International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 3 (March 2019), Pages: 50-55

----------------------------------------------

 Original Research Paper

 Title: Principle components analysis for seizures prediction using wavelet transform

 Author(s): Syed Muhammad Usman 1, *, Shahzad Latif 1, Arshad Beg 2

 Affiliation(s):

 1Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan
 2Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Faisalabad Campus, Pakistan

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-0504-3558

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.03.008

 Abstract:

Epilepsy is a disease in which frequent seizures occur due to abnormal activity of neurons. Patients affected by this disease can be treated with the help of medicines or surgical procedures. However, both of these methods are not quite useful. The only method to treat epilepsy patients effectively is to predict the seizure before its onset. It has been observed that abnormal activity in the brain signals starts before the occurrence of seizure known as the preictal state. Many researchers have proposed machine learning models for prediction of epileptic seizures by detecting the start of preictal state. However, pre-processing, feature extraction and classification remains a great challenge in the prediction of preictal state. Therefore, we propose a model that uses common spatial pattern filtering and wavelet transform for preprocessing, principal component analysis for feature extraction and support vector machines for detecting preictal state. We have applied our model on 23 subjects and an average sensitivity of 93.1% has been observed for 84 seizures. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Epilepsy, EEG, Wavelet, PCA, Surrogate channel, CSP

 Article History: Received 13 September 2018, Received in revised form 12 January 2019, Accepted 17 January 2019

 Acknowledgement:

No Acknowledgement 

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Usman SM, Latif S, and Beg A (2019). Principle components analysis for seizures prediction using wavelet transform. International Journal of Advanced and Applied Sciences, 6(3): 50-55

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 

 Tables

 Table 1

----------------------------------------------

 References (27) 

  1. Adeli H, Zhou Z, and Dadmehr N (2003). Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods, 123(1): 69-87. https://doi.org/10.1016/S0165-0270(02)00340-0   [Google Scholar]
  2. Ang KK, Chin ZY, Zhang H, and Guan C (2008). Filter bank common spatial pattern (FBCSP) in brain-computer interface. In the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE, Hong Kong, China: 2390-2397. https://doi.org/10.1109/IJCNN.2008.4634130   [Google Scholar]
  3. Blanco S, Garcia H, Quiroga RQ, Romanelli L, and Rosso OA (1995). Stationarity of the EEG series. IEEE Engineering in Medicine and Biology Magazine, 14(4): 395-399. https://doi.org/10.1109/51.395321   [Google Scholar]
  4. Brinkmann BH, Wagenaar J, Abbot D, Adkins P, Bosshard SC, Chen M, and Pardo J (2016). Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain, 139(6): 1713-1722. https://doi.org/10.1093/brain/aww045   [Google Scholar] PMid:27034258 PMCid:PMC5022671
  5. Feldwisch-Drentrup H, Staniek M, Schulze-Bonhage A, Timmer J, Dickten H, Elger CE, and Lehnertz K (2011). Identification of preseizure states in epilepsy: A data-driven approach for multichannel EEG recordings. Frontiers in Computational Neuroscience, 5: 32. https://doi.org/10.3389/fncom.2011.00032   [Google Scholar] PMid:21779241 PMCid:PMC3133837
  6. Flandrin P, Rilling G, and Goncalves P (2004). Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2): 112-114. https://doi.org/10.1109/LSP.2003.821662   [Google Scholar]
  7. Gadhoumi K, Lina JM, and Gotman J (2012). Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG. Clinical Neurophysiology, 123(10): 1906-1916. https://doi.org/10.1016/j.clinph.2012.03.001   [Google Scholar] PMid:22480601 PMCid:PMC3654937
  8. Ghosh-Dastidar S, Adeli H, and Dadmehr N (2008). Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2): 512-518. https://doi.org/10.1109/TBME.2007.905490   [Google Scholar] PMid:18269986
  9. Hazarika N, Chen JZ, Tsoi AC, and Sergejew A (1997). Classification of EEG signals using the wavelet transform. In the 13th International Conference on Digital Signal Processing Proceedings, IEEE, Santorini, Greece, Greece, 1: 89-92. https://doi.org/10.1109/ICDSP.1997.627975   [Google Scholar]
  10. Hosseini MP, Pompili D, Elisevich K, and Soltanian-Zadeh H (2017). Optimized deep learning for EEG big data and seizure prediction BCI via internet of things. IEEE Transactions on Big Data, 3(4): 392-404. https://doi.org/10.1109/TBDATA.2017.2769670   [Google Scholar]
  11. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, and Liu HH (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. The Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454: 903-995. https://doi.org/10.1098/rspa.1998.0193   [Google Scholar]
  12. Le Van Quyen M, Soss J, Navarro V, Robertson R, Chavez M, Baulac M, and Martinerie J (2005). Preictal state identification by synchronization changes in long-term intracranial EEG recordings. Clinical Neurophysiology, 116(3): 559-568. https://doi.org/10.1016/j.clinph.2004.10.014   [Google Scholar] PMid:15721070
  13. Moody GB, Mark RG, and Goldberger AL (2011). PhysioNet: Physiologic signals, time series and related open source software for basic, clinical, and applied research. In the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Boston, USA: 8327-8330. https://doi.org/10.1109/IEMBS.2011.6092053   [Google Scholar]
  14. Obermaier B, Guger C, Neuper C, and Pfurtscheller G (2001). Hidden Markov models for online classification of single trial EEG data. Pattern Recognition Letters, 22(12): 1299-1309. https://doi.org/10.1016/S0167-8655(01)00075-7   [Google Scholar]
  15. Ocak H (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2): 2027-2036. https://doi.org/10.1016/j.eswa.2007.12.065   [Google Scholar]
  16. Parvez MZ and Paul M (2016). Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1): 158-168. https://doi.org/10.1109/TNSRE.2015.2458982   [Google Scholar] PMid:26208360
  17. Parvez MZ and Paul M (2017). Seizure prediction using undulated global and local features. IEEE Transactions on Biomedical Engineering, 64(1): 208-217. https://doi.org/10.1109/TBME.2016.2553131   [Google Scholar] PMid:27093309
  18. Rasekhi J, Mollaei MRK, Bandarabadi M, Teixeira CA, and Dourado A (2013). Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. Journal of Neuroscience Methods, 217(1-2): 9-16. https://doi.org/10.1016/j.jneumeth.2013.03.019   [Google Scholar] PMid:23567810
  19. Schmidt D and Schachter SC (2014). Drug treatment of epilepsy in adults. BMJ Journal, 2014: 348. https://doi.org/10.1136/bmj.g254   [Google Scholar]
  20. Senger V and Tetzlaff R (2016). New signal processing methods for the development of seizure warning devices in epilepsy. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(5): 609-616. https://doi.org/10.1109/TCSI.2016.2553278   [Google Scholar]
  21. Shiao HT, Cherkassky V, Lee J, Veber B, Patterson EE, Brinkmann BH, and Worrell GA (2017). SVM-based system for prediction of epileptic seizures from iEEG signal. IEEE Transaction Biomedical Engineering, 64(5): 1011-1022. https://doi.org/10.1109/TBME.2016.2586475   [Google Scholar] PMid:27362758 PMCid:PMC5359075
  22. Teixeira CA, Direito B, Bandarabadi M, Le Van Quyen M, Valderrama M, Schelter B, and Dourado A (2014). Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients. Computer Methods and Programs in Biomedicine, 114(3): 324-336. https://doi.org/10.1016/j.cmpb.2014.02.007   [Google Scholar] PMid:24657096
  23. Thurman DJ, Kobau R, Luo YH, Helmers SL, and Zack MM (2016). Health-care access among adults with epilepsy: The US national health interview survey, 2010 and 2013. Epilepsy and Behavior, 55: 184-188. https://doi.org/10.1016/j.yebeh.2015.10.028   [Google Scholar] PMid:26627980 PMCid:PMC5317396
  24. Usman SM, Usman M, and Fong S (2017). Epileptic seizures prediction using machine learning methods. Computational and Mathematical Methods in Medicine, 2017: Article ID 9074759. https://doi.org/10.1155/2017/9074759   [Google Scholar] PMid:29410700 PMCid:PMC5749318
  25. Van Buren JM (1987). Complications of surgical procedures in the diagnosis and treatment of epilepsy. In: Engel JrJ (Ed.), Surgical treatment of the epilepsies: 465-475. Raven Press, New York, USA.   [Google Scholar]
  26. Wang N and Lyu MR (2015). Extracting and selecting distinctive EEG features for efficient epileptic seizure prediction. IEEE Journal of Biomedical and Health Informatics, 19(5): 1648-1659. https://doi.org/10.1109/JBHI.2014.2358640   [Google Scholar] PMid:25248205
  27. Zandi AS, Tafreshi R, Javidan M, and Dumont GA (2013). Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. IEEE Transactions on Biomedical Engineering, 60(5): 1401-1413. https://doi.org/10.1109/TBME.2012.2237399   [Google Scholar] PMid:23292785