International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 7 (July 2020), Pages: 102-108

----------------------------------------------

 Original Research Paper

 Title: Generalized thermoelasticity with fractional order strain of infinite medium with a cylindrical cavity

 Author(s): A. K. Khamis 1, A. A. El-Bary 2, *, Hamdy M. Youssef 3, Allal Bakali 1

 Affiliation(s):

 1Departement of Mathematics, Faculty of Science, Northern Border University, Arar, Saudi Arabia
 2Basic and Applied Science Institute, Arab Academy for Science and Technology, Alexandria, Egypt
 3Departement of Mechanics, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-8846-0487

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.07.013

 Abstract:

In this paper, a problem of thermoelastic interactions in a homogenous isotropic thermoelastic infinite medium with a cylindrical cavity. The bounding surface of the cavity is thermally shocked and connected to a rigid body to prevent any deformation. The governing equations are taken in the context of generalized thermoelasticity with fractional order strain theory. The analytical solutions with the direct approach in the Laplace transform domain have been obtained. The numerical results for the temperatures increment, the strain, the displacement, and the stress are represented graphically with the various value of the fractional-order parameter to stand on its effect on all the studied state functions. The fractional-order parameter has significant effects on the strain, the displacement, and the stress distribution, while its effect on the temperature distribution is minimal. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Two-temperature, Generalized thermoelasticity, Cylindrical cavity, Heat source

 Article History: Received 21 September 2019, Received in revised form 15 April 2020, Accepted 25 April 2020

 Acknowledgment:

The authors wish to acknowledge the approval and the support of this research study by the grant from the deanship of scientific research in Northern Border University, Arar, Saudi Arabia by the grant number (7338–SCI–2017–1–8–F7).

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

 Khamis AK, El-Bary AA, and Youssef HM et al. (2020). Generalized thermoelasticity with fractional order strain of infinite medium with a cylindrical cavity. International Journal of Advanced and Applied Sciences, 7(7): 102-108

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4

 Tables

 No Table

----------------------------------------------

 References (36)

  1. El-Karamany AS, Ezzat MA, and El-Bary AA (2018). Thermodiffusion with two time delays and Kernel functions. Mathematics and Mechanics of Solids, 23(2): 195-208. https://doi.org/10.1177/1081286516676870   [Google Scholar]
  2. Ezzat MA and El-Bary AA (2009). On three models of magneto-hydrodynamic free-convection flow. Canadian Journal of Physics, 87(12): 1213-1226. https://doi.org/10.1139/P09-071   [Google Scholar]
  3. Ezzat MA and El-Bary AA (2012). MHD free convection flow with fractional heat conduction law. Magnetohydrodynamics, 48(4): 587-606. https://doi.org/10.22364/mhd.48.4.1   [Google Scholar]
  4. Ezzat MA and El-Bary AA (2014). Two-temperature theory of magneto-thermo-viscoelasticity with fractional derivative and integral orders heat transfer. Journal of Electromagnetic Waves and Applications, 28(16): 1985-2004. https://doi.org/10.1080/09205071.2014.953639   [Google Scholar]
  5. Ezzat MA and El-Bary AA (2015a). State space approach to two-dimensional magneto-thermoelasticity with fractional order heat transfer in a medium of perfect conductivity. International Journal of Applied Electromagnetics and Mechanics, 49(4): 607-625. https://doi.org/10.3233/JAE-150095   [Google Scholar]
  6. Ezzat MA and El-Bary AA (2015b). Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. Journal of Mechanical Science and Technology, 29(10): 4273-4279. https://doi.org/10.1007/s12206-015-0924-1   [Google Scholar]
  7. Ezzat MA and El-Bary AA (2016a). Effects of variable thermal conductivity on Stokes' flow of a thermoelectric fluid with fractional order of heat transfer. International Journal of Thermal Sciences, 100: 305-315. https://doi.org/10.1016/j.ijthermalsci.2015.10.008   [Google Scholar]
  8. Ezzat MA and El-Bary AA (2016b). Modeling of fractional magneto-thermoelasticity for a perfect conducting materials. Smart Structures and Systems, 18(4): 707-731. https://doi.org/10.12989/sss.2016.18.4.707   [Google Scholar]
  9. Ezzat MA and El-Bary AA (2017a). Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories. Steel and Composite Structures, 24(3): 297-307. https://doi.org/10.1007/s00542-017-3425-6   [Google Scholar]
  10. Ezzat MA and El-Bary AA (2017b). On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity. Microsystem Technologies, 23(8): 3263-3270. https://doi.org/10.1007/s00542-016-3101-2   [Google Scholar]
  11. Ezzat MA and El-Bary AA (2017c). A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer. Steel and Composite Structures, 25(2): 177-186.   [Google Scholar]
  12. Ezzat MA and El-Bary AA (2018a). Electro–magneto interaction in fractional Green-Naghdi thermoelastic solid with a cylindrical cavity. Waves in Random and Complex Media, 28(1): 150-168. https://doi.org/10.1080/17455030.2017.1332798   [Google Scholar]
  13. Ezzat MA and El-Bary AA (2018b). Thermoelectric spherical shell with fractional order heat transfer. Microsystem Technologies, 24(2): 891-899. https://doi.org/10.1007/s00542-017-3400-2   [Google Scholar]
  14. Ezzat MA and Youssef HM (2013). Generalized magneto-thermoelasticity for an infinite perfect conducting body with a cylindrical cavity. Materials Physics and Mechanics, 18: 156-170.   [Google Scholar]
  15. Ezzat MA, El Bary AA, and El Karamany AS (2009). Two-temperature theory in generalized magneto-thermo-viscoelasticity. Canadian Journal of Physics, 87(4): 329-336. https://doi.org/10.1139/P08-143   [Google Scholar]
  16. Ezzat MA, El-Karamany AS, and El-Bary AA (2015a). On thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer. International Journal of Thermophysics, 36(7): 1684-1697. https://doi.org/10.1007/s10765-015-1873-8   [Google Scholar]
  17. Ezzat MA, El-Karamany AS, and El-Bary AA (2015b). Thermo-viscoelastic materials with fractional relaxation operators. Applied Mathematical Modelling, 39(23-24): 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018   [Google Scholar]
  18. Ezzat MA, El-Karamany AS, and El-Bary AA (2017). Thermoelectric viscoelastic materials with memory-dependent derivative. Smart Structures and Systems, 19: 539-551. https://doi.org/10.12989/sss.2017.19.5.539   [Google Scholar]
  19. Ezzat MA, Zakaria M, and El‐Bary AA (2010). Thermo‐electric‐visco‐elastic material. Journal of Applied Polymer Science, 117(4): 1934-1944. https://doi.org/10.1002/app.32170   [Google Scholar]
  20. Ismail MAH, Khamis AK, El-Bary AA, and Youssef HM (2017). Effect of the rotation of generalized thermoelastic layer subjected to harmonic heat: State-space approach. Microsystem Technologies, 23(8): 3381-3388. https://doi.org/10.1007/s00542-016-3137-3   [Google Scholar]
  21. Khamis AK, Ismail MAH, Youssef HM, and El-Bary AA (2017). Thermal shock problem of two-temperature generalized thermoelasticity without energy dissipation with rotation. Microsystem Technologies, 23(10): 4831-4839. https://doi.org/10.1007/s00542-017-3279-y   [Google Scholar]
  22. Magin RL and Royston TJ (2010). Fractional-order elastic models of cartilage: A multi-scale approach. Communications in Nonlinear Science and Numerical Simulation, 15(3): 657-664. https://doi.org/10.1016/j.cnsns.2009.05.008   [Google Scholar]
  23. Povstenko Y (2015). Fractional thermoelasticity. Volume 219, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-319-15335-3   [Google Scholar]
  24. Tzou DY (1995). A unified field approach for heat conduction from macro-to micro-scales. Journal of Heat Transfer, 117(1): 8-16. https://doi.org/10.1115/1.2822329   [Google Scholar]
  25. Youssef HM (2005a). Generalized thermoelasticity of an infinite body with a cylindrical cavity and variable material properties. Journal of Thermal Stresses, 28(5): 521-532. https://doi.org/10.1080/01495730590925029   [Google Scholar]
  26. Youssef HM (2005b). State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating. Canadian Applied Mathematics Quarterly, 13(4): 369-390.   [Google Scholar]
  27. Youssef HM (2006a). Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to a ramp-type heating and loading. Archive of Applied Mechanics, 75(8-9): 553-565. https://doi.org/10.1007/s00419-005-0440-3   [Google Scholar]
  28. Youssef HM (2006b). Two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to different types of thermal loading. World Scientific and Engineering Academy and Society Transactions on Heat and Mass Transfer, 1(10): 769-774.   [Google Scholar]
  29. Youssef HM (2009). Generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source. Mechanics Research Communications, 36(4): 487-496. https://doi.org/10.1016/j.mechrescom.2008.12.004   [Google Scholar]
  30. Youssef HM (2010). Two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source. Archive of Applied Mechanics, 80(11): 1213-1224. https://doi.org/10.1007/s00419-009-0359-1   [Google Scholar]
  31. Youssef HM (2013). Two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to non-Gaussian laser beam. Journal of Thermoelasticity, 1(2): 13-18.   [Google Scholar]
  32. Youssef HM (2016). Theory of generalized thermoelasticity with fractional order strain. Journal of Vibration and Control, 22(18): 3840-3857. https://doi.org/10.1177/1077546314566837   [Google Scholar]
  33. Youssef HM and El-Bary AA (2014). Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity. Journal of Thermal Stresses, 37(12): 1379-1389. https://doi.org/10.1080/01495739.2014.937233   [Google Scholar]
  34. Youssef HM and El-Bary AA (2018). The reference temperature dependence of Young’s modulus of two-temperature thermoelastic damping of gold nano-beam. Mechanics of Time-Dependent Materials, 22(4): 435-445. https://doi.org/10.1007/s11043-017-9365-9   [Google Scholar]
  35. Youssef HM, El-Bary AA, and Elsibai KA (2014). Vibration of gold nano beam in context of two-temperature generalized thermoelasticity subjected to laser pulse. Latin American Journal of Solids and Structures, 11(13): 2460-2482. https://doi.org/10.1590/S1679-78252014001300008   [Google Scholar]
  36. Youssef HM, Elsibai KA, and El-Bary AA (2017). Effect of the speed, the rotation and the magnetic field on the Q-factor of an axially clamped gold micro-beam. Meccanica, 52(7): 1685-1694. https://doi.org/10.1007/s11012-016-0498-8   [Google Scholar]