.2013.10.005   [Google Scholar] PMid:24418058 PMCid:PMC4092061
  8. Cheng G, Huang C, Deng H, and Wang H (2012). Diabetes as a risk factor for dementia and mild cognitive impairment: A meta‐analysis of longitudinal studies. Internal Medicine Journal, 42(5): 484-491. https://doi.org/10.1111/j.1445-5994.2012.02758.x   [Google Scholar] PMid:22372522
  9. DeCarli C, Mungas D, Harvey D, Reed B, Weiner M, Chui H, and Jagust W2 (2004). Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology, 63(2): 220-227. https://doi.org/10.1212/01.WNL.0000130531.90205.EF   [Google Scholar] PMid:15277612 PMCid:PMC1820872
  10. Dekhtyar S, Wang HX, Scott K, Goodman A, Koupil I, and Herlitz A (2015). A life-course study of cognitive reserve in dementia-From childhood to old age. The American Journal of Geriatric Psychiatry, 23(9): 885-896. https://doi.org/10.1016/j.jagp.2015.02.002   [Google Scholar] PMid:25746486
  11. Etgen T, Sander D, Bickel H, and Förstl H (2011). Mild cognitive impairment and dementia: The importance of modifiable risk factors. Deutsches Ärzteblatt International, 108(44): 743-750. https://doi.org/10.3238/arztebl.2011.0743   [Google Scholar] PMid:22163250 PMCid:PMC3226957
  12. Gureje O, Ogunniyi A, Kola L, and Abiona T (2011). Incidence of and risk factors for dementia in the Ibadan study of aging. Journal of the American Geriatrics Society, 59(5): 869-874. https://doi.org/10.1111/j.1532-5415.2011.03374.x   [Google Scholar] PMid:21568957 PMCid:PMC3173843
  13. Huntley J, Corbett A, Wesnes K, Brooker H, Stenton R, Hampshire A, and Ballard C (2017). Online assessment of risk factors for dementia and cognitive function in healthy adults. International Journal of Geriatric Psychiatry, 33(2): e286-e293. https://doi.org/10.1002/gps.4790   [Google Scholar] PMid:28960500
  14. Kim S, Kim MJ, Kim S, Kang HS, Lim SW, Myung W, and Seo SW (2015). Gender differences in risk factors for transition from mild cognitive impairment to Alzheimer’s disease: A CREDOS study. Comprehensive Psychiatry, 62: 114-122. https://doi.org/10.1016/j.comppsych.2015.07.002   [Google Scholar] PMid:26343475
  15. Kivipelto M, Helkala EL, Hänninen T, Laakso MP, Hallikainen M, Alhainen K, and Nissinen A (2001). Midlife vascular risk factors and late-life mild cognitive impairment: A population-based study. Neurology, 56(12): 1683-1689. https://doi.org/10.1212/WNL.56.12.1683   [Google Scholar] PMid:11425934
  16. Knickman JR and Snell EK (2002). The 2030 problem: Caring for aging baby boomers. Health Services Research, 37(4): 849-884. https://doi.org/10.1034/j.1600-0560.2002.56.x   [Google Scholar] PMid:12236388 PMCid:PMC1464018
  17. Kryscio RJ, Schmitt FA, Salazar JC, Mendiondo MS, and Markesbery WR (2006). Risk factors for transitions from normal to mild cognitive impairment and dementia. Neurology, 66(6): 828-832. https://doi.org/10.1212/01.wnl.0000203264.71880.45   [Google Scholar] PMid:16567698
  18. Launer LJ, Andersen K, Dewey M, Letenneur L, Ott A, Amaducci LA, and Lobo A (1999). Rates and risk factors for dementia and Alzheimer’s disease: Results from EURODEM pooled analyses. Neurology, 52(1): 78-84. https://doi.org/10.1212/WNL.52.1.78   [Google Scholar] PMid:9921852
  19. Lautenschlager NT, Flicker L, Vasikaran S, Leedman P, and Almeida OP (2005). Subjective memory complaints with and without objective memory impairment: Relationship with risk factors for dementia. The American Journal of Geriatric Psychiatry, 13(8): 731-734. https://doi.org/10.1097/00019442-200508000-00013   [Google Scholar]
  20. Liang JH, Lu L, Li JY, Qu XY, Li J, Qian S, and Xu Y (2020). Contributions of modifiable risk factors to dementia incidence: A Bayesian network analysis. Journal of the American Medical Directors Association, 21(11): 1592-1599. https://doi.org/10.1016/j.jamda.2020.04.006   [Google Scholar] PMid:32563753
  21. Luck T, Riedel‐Heller SG, Luppa M, Wiese B, Wollny A, Wagner M, and Moesch E (2010). Risk factors for incident mild cognitive impairment–results from the German study on ageing, cognition and dementia in primary care patients (AgeCoDe). Acta Psychiatrica Scandinavica, 121(4): 260-272. https://doi.org/10.1111/j.1600-0447.2009.01481.x   [Google Scholar] PMid:19824992
  22. Morris JC, Weintraub S, Chui HC, Cummings J, DeCarli C, Ferris S, and Beekly D (2006). The uniform data set (UDS): Clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Disease and Associated Disorders, 20(4): 210-216. https://doi.org/10.1097/01.wad.0000213865.09806.92   [Google Scholar] PMid:17132964
  23. NACC (2017). Description of the NACC database. National Alzheimer's Coordinating Center, Rainsville, USA.   [Google Scholar]
  24. Ochayi B and Thacher TD (2006). Risk factors for dementia in central Nigeria. Aging and Mental Health, 10(6): 616-620. https://doi.org/10.1080/13607860600736182   [Google Scholar] PMid:17050090
  25. Persson G and Skoog I (1996). A prospective population study of psychosocial risk factors for late onset dementia. International Journal of Geriatric Psychiatry, 11(1): 15-22. https://doi.org/10.1002/(SICI)1099-1166(199601)11:1<15::AID-GPS262>3.0.CO;2-5   [Google Scholar]
  26. Podcasy JL and Epperson CN (2016). Considering sex and gender in Alzheimer disease and other dementias. Dialogues in clinical neuroscience, 18(4): 437–446. https://doi.org/10.31887/DCNS.2016.18.4/cepperson   [Google Scholar] PMid:28179815 PMCid:PMC5286729
  27. Roberts RO, Knopman DS, Mielke MM, Cha RH, Pankratz VS, Christianson TJ, and Rocca WA (2014). Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology, 82(4): 317-325. https://doi.org/10.1212/WNL.0000000000000055   [Google Scholar] PMid:24353333 PMCid:PMC3929198
  28. SAS (2013). SAS 9.4 product documentation. SAS Institute Inc., Cary, USA.   [Google Scholar]
  29. Solfrizzi V, Panza F, Colacicco AM, D’introno A, Capurso C, Torres F, and Caselli RJ (2004). Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology, 63(10): 1882-1891. https://doi.org/10.1212/01.WNL.0000144281.38555.E3   [Google Scholar] PMid:15557506
  30. Spackman DE, Kadiyala S, Neumann PJ, Veenstra DL, and Sullivan SD (2012). Measuring Alzheimer disease progression with transition probabilities: Estimates from NACC-UDS. Current Alzheimer Research, 9(9): 1050-1058. https://doi.org/10.2174/156720512803569046   [Google Scholar] PMid:22175655
  31. USDHHS (2011). Cognitive impairment: A call for action, now! U.S. Department of Health and Human Services, Washington, USA.   [Google Scholar]
  32. Wang HX, MacDonald SW, Dekhtyar S, and Fratiglioni L (2017). Association of lifelong exposure to cognitive reserve-enhancing factors with dementia risk: A community-based cohort study. PLoS Medicine, 14(3): e1002251. https://doi.org/10.1371/journal.pmed.1002251   [Google Scholar] PMid:28291786 PMCid:PMC5349652
  33. Xu W, Tan L, Wang HF, Tan MS, Tan L, Li JQ, and Yu JT (2016). Education and risk of dementia: Dose-response meta-analysis of prospective cohort studies. Molecular Neurobiology, 53(5): 3113-3123. https://doi.org/10.1007/s12035-015-9211-5   [Google Scholar] PMid:25983035
  34. Zhou Z, Wang P, and Fang Y (2017). Loneliness and the risk of dementia among older Chinese adults: Gender differences. Aging and Mental Health, 22(4): 519-525. https://doi.org/10.1080/13607863.2016.1277976   [Google Scholar] PMid:28094555