International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 12 (December 2020), Pages: 94-99

----------------------------------------------

 Original Research Paper

 Title: Effect of angiotensin converting enzyme gene studies in nonalcoholic fatty liver disease subjects

 Author(s): Maram Al-Otaiby *

 Affiliation(s):

 Molecular Genetic Pathology Unit, Department of Pathology, King Saud University, Riyadh, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6383-2301

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.12.010

 Abstract:

Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, and type 2 diabetes. ACE gene is the key to involve with transforming Angiotensin-I to the potent vasoconstrictor of angiotensin-II, well-known for the association with all the above-mentioned diseases. Limited studies have been documented with NAFLD and ACE gene I/D polymorphism in the global studies, and there are no studies that have been documented in the Saudi population. The aim of the current study was to investigate the genetic association between angiotensin converting enzyme (ACE) gene, insertion (I)-deletion (D) polymorphisms in NAFLD in the Saudi population. NAFLD is a clinic pathological syndrome produced due to the environment, genetic, and metabolic stress-correlated factors, which are demonstrated clinically as fat accumulation in hepatocytes. This is a hospital-based case-control study implemented in 95 NAFLD cases and 78 non-NAFLD subjects. Genomic DNA was extracted in all the subjects to perform the PCR with ACE gene I/D polymorphism, and the current study results revealed the negative association between the NAFLD cases and controls in the Saudi population (DD vs II; OR-0.17: 95% CI (0.04-0.64), p=0.04, DD+ID vs II: OR-0.19; 95% CI (0.05-0.70), p=0.006 and D vs I; OR-0.34: 95%CI (0.21-0.57), p=0.003. In conclusion, this study confirms NAFLD has no genetic role in the Saudi population with ACE gene I/D polymorphism analysis. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: ACE, NAFLD, ID polymorphism, NASH, Non-NAFLD, Saudi population

 Article History: Received 9 March 2020, Received in revised form 12 June 2020, Accepted 30 July 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

  Al-Otaiby M (2020). Effect of angiotensin converting enzyme gene studies in nonalcoholic fatty liver disease subjects. International Journal of Advanced and Applied Sciences, 7(12): 94-99

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2

----------------------------------------------

 References (41)

  1. Ahmad N, Jamal R, Shah SA, Gafor AH, and Murad NAA (2019). Renin–angiotensin–aldosterone system gene polymorphisms and type 2 diabetic nephropathy in Asian populations: An updated meta-analysis. Current Diabetes Reviews, 15(4): 263-276. https://doi.org/10.2174/1573399814666180709100411   [Google Scholar] PMid:29984662
  2. Alharbi KK, Kashour TS, Al-Hussaini W, Al-Nbaheen MS, Mohamed S, Hasanato RM, and Khan IA (2013a). Association of angiotensin converting enzyme gene insertion/deletion polymorphism and familial hypercholesterolemia in the Saudi population. Lipids in Health and Disease, 12: 177. https://doi.org/10.1186/1476-511X-12-177   [Google Scholar] PMid:24289455 PMCid:PMC4220775
  3. Alharbi KK, Khan IA, Abed ASA, and Syed R (2013b). Insertion/deletion polymorphisms do play any role in G6PD deficiency individuals in the Kingdom of the Saudi Arabia. Bioinformation, 9(1): 49-53. https://doi.org/10.6026/97320630009049   [Google Scholar] PMid:23390344 PMCid:PMC3563416
  4. Al-Mutawa J (2018). Interaction with angiotensin-converting enzyme-encoding gene in female infertility: Insertion and deletion polymorphism studies. Saudi Journal of Biological Sciences, 25(8): 1617-1621. https://doi.org/10.1016/j.sjbs.2016.06.003   [Google Scholar] PMid:30591778 PMCid:PMC6303183
  5. Al-Mutawa J (2019). Role of C677T polymorphism in the MTHFR gene in Saudi females affected with infertility. International Journal of Advanced and Applied Sciences, 6(6): 98-102. https://doi.org/10.21833/ijaas.2019.06.014   [Google Scholar]
  6. Aslbahar F, Neamatzadeh H, Tabatabaiee RS, Karimi-Zarchi M, Javaheri A, Mazaheri M, and Nasiri R (2018). Association of angiotensin-converting enzyme insertion/deletion polymorphism with recurrent pregnancy loss: A meta-analysis of 26 case-control studies. Revista Brasileira de Ginecologia e Obstetrícia/RBGO Gynecology and Obstetrics, 40(10): 631-641. https://doi.org/10.1055/s-0038-1672137   [Google Scholar] PMid:30352462
  7. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, and Feve B (2006). Recent advances in the relationship between obesity, inflammation, and insulin resistance. European Cytokine Network, 17(1): 4-12.   [Google Scholar]
  8. Cai J, Zhang XJ, Ji YX, Zhang P, She ZG, and Li H (2020). Nonalcoholic fatty liver disease pandemic fuels the upsurge in cardiovascular diseases. Circulation Research, 126(5): 679-704. https://doi.org/10.1161/CIRCRESAHA.119.316337   [Google Scholar] PMid:32105577
  9. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, and Sanyal AJ (2018). The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 67(1): 328-357. https://doi.org/10.1002/hep.29367   [Google Scholar] PMid:28714183
  10. Chaldakov GN, Stankulov IS, Hristova M, and Ghenev PI (2003). Adipobiology of disease: Adipokines and adipokine-targeted pharmacology. Current Pharmaceutical Design, 9(12): 1023-1031. https://doi.org/10.2174/1381612033455152   [Google Scholar] PMid:12678860
  11. Chen Y, Cao D, Li C, Zhang P, Wang X, Li N, and Liu Z (2020). A nomogram for discrimination of non-alcoholic fatty liver disease in patients with chronic hepatitis B. European Journal of Gastroenterology and Hepatology. https://doi.org/10.1097/MEG.0000000000001691   [Google Scholar] PMid:32118853
  12. Danford CJ, Yao Z, and Jiang ZG (2018). Non-alcoholic fatty liver disease: A narrative review of genetics. Journal of Biomedical Research, 32(6): 389-400.   [Google Scholar]
  13. Diehl AM, Li ZP, Lin HZ, and Yang SQ (2005). Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut, 54(2): 303-306. https://doi.org/10.1136/gut.2003.024935   [Google Scholar] PMid:15647199 PMCid:PMC1774847
  14. Eslam M, Valenti L, and Romeo S (2018). Genetics and epigenetics of NAFLD and NASH: Clinical impact. Journal of Hepatology, 68(2): 268-279. https://doi.org/10.1016/j.jhep.2017.09.003   [Google Scholar] PMid:29122391
  15. Fawwaz S, Balbaa M, Fakhoury H, Borjac J, and Fakhoury R (2017). Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and end-stage renal disease in lebanese patients with diabetic nephropathy. Saudi Journal of Kidney Diseases and Transplantation, 28(2): 325-329. https://doi.org/10.4103/1319-2442.202789   [Google Scholar] PMid:28352015
  16. Güçlü M, Yakar T, and Serin E (2010). Angiotensin converting enzyme gene (I/D) polymorphism and nonalcoholic fatty liver disease. European Journal of General Medicine, 7(2): 136-142. https://doi.org/10.29333/ejgm/82840   [Google Scholar]
  17. Haidich AB (2010). Meta-analysis in medical research. Hippokratia, 14(Suppl 1): 29-37.   [Google Scholar]
  18. Han C, Han XK, Liu FC, and Huang JF (2017). Ethnic differences in the association between angiotensin-converting enzyme gene insertion/deletion polymorphism and peripheral vascular disease: A meta-analysis. Chronic Diseases and Translational Medicine, 3(4): 230-241. https://doi.org/10.1016/j.cdtm.2017.07.002   [Google Scholar] PMid:29354806 PMCid:PMC5747497
  19. Kanda T, Goto T, Hirotsu Y, Masuzaki R, Moriyama M, and Omata M (2020). Molecular mechanisms: Connections between nonalcoholic fatty liver disease, steatohepatitis and hepatocellular carcinoma. International Journal of Molecular Sciences, 21(4): 1525. https://doi.org/10.3390/ijms21041525   [Google Scholar] PMid:32102237 PMCid:PMC7073210
  20. Karrar A, Hariharan S, Fazel Y, Moosvi A, Houry M, Younoszai Z, and Monge F (2019). Analysis of human leukocyte antigen allele polymorphism in patients with non alcoholic fatty liver disease. Medicine, 98(32): e16704. https://doi.org/10.1097/MD.0000000000016704   [Google Scholar] PMid:31393374 PMCid:PMC6708789
  21. Khan IA, Jahan P, Hasan Q, and Rao P (2014). Angiotensin-converting enzyme gene insertion/deletion polymorphism studies in Asian Indian pregnant women biochemically identifies gestational diabetes mellitus. Journal of the Renin-Angiotensin-Aldosterone System, 15(4): 566-571. https://doi.org/10.1177/1470320313502106   [Google Scholar] PMid:24189507
  22. Khan IA, Jahan P, Hasan Q, and Rao P (2019). Genetic confirmation of T2DM meta-analysis variants studied in gestational diabetes mellitus in an Indian population. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 13(1): 688-694. https://doi.org/10.1016/j.dsx.2018.11.035   [Google Scholar] PMid:30641791
  23. Liu M, Liu S, Shang M, Liu X, Wang Y, Li Q, and Nie F (2019a). Association between ADIPOQ G276T and C11377G polymorphisms and the risk of non‐alcoholic fatty liver disease: An updated meta‐analysis. Molecular Genetics and Genomic Medicine, 7(5): e624. https://doi.org/10.1002/mgg3.624   [Google Scholar] PMid:30838812 PMCid:PMC6503060
  24. Liu Q, Liu SS, Zhao ZZ, Zhao BT, Du SX, Jin WW, and Xin YN (2019b). TRIB1 rs17321515 gene polymorphism increases the risk of coronary heart disease in general population and non-alcoholic fatty liver disease patients in Chinese Han population. Lipids in Health and Disease, 18: 165. https://doi.org/10.1186/s12944-019-1108-2   [Google Scholar] PMid:31470861 PMCid:PMC6717352
  25. Llovet JM, Ducreux M, Lencioni R, Di Bisceglie AM, Galle PR, and Dufour JF (2012). EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. Journal of Hepatology, 56(4): 908-943. https://doi.org/10.1016/j.jhep.2011.12.001   [Google Scholar] PMid:22424438
  26. Luo S, Shi C, Wang F, and Wu Z (2016). Association between the angiotensin-converting enzyme (ACE) genetic polymorphism and diabetic retinopathy—A meta-analysis comprising 10, 168 subjects. International Journal of Environmental Research and Public Health, 13(11): 1142. https://doi.org/10.3390/ijerph13111142   [Google Scholar] PMid:27854313 PMCid:PMC5129352
  27. Marshall RP, Mcanulty RJ, and Laurent GJ (2000). Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. American Journal of Respiratory and Critical Care Medicine, 161(6): 1999-2004. https://doi.org/10.1164/ajrccm.161.6.9907004   [Google Scholar] PMid:10852780
  28. Mengesha HG, Petrucka P, Spence C, and Tafesse TB (2019). Effects of angiotensin converting enzyme gene polymorphism on hypertension in Africa: A meta-analysis and systematic review. PloS One, 14(2): e0211054. https://doi.org/10.1371/journal.pone.0211054   [Google Scholar] PMid:30763326 PMCid:PMC6375551
  29. Namjou B, Lingren T, Huang Y, Parameswaran S, Cobb BL, Stanaway IB, and Wei WQ (2019). GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE network. BMC Medicine, 17: 135. https://doi.org/10.1186/s12916-019-1364-z   [Google Scholar] PMid:31311600 PMCid:PMC6636057
  30. Poornima S, Subramanyam K, Khan IA, and Hasan Q (2015). The insertion and deletion (I28005D) polymorphism of the angiotensin I converting enzyme gene is a risk factor for osteoarthritis in an Asian Indian population. Journal of the Renin-Angiotensin-Aldosterone System, 16(4): 1281-1287. https://doi.org/10.1177/1470320314547403   [Google Scholar] PMid:25178458
  31. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, and Hobbs HH (2008). Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics, 40(12): 1461-1465. https://doi.org/10.1038/ng.257   [Google Scholar] PMid:18820647 PMCid:PMC2597056
  32. Sabir JS, Omri AE, Ali Khan I, Banaganapalli B, Hajrah NH, Zrelli H, and Altaf A (2019). ACE insertion/deletion genetic polymorphism, serum ACE levels and high dietary salt intake influence the risk of obesity development among the Saudi adult population. Journal of the Renin-Angiotensin-Aldosterone System, 20(3): 1470320319870945. https://doi.org/10.1177/1470320319870945   [Google Scholar] PMCid:PMC6732865
  33. Shen XZ, Ong FS, Bernstein EA, Janjulia T, Blackwell WLB, Shah KH, and Bernstein KE (2012). Nontraditional roles of angiotensin-converting enzyme. Hypertension, 59(4): 763-768. https://doi.org/10.1161/HYPERTENSIONAHA.111.188342   [Google Scholar] PMid:22353608 PMCid:PMC3306543
  34. Sookoian S and Pirola CJ (2017). Genetic predisposition in nonalcoholic fatty liver disease. Clinical and Molecular Hepatology, 23(1): 1-12. https://doi.org/10.3350/cmh.2016.0109   [Google Scholar] PMid:28268262 PMCid:PMC5381829
  35. Sydorchuk L, Yarynych Y, Knut R, Sydorchuk A, Matyukha L, Sydorchuk O, and Sydorchuk R (2018). Hepatocytes' function and adipokines in patients with non-alcoholic fatty liver disease depending on the ace (rs4646994) and PPAR-y2 (rs1801282) genes' polymorphisms. The Medical-Surgical Journal, 122(2): 358-364.   [Google Scholar]
  36. Tekatas DD, Bahcecioglu IH, Ispiroglu M, Sahin A, Ilhan N, Yalniz M, and Demirel U (2016). Role of Renin–Angiotensin-converting enzyme level and ACE gene polymorphism in patients with nonalcoholic fatty liver disease. Euroasian Journal of Hepato-Gastroenterology, 6(2): 137-142. https://doi.org/10.5005/jp-journals-10018-1186   [Google Scholar] PMid:29201746 PMCid:PMC5578582
  37. Xu G, Fan G, Sun Y, Yu L, Wu S, and Niu W (2018). Association of angiotensin-converting enzyme gene I/D polymorphism with chronic obstructive pulmonary disease: A meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 19(2): 1470320318770546. https://doi.org/10.1177/1470320318770546   [Google Scholar] PMid:29716409 PMCid:PMC5954319
  38. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, and Nader F (2019). The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. Journal of Hepatology, 71(4): 793-801. https://doi.org/10.1016/j.jhep.2019.06.021   [Google Scholar] PMid:31279902
  39. Yuan Y, Meng L, Zhou Y, and Lu N (2017). Genetic polymorphism of angiotensin-converting enzyme and hypertrophic cardiomyopathy risk: A systematic review and meta-analysis. Medicine, 96(48): e8639. https://doi.org/10.1097/MD.0000000000008639   [Google Scholar] PMid:29310338 PMCid:PMC5728739
  40. Zhang Y, Yang T, Zhou W, and Huang Y (2019). A meta-analysis on the association of genetic polymorphism of the angiotensin-converting enzyme and coronary artery disease in the Chinese population. Revista da Associação Médica Brasileira, 65(6): 923-929. https://doi.org/10.1590/1806-9282.65.6.923   [Google Scholar] PMid:31340327
  41. Zheng Y and Huang J (2020). Angiotensin-converting enzyme gene insertion/deletion polymorphism and high-altitude pulmonary edema: An updated meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 21(1): 1470320319900039. https://doi.org/10.1177/1470320319900039   [Google Scholar] PMid:32106754 PMCid:PMC7052470