International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 4 (April 2021), Pages: 89-97

----------------------------------------------

 Original Research Paper

 Title: A new generalization of the inverse Lomax distribution with statistical properties and applications

 Author(s): Amal S. Hassan 1, *, Amer Ibrahim Al-Omar 2, Doaa M. Ismail 1, 3, Ayed Al-Anzi 4

 Affiliation(s):

 1Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt
 2Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan
 3Modern Academy for Engineering and Technology, Cairo, Egypt
 4Department of Mathematics, College of Science and Human Studies at Hotat Sudair, Majmaah University, Majmaah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-4442-8458

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.04.011

 Abstract:

In this paper, we introduce a new generalization of the inverse Lomax distribution with one extra shape parameter, the so-called power inverse Lomax (PIL) distribution, derived by using the power transformation method. We provide a more flexible density function with right-skewed, uni-modal, and reversed J-shapes. The new three-parameter lifetime distribution capable of modeling decreasing, Reversed-J and upside-down hazard rates shapes. Some statistical properties of the PIL distribution are explored, such as quantile measure, moments, moment generating function, incomplete moments, residual life function, and entropy measure. The estimation of the model parameters is discussed using maximum likelihood, least squares, and weighted least squares methods. A simulation study is carried out to compare the efficiencies of different methods of estimation. This study indicated that the maximum likelihood estimates are more efficient than the corresponding least squares and weighted least squares estimates in approximately most of the situations Also, the mean square errors for all estimates are decreasing as the sample size increases. Further, two real data applications are provided in order to examine the flexibility of the PIL model by comparing it with some known distributions. The PIL model offers a more flexible distribution for modeling lifetime data and provides better fits than other models such as inverse Lomax, inverse Weibull, and generalized inverse Weibull. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Inverse Lomax distribution, Moments, Order statistics, Maximum likelihood estimation, Power transformation

 Article History: Received 2 October 2020, Received in revised form 22 December 2020, Accepted 23 December 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Hassan AS, Al-Omar AI, and Ismail DM et al. (2021). A new generalization of the inverse Lomax distribution with statistical properties and applications. International Journal of Advanced and Applied Sciences, 8(4): 89-97

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 

----------------------------------------------

 References (28)

  1. Al-Omari AI (2010). Estimation of the population median of symmetric and asymmetric distributions using double robust extreme ranked set sampling. Investigación Operacional, 31: 200-208.   [Google Scholar]
  2. Al-Omari AI (2011). Estimation of mean based on modified robust extreme ranked set sampling. Journal of Statistical Computation and Simulation, 81(8): 1055-1066. https://doi.org/10.1080/00949651003649161   [Google Scholar]
  3. Al-Saleh MF and Al-Omari AI (2002). Multistage ranked set sampling. Journal of Statistical Planning and Inference, 102(2): 273-286. https://doi.org/10.1016/S0378-3758(01)00086-6   [Google Scholar]
  4. Atkinson A and Harrison A (1978). Distribution of personal wealth in Britain. Cambridge University Press, Cambridge, UK.   [Google Scholar]
  5. Corbellini A, Crosato L, Ganugi P, and Mazzoli M (2010). Fitting Pareto II distributions on firm size: Statistical methodology and economic puzzles. In: Skiadas C (Ed.), Advances in data analysis, statistics for industry and technology: 321-328. Birkhäuser, Boston, USA. https://doi.org/10.1007/978-0-8176-4799-5_26   [Google Scholar]
  6. Cordeiro GM, Ortega EM, and Popović BV (2015). The Gamma-Lomax distribution. Journal of Statistical Computation and Simulation, 85(2): 305-319. https://doi.org/10.1080/00949655.2013.822869   [Google Scholar]
  7. Ghitany ME, Al-Awadhi FA, and Alkhalfan L (2007). Marshall–Olkin extended Lomax distribution and its application to censored data. Communications in Statistics—Theory and Methods, 36(10): 1855-1866. https://doi.org/10.1080/03610920601126571   [Google Scholar]
  8. Haq A, Brown J, Moltchanova E, and Al-Omari AI (2014a). Mixed ranked set sampling design. Journal of Applied Statistics, 41(10): 2141-2156. https://doi.org/10.1080/02664763.2014.909781   [Google Scholar]
  9. Haq A, Brown J, Moltchanova E, and Al-Omari AI (2014b). Ordered double ranked set samples and applications to inference. American Journal of Mathematical and Management Sciences, 33(4): 239-260. https://doi.org/10.1080/01966324.2014.929988   [Google Scholar]
  10. Harris CM (1968). The Pareto distribution as a queue service discipline. Operations Research, 16(2): 307-313. https://doi.org/10.1287/opre.16.2.307   [Google Scholar]
  11. Hassan A, Elgarhy M, and Mohamed R (2020). Statistical properties and estimation of type II half logistic Lomax distribution. Thailand Statistician, 18(3): 290-305.   [Google Scholar]
  12. Hassan AS and Abd-Allah M (2018). Exponentiated Weibull-Lomax distribution: Properties and estimation. Journal of Data Science, 16(2): 277-298. https://doi.org/10.6339/JDS.201804_16(2).0004   [Google Scholar]
  13. Hassan AS and Abdelghafar MA (2017). Exponentiated Lomax geometric distribution: Properties and applications. Pakistan Journal of Statistics and Operation Research, 13: 545-566. https://doi.org/10.18187/pjsor.v13i3.1437   [Google Scholar]
  14. Hassan AS and Al-Ghamdi A (2009). Optimum step stress accelerated life testing for Lomax distribution. Journal of Applied Sciences Research, 5(12): 2153–2164.   [Google Scholar]
  15. Hassan AS and Nassr SG (2018). Power Lomax poisson distribution: Properties and estimation. Journal of Data Science, 18(1): 105-128. https://doi.org/10.6339/JDS.201801_16(1).0007   [Google Scholar]
  16. Hassan AS, Assar SM, and Shelbaia A (2016). Optimum step-stress accelerated life test plan for Lomax distribution with an adaptive type-II Progressive hybrid censoring. Journal of Advances in Mathematics and Computer Science, 13(2): 1-19. https://doi.org/10.9734/BJMCS/2016/21964   [Google Scholar]
  17. Holland O, Golaup A, and Aghvami AH (2006). Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration. IEE Proceedings-Communications, 153(5): 683-690. https://doi.org/10.1049/ip-com:20045155   [Google Scholar]
  18. Kleiber C (2004). Lorenz ordering of order statistics from log-logistic and related distributions. Journal of Statistical Planning and Inference, 120(1-2): 13-19. https://doi.org/10.1016/S0378-3758(02)00495-0   [Google Scholar]
  19. Kleiber C and Kotz S (2003). Statistical size distributions in economics and actuarial sciences. John Wiley and Sons, Hoboken, USA. https://doi.org/10.1002/0471457175   [Google Scholar]
  20. Lee ET and Wang J (2003). Statistical methods for survival data analysis. Volume 476, John Wiley and Sons, Hoboken, USA. https://doi.org/10.1002/0471458546   [Google Scholar]
  21. Lomax KS (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268): 847-852. https://doi.org/10.1080/01621459.1954.10501239   [Google Scholar]
  22. McKenzie D, Miller C, and Falk DA (2011). The landscape ecology of fire. Springer Science and Business Media, Berlin, Germany. https://doi.org/10.1007/978-94-007-0301-8   [Google Scholar]
  23. Murthy DP, Xie M, and Jiang R (2004). Weibull models. Volume 505, John Wiley and Sons, Hoboken, USA.   [Google Scholar]
  24. Rady EHA, Hassanein WA, and Elhaddad TA (2016). The power Lomax distribution with an application to bladder cancer data. SpringerPlus, 5: 1838. https://doi.org/10.1186/s40064-016-3464-y   [Google Scholar] PMid:27818876 PMCid:PMC5074989
  25. Rahman J and Aslam M (2014). Interval prediction of future order statistics in two-component mixture inverse Lomax model: A Bayesian approach. American Journal of Mathematical and Management Sciences, 33(3): 216-227. https://doi.org/10.1080/01966324.2014.927743   [Google Scholar]
  26. Singh SK, Singh U, and Yadav AS (2016). Reliability estimation for inverse Lomax distribution under type Π censored data using Markov chain Monte Carlo method. International Journal of Mathematics and Statistics, 17(1): 128-146.   [Google Scholar]
  27. Swain JJ, Venkatraman S, and Wilson JR (1988). Least-squares estimation of distribution functions in Johnson's translation system. Journal of Statistical Computation and Simulation, 29(4): 271-297. https://doi.org/10.1080/00949658808811068   [Google Scholar]
  28. Yadav AS, Singh SK, and Singh U (2016). On hybrid censored inverse Lomax distribution: Application to the survival data. Statistica, 76(2): 185-203. https://doi.org/10.1504/IJDS.2017.10009048   [Google Scholar]