International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 9 (September 2020), Pages: 97-103

----------------------------------------------

 Review Paper

 Title: Biometrics authentication techniques: A comparative study

 Author(s): Noor Alyanis, Shukor Razak *, Arafat Al-Dhaqm

 Affiliation(s):

 Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-8824-6069

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.09.015

 Abstract:

Literature confirms that the biometric system lacks security and has numerous limitations and weaknesses. The disadvantages of this system come from the distinctness of biometric signals and the way it collects data and represents individuals, which is dependent on the method adopted to gather data, surroundings, the way users interact with the device, as well as the pathophysiological phenomena that arise due to variations in traits. In addition, this system has many problems in regard to forgery since, for instance, people’s voices can be captured when they are expressing their passwords, the camera is able to take the photo of an iris from across the room, and fingerprints on surfaces can be removed. As a result, a key feature with a high strength against any attacks is needed to be utilized in a way to maximize the biometric system security. To this end, numerous techniques for biometric authentication have been proposed. The present study attempts to introduce different biometric authentication techniques like biometric cryptosystem and palm vein cryptosystem. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Biometric, Cryptosystem, Palm vein, Fuzzy vault scheme

 Article History: Received 20 December 2019, Received in revised form 7 June 2020, Accepted 7 June 2020

 Acknowledgment:

This work was supported by the Ministry of Education Malaysia through TRGS under Grant R.J130000.7813.4L844.

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

 Alyanis N, Razak S, and Al-Dhaqm A (2020). Biometrics authentication techniques: A comparative study. International Journal of Advanced and Applied Sciences, 7(9): 97-103

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7

 Tables

 Table 1

----------------------------------------------

 References (45)

  1. Adler A (2004). Images can be regenerated from quantized biometric match score data. In the Canadian Conference on Electrical and Computer Engineering, IEEE, Niagara Falls, Canada, 1: 469-472.   [Google Scholar]
  2. Al-Dhaqm A, Abd Razak S, Othman SH, Nagdi A, and Ali A (2016). A generic database forensic investigation process model. Jurnal Teknologi, 78(6-11): 45-57. https://doi.org/10.11113/jt.v78.9190   [Google Scholar]
  3. Al-Dhaqm A, Razak S, and Othman SH (2018). Model derivation system to manage database forensic investigation domain knowledge. In the IEEE Conference on Application, Information and Network Security, IEEE, Langkawi, Malaysia: 75-80. https://doi.org/10.1109/AINS.2018.8631468   [Google Scholar]
  4. Al-Dhaqm A, Razak S, Othman SH, Choo KKR, Glisson WB, Ali A, and Abrar M (2017a). CDBFIP: Common database forensic investigation processes for internet of things. IEEE Access, 5: 24401-24416. https://doi.org/10.1109/ACCESS.2017.2762693   [Google Scholar]
  5. Al-Dhaqm A, Razak S, Othman SH, Ngadi A, Ahmed MN, and Mohammed AA (2017b). Development and validation of a database forensic metamodel (DBFM). PloS One, 12(2): e0170793. https://doi.org/10.1371/journal.pone.0170793   [Google Scholar] PMid:28146585 PMCid:PMC5287479
  6. Al-Dhaqm AMR, Othman SH, Razak SA, and Ngadi A (2014). Towards adapting metamodelling technique for database forensics investigation domain. In the International Symposium on Biometrics and Security Technologies, IEEE, Kuala Lumpur, Malaysia: 322-327. https://doi.org/10.1109/ISBAST.2014.7013142   [Google Scholar]
  7. Ali MMH and Gaikwad AT (2016). Multimodal biometrics enhancement recognition system based on fusion of fingerprint and palmprint: A review. Global Journal of Computer Science and Technology, 16(2): 1-15.   [Google Scholar]
  8. Andalib AS and Abdulla-Al-Shami M (2013). A novel key generation scheme for biometric cryptosystems using fingerprint minutiae. In the International Conference on Informatics, Electronics and Vision, IEEE, Dhaka, Bangladesh: 1-6. https://doi.org/10.1109/ICIEV.2013.6572670   [Google Scholar]
  9. Arul P and Shanmugam A (2009). Generate a key for AES using biometric for VOIP network security. Journal of Theoretical and Applied Information Technology, 5(2): 107-112.   [Google Scholar]
  10. Athale SS, Patil D, Deshpande P, and Dandawate YH (2015). Hardware implementation of palm vein biometric modality for access control in multilayered security system. Procedia Computer Science, 58: 492-498. https://doi.org/10.1016/j.procs.2015.08.013   [Google Scholar]
  11. Awate I and Dixit BA (2015). Palm print based person identification. In the International Conference on Computing Communication Control and Automation, IEEE, Pune, India: 781-785. https://doi.org/10.1109/ICCUBEA.2015.156   [Google Scholar]
  12. Ayoub F and Singh K (1984). Cryptographic techniques and network security. IEE Proceedings F-Communications, Radar and Signal Processing, 131(7): 684-694. https://doi.org/10.1049/ip-f-1.1984.0103   [Google Scholar]
  13. Balakumar P and Venkatesan R (2012). A survey on biometrics based cryptographic key generation schemes. International Journal of Computer Science and Information Technology and Security, 2(1): 80-85.   [Google Scholar]
  14. Banerjee A, Basu S, Basu S, and Nasipuri M (2018). ARTeM: A new system for human authentication using finger vein images. Multimedia Tools and Applications, 77(5): 5857-5884. https://doi.org/10.1007/s11042-017-4501-8   [Google Scholar]
  15. Beng A, Teoh J, and Toh KA (2008). Secure biometric-key generation with biometric helper. In the 3rd IEEE Conference on Industrial Electronics and Applications, IEEE, Singapore, Singapore: 2145-2150. https://doi.org/10.1109/ICIEA.2008.4582898   [Google Scholar]
  16. Chafia F, Salim C, and Farid B (2010). A biometric crypto-system for authentication. In the International Conference on Machine and Web Intelligence, IEEE, Algiers, Algeria: 434-438. https://doi.org/10.1109/ICMWI.2010.5648101   [Google Scholar]
  17. Chavez-Galaviz J, Ruiz-Rojas J, García-González A, and Fuentes-Aguilar RQ (2015). Embedded biometric cryptosystem based on finger vein patterns. In the 12th International Conference on Electrical Engineering, Computing Science and Automatic Control, IEEE, Mexico City, Mexico: 1-6. https://doi.org/10.1109/ICEEE.2015.7357994   [Google Scholar]
  18. Dhamija R and Tygar JD (2005). The battle against phishing: Dynamic security skins. In the Symposium on Usable Privacy and Security, Association for Computing Machinery, Pittsburgh, USA: 77-88. https://doi.org/10.1145/1073001.1073009   [Google Scholar]
  19. George A, Karthick G, and Harikumar R (2014). An efficient system for palm print recognition using ridges. In the International Conference on Intelligent Computing Applications, IEEE, Coimbatore, India: 249-253. https://doi.org/10.1109/ICICA.2014.60   [Google Scholar] PMid:25208960
  20. Hao F, Anderson R, and Daugman J (2006). Combining crypto with biometrics effectively. IEEE Transactions on Computers, 55(9): 1081-1088. https://doi.org/10.1109/TC.2006.138   [Google Scholar]
  21. Harmer K and Howells G (2012). Direct template-free encryption key generation from palm-veins. In the 3rd International Conference on Emerging Security Technologies, IEEE, Lisbon, Portugal: 70-73. https://doi.org/10.1109/EST.2012.20   [Google Scholar]
  22. HFMA (2016). The value of precise patient identification. Healthcare Financial Management Association, Illinois, USA. 
  23. Ikuesan AR and Venter HS (2019). Digital behavioral-fingerprint for user attribution in digital forensics: Are we there yet? Digital Investigation, 30: 73-89. https://doi.org/10.1016/j.diin.2019.07.003   [Google Scholar]
  24. Jain AK, Nandakumar K, and Nagar A (2008). Biometric template security. EURASIP Journal on Advances in Signal Processing, 2008: 113. https://doi.org/10.1155/2008/579416   [Google Scholar]
  25. Jain AK, Nandakumar K, Lu X, and Park U (2004). Integrating faces, fingerprints, and soft biometric traits for user recognition. In the International Workshop on Biometric Authentication, Springer, Prague, Czech Republic: 259-269. https://doi.org/10.1007/978-3-540-25976-3_24   [Google Scholar]
  26. Juels A and Sudan M (2006). A fuzzy vault scheme. Designs, Codes and Cryptography, 38(2): 237-257. https://doi.org/10.1007/s10623-005-6343-z   [Google Scholar]
  27. Kannan PM and Asthana A (2012). Secured encryption algorithm for two factor biometric keys. International Journal of Latest Research in Science and Technology, 1(2): 102-105.   [Google Scholar]
  28. Kothavale M, Markworth R, and Sandhu P (2004). Computer security SS3: Biometric authentication. Available online at: https://bit.ly/3fBvuHU
  29. Kumar A and Prathyusha KV (2009). Personal authentication using hand vein triangulation and knuckle shape. IEEE Transactions on Image Processing, 18(9): 2127-2136. https://doi.org/10.1109/TIP.2009.2023153   [Google Scholar] PMid:19447728
  30. Lalithamani N and Sabrigiriraj D (2014). Technique to generate a face and palm vein-based fuzzy vault for a multi-biometric cryptosystem. Machine Graphics and Vision, 23(1/2): 97-114. https://doi.org/10.1179/1743131x14Y.0000000090   [Google Scholar]
  31. Mahto D and Yadav DK (2013). Network security using ECC with Biometric. In the International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Springer, Greader Noida, India: 842-853. https://doi.org/10.1007/978-3-642-37949-9_73   [Google Scholar]
  32. Miura N, Nagasaka A, and Miyatake T (2007). Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Transactions on Information and Systems, 90(8): 1185-1194. https://doi.org/10.1093/ietisy/e90-d.8.1185   [Google Scholar]
  33. Nagar A, Nandakumar K, and Jain AK (2011). Multibiometric cryptosystems based on feature-level fusion. IEEE Transactions on Information Forensics and Security, 7(1): 255-268. https://doi.org/10.1109/TIFS.2011.2166545   [Google Scholar]
  34. Ngadi M, Al-Dhaqm R, and Mohammed A (2012). Detection and prevention of malicious activities on RDBMS relational database management systems. International Journal of Scientific and Engineering Research, 3(9): 1-10.   [Google Scholar]
  35. Nie W, Zhang B, and Zhao S (2019). Discriminative local feature for hyperspectral hand biometrics by adjusting image acutance. Applied Sciences, 9(19): 4178. https://doi.org/10.3390/app9194178   [Google Scholar]
  36. Ogiela MR and Ogiela L (2011). Image based crypto-biometric key generation. In the 3rd International Conference on Intelligent Networking and Collaborative Systems, IEEE, Fukuoka, Japan: 673-678. https://doi.org/10.1109/INCoS.2011.102   [Google Scholar]
  37. Panchal G and Samanta D (2016). Comparable features and same cryptography key generation using biometric fingerprint image. In the 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, IEEE, Chennai, India: 691-695. https://doi.org/10.1109/AEEICB.2016.7538381   [Google Scholar]
  38. Raghavendra TVS, Arudhra N, Amaranath K, Raviteja B, and Sreekar G (2014). Humanitarian supply chain model for flood relief-a case study analysis. International Journal of Engineering Research and Technology, 3(1): 3538-3547.   [Google Scholar]
  39. Ratha NK, Connell JH, and Bolle RM (2001). An analysis of minutiae matching strength. In the International Conference on Audio-and Video-Based Biometric Person Authentication, Springer, Halmstad, Sweden: 223-228. https://doi.org/10.1007/3-540-45344-X_32   [Google Scholar]
  40. Sadkhan ESB, Al-Shukur BK, and Mattar AK (2016). Survey of biometrie based key generation to enhance security of cryptosystems. In the Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications, IEEE, Baghdad, Iraq: 1-6. https://doi.org/10.1109/AIC-MITCSA.2016.7759942   [Google Scholar]
  41. Tome P and Marcel S (2015). On the vulnerability of palm vein recognition to spoofing attacks. In the International Conference on Biometrics, IEEE, Phuket, Thailand: 319-325. https://doi.org/10.1109/ICB.2015.7139056   [Google Scholar]
  42. Uludag U, Pankanti S, and Jain AK (2005). Fuzzy vault for fingerprints. In the International Conference on Audio-and Video-Based Biometric Person Authentication, Springer, Rye Brook, USA: 310-319. https://doi.org/10.1007/11527923_32   [Google Scholar]
  43. Verma I and Jain SK (2015). Biometrics security system: A review of multimodal biometrics based techniques for generating crypto-key. In 2nd the International Conference on Computing for Sustainable Global Development, IEEE, New Delhi, India: 1189-1192.   [Google Scholar]
  44. Wu X, Wang K, and Zhang D (2008). A cryptosystem based on palmprint feature. In the 19th International Conference on Pattern Recognition, IEEE, Tampa, USA: 1-4. https://doi.org/10.1109/ICPR.2008.4761117   [Google Scholar]
  45. Zhou Y and Kumar A (2011). Human identification using palm-vein images. IEEE Transactions on Information Forensics and Security, 6(4): 1259-1274. https://doi.org/10.1109/TIFS.2011.2158423   [Google Scholar]