International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 11 (November 2020), Pages: 74-86

----------------------------------------------

 Review Paper

 Title: Multi-objective optimization of water distribution networks: An overview

 Author(s): Ioan Sarbu *, Simona Popa-Albu, Adriana Tokar

 Affiliation(s):

 Department of Civil and Building Services Engineering, Polytechnic University of Timisoara, Timisoara, Romania

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-5606-6090

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.11.008

 Abstract:

Optimization methods are extensively required and applied to solve problems from almost all disciplines, whether engineering, sciences, or economics. The distribution network is an essential part of all urban water supply systems that require efficient design and operation, which may be achieved through the effective application of optimization methods. This article provides a brief overview of the most approached method, models, and numerical examples for multi-objective optimization of water distribution networks (WDNs) design and operation. The main deterministic and heuristic optimization techniques are synthesized and presented, a single-and multi-objective optimization problem is generally formulated, and the main optimization objectives, decision variables, and constraints for the design, rehabilitation, and operation of WDNs are discussed. Additionally, some deterministic and heuristic multi-objective optimization models for WDN design/rehabilitation is included and numerically exemplified. Finally, the advantages and disadvantages of the optimization techniques and models used for designing WDNs are presented along with some recommendations on future research directions in this domain. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Water distribution, Pipe network, Optimal design, Multi-objective optimization models, Numerical applications

 Article History: Received 17 March 2020, Received in revised form 25 June 2020, Accepted 2 July 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

 Sarbu I, Popa-Albu S, and Tokar A (2020). Multi-objective optimization of water distribution networks: An overview. International Journal of Advanced and Applied Sciences, 7(11): 74-86

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 

----------------------------------------------

 References (92)

  1. Babu KJ and Vijayalakshmi DP (2013). Self-adaptive PSO-GA hybrid model for combinatorial water distribution network design. Journal of Pipeline Systems Engineering and Practice, 4(1): 57-67. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000113   [Google Scholar]
  2. Banos R, Gil C, Reca J, and Montoya FG (2010). A memetic algorithm applied to the design of water distribution networks. Applied Soft Computing, 10(1): 261-266. https://doi.org/10.1016/j.asoc.2009.07.010   [Google Scholar]
  3. Basupi I and Kapelan Z (2015). Flexible water distribution system design under future demand uncertainty. Journal of Water Resources Planning and Management, 141(4): 04014067. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000416   [Google Scholar]
  4. Beygi S, Tabesh M, and Liu S (2019). Multi-objective optimization model for design and operation of water transmission systems using a power resilience index for assessing hydraulic reliability. Water Resources Management, 33(10): 3433-3447. https://doi.org/10.1007/s11269-019-02311-x   [Google Scholar]
  5. Bi W, Dandy GC, and Maier HR (2015). Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge. Environmental Modelling and Software, 69: 370-381. https://doi.org/10.1016/j.envsoft.2014.09.010   [Google Scholar]
  6. Box MJ (1966). A comparison of several current optimization methods, and the use of transformations in constrained problems. The Computer Journal, 9(1): 67-77. https://doi.org/10.1093/comjnl/9.1.67   [Google Scholar]
  7. Bragalli C, D’Ambrosio C, Lee J, Lodi A, and Toth P (2012). On the optimal design of water distribution networks: A practical MINLP approach. Optimization and Engineering, 13(2): 219-246. https://doi.org/10.1007/s11081-011-9141-7   [Google Scholar]
  8. Broad DR, Dandy GC, and Maier HR (2005). Water distribution system optimization using metamodels. Journal of Water Resources Planning and Management, 131(3): 172-180. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(172)   [Google Scholar]
  9. Cenedese A and Mele P (1978). Optimal design of water distribution networks. Journal of the Hydraulics Division, 104(2): 237-247.   [Google Scholar]
  10. Chandramouli S (2015). Reliability based optimal design of a municipal water supply pipe network. Urban Water Journal, 12(5): 353-361. https://doi.org/10.1080/1573062X.2014.993997   [Google Scholar]
  11. Chaudhry MH (2014). Applied hydraulic transients. Springer-Verlag, New York, USA. https://doi.org/10.1007/978-1-4614-8538-4   [Google Scholar]
  12. Coelho B and Andrade-Campos A (2012). Using different strategies for improving efficiency in water supply systems. In the 1st ECCOMAS Young Investigators Conference, Aveiro, Portugal.   [Google Scholar]
  13. Coello CAC, Lamont GB, and Van Veldhuizen DA (2007). Evolutionary algorithms for solving multi-objective problems. Springer, New York, USA.   [Google Scholar]
  14. Costa ALH, De Medeiros JL, and Pessoa FLP (2000). Optimization of pipe networks including pumps by simulated annealing. Brazilian Journal of Chemical Engineering, 17(4-7): 887-896. https://doi.org/10.1590/S0104-66322000000400053   [Google Scholar]
  15. Creaco E and Franchini M (2012). Fast network multi-objective design algorithm combined with a posteriori procedure for reliability evaluation under various operational scenarios. Urban Water Journal, 9(6): 385-399. https://doi.org/10.1080/1573062X.2012.690432   [Google Scholar]
  16. Cullinane MJ, Lansey KE, and Mays LW (1992). Optimization-availability-based design of water-distribution networks. Journal of Hydraulic Engineering, 118(3): 420–441. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:3(420)   [Google Scholar]
  17. Cunha MDC and Sousa J (2001). Hydraulic infrastructures design using simulated annealing. Journal of Infrastructure Systems, 7(1): 32-39. https://doi.org/10.1061/(ASCE)1076-0342(2001)7:1(32)   [Google Scholar]
  18. Dandy G, Duncker A, Wilson J, and Pedeux X (2009). An approach for integrated optimization of wastewater, recycled, and potable water networks. In the World Environmental and Water Resources Congress, Great Rivers, Kansas City, USA: 1-11. https://doi.org/10.1061/41036(342)35   [Google Scholar]
  19. Dandy GC, Simpson AR, and Murphy LJ (1996). An improved genetic algorithm for pipe network optimization. Water Resources Research, 32(2): 449-458. https://doi.org/10.1029/95WR02917   [Google Scholar]
  20. Dini M and Tabesh M (2019). Optimal renovation planning of water distribution networks considering hydraulic and quality reliability indices. Urban Water Journal, 16(4): 249-258. https://doi.org/10.1080/1573062X.2019.1669185   [Google Scholar]
  21. Diogo AF, Barros LT, Santos J, and Temido JS (2018). An effective and comprehensive model for optimal rehabilitation of separate sanitary sewer systems. Science of the Total Environment, 612: 1042-1057. https://doi.org/10.1016/j.scitotenv.2017.08.315   [Google Scholar] PMid:28892845
  22. Djebedjian B, Herrick A, and Rayan MA (2000). An investigation of the optimization of potable water network. In the 5th International Water Technology Conference, Alexandria, Egypt: 61-72. https://doi.org/10.1115/IPC2000-256   [Google Scholar]
  23. Dorigo M and Gambardella LM (1997). Ant colonies for the travelling salesman problem. Biosystems, 43(2): 73-81. https://doi.org/10.1016/S0303-2647(97)01708-5   [Google Scholar]
  24. El-Ghandour HA and Elansary AS (2018). Optimal transient network rehabilitation using multi-objective ant colony optimization algorithm. Urban Water Journal, 15(7): 645-653. https://doi.org/10.1080/1573062X.2018.1534127   [Google Scholar]
  25. Eusuff MM and Lansey KE (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129(3): 210-225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)   [Google Scholar]
  26. Fu G, Kapelan Z, Kasprzyk JR, and Reed P (2013). Optimal design of water distribution systems using many-objective visual analytics. Journal of Water Resources Planning and Management, 139(6): 624-633. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000311   [Google Scholar]
  27. Gargano R and Pianese D (2000). Reliability as a tool for hydraulic networks planning. Journal of Hydraulic Engineering, 126(5): 354-364. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(354)   [Google Scholar]
  28. Geem ZW (2009). Harmony search optimisation to the pump-included water distribution network design. Civil Engineering and Environmental Systems, 26(3): 211-221. https://doi.org/10.1080/10286600801919813   [Google Scholar]
  29. Geem ZW and Cho YH (2011). Optimal design of water distribution networks using parameter-setting-free harmony search for two major parameters. Journal of Water Resources Planning and Management, 137(4): 377-380. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000130   [Google Scholar]
  30. Geem ZW, Kim JH, and Loganathan GV (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2): 60-68. https://doi.org/10.1177/003754970107600201   [Google Scholar]
  31. Ghajarnia N, Bozorg Haddad O, and Kouchakzadeh S (2012). Multi-objective dynamic design of urban water distribution networks. Journal of Iran-Water Resources Research, 7(4): 21-40.   [Google Scholar]
  32. Giustolisi O, Laucelli D, and Colombo AF (2009). Deterministic versus stochastic design of water distribution networks. Journal of Water Resources Planning and Management, 135(2): 117-127. https://doi.org/10.1061/(ASCE)0733-9496(2009)135:2(117)   [Google Scholar]
  33. Glover F (1986). Future paths for integer programming and links to artificial intelligence. Computers Operations Research, 13(5): 533-549. https://doi.org/10.1016/0305-0548(86)90048-1   [Google Scholar]
  34. Glover F (1989). Tabu search-Part I. ORSA Journal on Computing, 1(3): 190-206. https://doi.org/10.1287/ijoc.1.3.190   [Google Scholar]
  35. Goldberg DE (1989). Genetic algorithms in search: Optimization, and machine learning. Addison Wesley Publishing Co. Inc., Boston, USA.   [Google Scholar]
  36. Goncalves GM, Gouveia L, and Pato MV (2014). An improved decomposition-based heuristic to design a water distribution network for an irrigation system. Annals of Operations Research, 219(1): 141-167. https://doi.org/10.1007/s10479-011-1036-7   [Google Scholar]
  37. Gupta R and Prasad TD (2000). Extended use of linear graph theory for analysis of pipe networks. Journal of Hydraulic Engineering, 126(1): 56-62. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(56)   [Google Scholar]
  38. Halhal D, Walters GA, Ouazar D, and Savic DA (1997). Water network rehabilitation with structured messy genetic algorithm. Journal of Water Resources Planning and Management, 123(3): 137-146. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:3(137)   [Google Scholar]
  39. Holland JH (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, USA.   [Google Scholar]
  40. Huang Y, Zheng F, Duan H-F, and Zhang Q (2020). Multi-objective optimal design of water distribution networks accounting for transient impacts. Water Resources Management, 34: 1517–1534. https://doi.org/10.1007/s11269-020-02517-4   [Google Scholar]
  41. Jin X, Zhang J, Gao JL, and Wu WY (2008). Multi-objective optimization of water supply network rehabilitation with non-dominated sorting genetic algorithm-II. Journal of Zhejiang University-SCIENCE A, 9(3): 391-400. https://doi.org/10.1631/jzus.A071448   [Google Scholar]
  42. Jung BS, Boulos PF, and Altman T (2011). Optimal transient network design: A multi‐objective approach. Journal of American Water Works Association, 103(4): 118-127. https://doi.org/10.1002/j.1551-8833.2011.tb11440.x   [Google Scholar]
  43. Kang D and Lansey K (2012). Revisiting optimal water-distribution system design: Issues and a heuristic hierarchical approach. Journal of Water Resources Planning and Management, 138(3): 208-217. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000165   [Google Scholar]
  44. Kang D and Lansey K (2013). Scenario-based robust optimization of regional water and wastewater infrastructure. Journal of Water Resources Planning and Management, 139(3): 325-338. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000236   [Google Scholar]
  45. Kanta L, Zechman E, and Brumbelow K (2012). Multi-objective evolutionary computation approach for redesigning water distribution systems to provide fire flows. Journal of Water Resources Planning and Management, 138(2): 144-152. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000156   [Google Scholar]
  46. Kennedy J and Eberhart R (1995). Particle swarm optimization. In the ICNN'95-International Conference on Neural Networks, IEEE, Perth, Australia, 4: 1942-1948. https://doi.org/10.1109/ICNN.1995.488968   [Google Scholar]
  47. Kim JH and Mays LW (1994). Optimal rehabilitation model for water-distribution systems. Journal of Water Resources Planning and Management, 120(5): 674-692. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:5(674)   [Google Scholar]
  48. Kirkpatrick S, Gelatt CD, and Vecchi MP (1983). Optimization by simulated annealing. Science, 220(4598): 671-680. https://doi.org/10.1126/science.220.4598.671   [Google Scholar] PMid:17813860
  49. Kurek W and Ostfeld A (2013). Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. Journal of Environmental Management, 115: 189-197. https://doi.org/10.1016/j.jenvman.2012.11.030   [Google Scholar] PMid:23262407
  50. Lansey KE and Mays LW (1989). Optimization model for water distribution system design. Journal of Hydraulic Engineering, 115(10): 1401-1418. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:10(1401)   [Google Scholar]
  51. Lingireddy S and Wood DJ (1998). Improved operation of water distribution systems using variable-speed pumps. Journal of Energy Engineering, 124(3): 90-103. https://doi.org/10.1061/(ASCE)0733-9402(1998)124:3(90)   [Google Scholar]
  52. Liong SY and Atiquzzaman M (2004). Optimal design of water distribution network using shuffled complex evolution. Journal of the Institution of Engineers, Singapore, 44(1): 93-107.   [Google Scholar]
  53. McClymont K, Keedwell EC, Savić D, and Randall-Smith M (2014). Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. Journal of Hydroinformatics, 16(2): 302-318. https://doi.org/10.2166/hydro.2013.226   [Google Scholar]
  54. Mora-Melia D, Iglesias-Rey PL, Martinez-Solano FJ, and Ballesteros-Perez P (2015). Efficiency of evolutionary algorithms in water network pipe sizing. Water Resources Management, 29(13): 4817-4831. https://doi.org/10.1007/s11269-015-1092-x   [Google Scholar]
  55. Mora-Melia D, Iglesias-Rey PL, Martínez-Solano FJ, and Muñoz-Velasco P (2016). The efficiency of setting parameters in a modified shuffled frog leaping algorithm applied to optimizing water distribution networks. Water, 8(5): 182. https://doi.org/10.3390/w8050182   [Google Scholar]
  56. Morrison R, Sangster T, Downey D, Matthews J, Condit W, Sinha S, and Selvakumar A (2013). State of technology for rehabilitation of water distribution systems. Environmental Protection Agency (EPA), Washington, USA.   [Google Scholar]
  57. Ostfeld A (2005). Optimal design and operation of multiquality networks under unsteady conditions. Journal of Water Resources Planning and Management, 131(2): 116-124. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:2(116)   [Google Scholar]
  58. Ostfeld A and Tubaltzev A (2008). Ant colony optimization for least-cost design and operation of pumping water distribution systems. Journal of Water Resources Planning and Management, 134(2): 107-118. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(107)   [Google Scholar]
  59. Piratla KR (2016). Investigation of sustainable and resilient design alternatives for water distribution networks. Urban Water Journal, 13(4): 412-425. https://doi.org/10.1080/1573062X.2014.994001   [Google Scholar]
  60. Piratla KR and Ariaratnam ST (2012). Reliability based optimal design of water distribution networks considering life cycle components. Urban Water Journal, 9(5): 305-316. https://doi.org/10.1080/1573062X.2012.660961   [Google Scholar]
  61. Powell MJ (1964). An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal, 7(2): 155-162. https://doi.org/10.1093/comjnl/7.2.155   [Google Scholar]
  62. Prasad T and Park NS (2004). Multi-objective genetic algorithms for design of water distribution networks. Journal of Water Resources Planning and Management, 130(1): 73-82. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(73)   [Google Scholar]
  63. Rubinstein R (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and Computing in Applied Probability, 1(2): 127-190. https://doi.org/10.1023/A:1010091220143   [Google Scholar]
  64. Samani HMV and Naeeni ST (1996). Optimization of water distribution networks. Journal of Hydraulic Research, 34(5): 623-632. https://doi.org/10.1080/00221689609498462   [Google Scholar]
  65. Sarbu I (2014). Nodal analysis of urban water distribution networks. Water Resources Management, 28(10): 3143-3159. https://doi.org/10.1007/s11269-014-0660-9   [Google Scholar]
  66. Sarbu I and Kalmar F (2002). Optimization of looped water supply networks. Periodica Polytechnica Mechanical Engineering, 46(1): 75-90.   [Google Scholar]
  67. Sarbu I and Ostafe G (2010). Optimal design of water supply networks. Annals of the University of Oradea, 13: 359-368.   [Google Scholar]
  68. Sarbu I and Ostafe G (2016). Optimal design of urban water supply pipe networks. Urban Water Journal, 13(5): 521-535. https://doi.org/10.1080/1573062X.2014.994007   [Google Scholar]
  69. Sarbu I and Tokar A (2018). Water distribution systems: Numerical modelling and optimisation. Polytechnic Publishing House, Timisoara, Romania.   [Google Scholar]
  70. Savic DA, Bicik J, and Morley MS (2011). A DSS generator for multi-objective optimisation of spreadsheet-based models. Environmental Modelling and Software, 26(5): 551-561. https://doi.org/10.1016/j.envsoft.2010.11.004   [Google Scholar]
  71. Shin H, Joo C, and Koo J (2016). Optimal rehabilitation model for water pipeline systems with genetic algorithm. Procedia Engineering, 154: 384-390. https://doi.org/10.1016/j.proeng.2016.07.497   [Google Scholar]
  72. Shirzad A, Tabesh M, and Atayikia B (2017). Multi-objective optimization of pressure dependent dynamic design for water distribution networks. Water Resources Management, 31(9): 2561-2578. https://doi.org/10.1007/s11269-017-1602-0   [Google Scholar]
  73. Siew C, Tanyimboh TT, and Seyoum AG (2014). Assessment of penalty-free multi-objective evolutionary optimization approach for the design and rehabilitation of water distribution systems. Water Resources Management, 28(2): 373-389. https://doi.org/10.1007/s11269-013-0488-8   [Google Scholar]
  74. Simpson AR, Dandy GC, and Murphy LJ (1994). Genetic algorithms compared to other techniques for pipe optimization. Journal of Water Resources Planning and Management, 120(4): 423-443. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)   [Google Scholar]
  75. Sorensen K and Glover F (2013). Metaheuristics. Encyclopedia of Operations Research and Management Science, 62: 960-970. https://doi.org/10.1007/978-1-4419-1153-7_1167   [Google Scholar]
  76. Storn R and Price K (1997). Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4): 341-359. https://doi.org/10.1023/A:1008202821328   [Google Scholar]
  77. Tanyimboh TT and Templeman AB (2000). A quantified assessment of the relationship between the reliability and entropy of water distribution systems. Engineering Optimization, 33(2): 179-199. https://doi.org/10.1080/03052150008940916   [Google Scholar]
  78. Todini E (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2): 115-122. https://doi.org/10.1016/S1462-0758(00)00049-2   [Google Scholar]
  79. Tong L, Han G, and Qiao J (2011). Design of water distribution network via ant colony optimization. In the 2nd International Conference on Intelligent Control and Information Processing, IEEE, Harbin, China, 1: 366-370. https://doi.org/10.1109/ICICIP.2011.6008266   [Google Scholar]
  80. Vasan A and Simonovic SS (2010). Optimization of water distribution network using differential evolution. Journal of Water Resources Planning and Management, 136(2): 279-287. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(279)   [Google Scholar]
  81. Vieira F and Ramos HM (2009). Optimization of operational planning for wind/hydro hybrid water supply systems. Renewable Energy, 34(3): 928-936. https://doi.org/10.1016/j.renene.2008.05.031   [Google Scholar]
  82. Walski TM, Chase DV, Savic DA, Grayman W, Beckwith S, and Koelle E (2003). Advanced water distribution modeling and management. Haestad Press, Waterbury, USA.   [Google Scholar]
  83. Walski TM, Gessler J, and Sjostrom JW (1988). Selecting optimal pipe sizes for water distribution systems. Journal of American Water Works Association, 80(2): 35-39. https://doi.org/10.1002/j.1551-8833.1988.tb02991.x   [Google Scholar]
  84. Wang Q, Creaco E, Franchini M, Savić D, and Kapelan Z (2015b). Comparing low and high-level hybrid algorithms on the two-objective optimal design of water distribution systems. Water Resources Management, 29(1): 1-16. https://doi.org/10.1007/s11269-014-0823-8   [Google Scholar]
  85. Wang Q, Guidolin M, Savic D, and Kapelan Z (2015a). Two-objective design of benchmark problems of a water distribution system via MOEAs: Towards the best-known approximation of the true Pareto front. Journal of Water Resources Planning and Management, 141(3): 04014060. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000460   [Google Scholar]
  86. Watters GZ (1984). Analysis and control of unsteady flow in pipelines. Butterworth Publishers, Boston, USA.   [Google Scholar]
  87. Wu W, Simpson AR, and Maier HR (2012a). Sensitivity of optimal tradeoffs between cost and greenhouse gas emissions for water distribution systems to electricity tariff and generation. Journal of Water Resources Planning and Management, 138(2): 182-186. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000169   [Google Scholar]
  88. Wu W, Simpson AR, Maier HR, and Marchi A (2012b). Incorporation of variable-speed pumping in multi-objective genetic algorithm optimization of the design of water transmission systems. Journal of Water Resources Planning and Management, 138(5): 543-552. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000195   [Google Scholar]
  89. Yazdi J, Choi YH, and Kim JH (2017). Non-dominated sorting harmony search differential evolution (NS-HS-DE): A hybrid algorithm for multi-objective design of water distribution networks. Water, 9(8): 587. https://doi.org/10.3390/w9080587   [Google Scholar]
  90. Zecchin AC, Simpson AR, Maier HR, and Nixon JB (2005). Parametric study for an ant algorithm applied to water distribution system optimization. IEEE Transactions on Evolutionary Computation, 9(2): 175-191. https://doi.org/10.1109/TEVC.2005.844168   [Google Scholar]
  91. Zheng F, Simpson AR, and Zecchin AC (2014). An efficient hybrid approach for multi-objective optimization of water distribution systems. Water Resources Research, 50(5): 3650-3671. https://doi.org/10.1002/2013WR014143   [Google Scholar]
  92. Zheng F, Zecchin AC, Maier HR, and Simpson AR (2016). Comparison of the searching behavior of NSGA-II, SAMODE, and Borg MOEAs applied to water distribution system design problems. Journal of Water Resources Planning and Management, 142(7): 04016017. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000650   [Google Scholar]