International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 9 (September 2018), Pages: 33-38

----------------------------------------------

 Original Research Paper

 Title: Performance analysis of support vector machine based classifiers

 Author(s): Zulfiqar Ali 1, 2, * , Syed Khuram Shahzad 3, Waseem Shahzad 2

 Affiliation(s):

 1Department of Computer Science and Information Technology, University of Lahore, Lahore, Pakistan
 2Department of Computer Science, National University of Computer and Emerging Science, Islamabad, Pakistan
 3Department of Computer Science and Information Technology, The Superior College, Lahore, Pakistan

 https://doi.org/10.21833/ijaas.2018.09.007

 Full Text - PDF          XML

 Abstract:

Classification is a challenging problem in the various fields of knowledge i.e., Pattern Recognition, Data Mining, Knowledge Discovery from Database etc. There is various classification methods are proposed in the contemporary literature. The choice of an appropriate classifier to achieve the optimal performance on a specific problem needs more empirical studies. There are various algorithmic paradigms like, Associative Classification; Decision Trees based classification, Statistical Classification and Support Vector Machines etc. which are exploited for the classification purposes. This paper investigates the performance of Support Vector Machine (SVM) based classifiers namely SMO-C, C-SVM-C, and NU-SVM-C. SVM is a very successful classification approach for the binary classification as well as non-binary classification problems. This study, performance comparative analysis of SVM based classification approach on public data sets; exploit the implementation of the corresponding classifiers in the KEEL. The SVM-C approach wins one time, draw 5 times and lost 6 times with respective other approaches. The NU_SVM-C win one time, draw 4 times and lost 7 times while SMO-C wins 5 times, draw 3 times and loss 4 times. It is shown that the performance of SMO-C is promising with respect to other SVM based classifiers. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Classification, Support vector machine, KEEL, SVM kernel

 Article History: Received 28 March 2018, Received in revised form 10 July 2018, Accepted 12 July 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.09.007

 Citation:

 Ali Z , Shahzad SK, and Shahzad W (2018). Performance analysis of support vector machine based classifiers. International Journal of Advanced and Applied Sciences, 5(9): 33-38

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I9/Ali.html

----------------------------------------------

 References (36) 

  1. Alcala-Fdez J, Alcala R, and Herrera F (2011a). A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Transactions on Fuzzy Systems, 19(5): 857-872. https://doi.org/10.1109/TFUZZ.2011.2147794   [Google Scholar]  
  2. Alcala-Fdez J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, and Herrera F (2011b). Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17: 255-287.   [Google Scholar]     
  3. Babaud J, Witkin AP, Baudin M, and Duda RO (1986). Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(1): 26-33. https://doi.org/10.1109/TPAMI.1986.4767749   [Google Scholar] 
  4. Benzi M, Meyer CD, and Tůma M (1996). A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM Journal on Scientific Computing, 17(5): 1135-1149. https://doi.org/10.1137/S1064827594271421   [Google Scholar] 
  5. Choi HI and Williams WJ (1989). Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(6): 862-871. https://doi.org/10.1109/ASSP.1989.28057   [Google Scholar] 
  6. Cortes C and Vapnik V (1995). Support-vector networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018   [Google Scholar] 
  7. Domingos P and Pazzani M (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3): 103-130. https://doi.org/10.1023/A:1007413511361   [Google Scholar] 
  8. Elder IV JF (1996). Machine learning, neural, and statistical classification. Journal of the American Statistical Association, 91(433): 436-438. https://doi.org/10.2307/2291432   [Google Scholar] 
  9. Fan J, Heckman NE, and Wand MP (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. Journal of the American Statistical Association, 90(429): 141-150. https://doi.org/10.1080/01621459.1995.10476496   [Google Scholar] 
  10. Fisher RA (1936). The use of multiple measurements in taxonomic problems. Annals of Human Genetics, 7(2): 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x   [Google Scholar] 
  11. Friedman JH (1989). Regularized discriminant analysis. Journal of the American Statistical Association, 84(405): 165-175. https://doi.org/10.1080/01621459.1989.10478752   [Google Scholar] 
  12. Jin P, Zhu Y, Hu K, and Li S (2006). Classification rule mining based on ant colony optimization algorithm. In the Intelligent Control and Automation, Springer, Berlin, Heidelberg: 654-663.   [Google Scholar]     
  13. Kwasnik BH (1999). The role of classification in knowledge representation and discovery. Library Trends, 48(1): 22-47.   [Google Scholar]     
  14. Li W, Han J, and Pei J (2001). CMAR: Accurate and efficient classification based on multiple class-association rules. In the IEEE International Conference on Data Mining, IEEE, San Jose, CA, USA: 369-376.   [Google Scholar]     
  15. Lin SW and Chen SC (2009). PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis. Applied Soft Computing, 9(3): 1008-1015. https://doi.org/10.1016/j.asoc.2009.01.001   [Google Scholar] 
  16. Ma BLWHY and Liu B (1998). Integrating classification and association rule mining. In the 4th International Conference on Knowledge Discovery and Data Mining (KDD'98), New York, USA: 1-7.   [Google Scholar]     
  17. Maron ME (1961). Automatic indexing: An experimental inquiry. Journal of the ACM (JACM), 8(3): 404-417. https://doi.org/10.1145/321075.321084   [Google Scholar] 
  18. McLachlan G (2004). Discriminant analysis and statistical pattern recognition. John Wiley and Sons, Hoboken, New Jersey, USA.   [Google Scholar]     
  19. Mehta M, Agrawal R, and Rissanen J (1996). SLIQ: A fast scalable classifier for data mining. In the International Conference on Extending Database Technology, Springer, Berlin, Heidelberg: 18-32. https://doi.org/10.1007/BFb0014141   [Google Scholar] 
  20. Michie D, Spiegelhalter DJ, and Taylor CC (1994). Machine learning, neural and statistical classification. Ellis Horwood, London, UK.   [Google Scholar]     
  21. Mills P (2011). Efficient statistical classification of satellite measurements. International Journal of Remote Sensing, 32(21): 6109-6132. https://doi.org/10.1080/01431161.2010.507795   [Google Scholar] 
  22. Moret BM (1982). Decision trees and diagrams. ACM Computing Surveys (CSUR), 14(4): 593-623. https://doi.org/10.1145/356893.356898   [Google Scholar] 
  23. Netsch T and Peitgen HO (1999). Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Transactions on Medical Imaging, 18(9): 774-786. https://doi.org/10.1109/42.802755   [Google Scholar]  PMid:10571382 
  24. Otero FE, Freitas AA, and Johnson CG (2008). cAnt-Miner: An ant colony classification algorithm to cope with continuous attributes. In the International Conference on Ant Colony Optimization and Swarm Intelligence, Springer, Berlin, Heidelberg: 48-59.   [Google Scholar]     
  25. Quinlan JR (1986). Induction of decision trees. Machine Learning, 1(1): 81-106. https://doi.org/10.1007/BF00116251   [Google Scholar] 
  26. Schlimmer JC and Fisher D (1986). A case study of incremental concept induction. In the 5th AAAI National Conference on Artificial Intelligence, AAAI Press, Philadelphia, USA, 86: 496-501.   [Google Scholar]     
  27. Schölkopf B, Smola AJ, Williamson RC, and Bartlett PL (2000). New support vector algorithms. Neural Computation, 12(5): 1207-1245. https://doi.org/10.1162/089976600300015565   [Google Scholar]  PMid:10905814     
  28. Shahzad W and Baig A (2011). Hybrid associative classification algorithm using ant colony optimization. International Journal of Innovative Computing, Information and Control, 7(12): 6815-6826.   [Google Scholar]     
  29. Shimodaira H, Noma KI, Nakai M, and Sagayama S (2002). Dynamic time-alignment kernel in support vector machine. In: Touretzky DS, Mozer MC, and Hasselmo ME (Eds.), Advances in neural information processing systems: 921-928. MIT Press, Cambridge, Massachusetts, USA.   [Google Scholar]     
  30. Stone CJ (1984). Classification and regression trees. Wadsworth International Group, 8: 452-456.   [Google Scholar]     
  31. Tou JT and Gonzalez RC (1974). Pattern recognition principles. NASA, USA.   [Google Scholar]     
  32. Utgoff PE (1989). Incremental induction of decision trees. Machine Learning, 4(2): 161-186. https://doi.org/10.1023/A:1022699900025   [Google Scholar] 
  33. Van Heel M, Harauz G, Orlova EV, Schmidt R, and Schatz M (1996). A new generation of the IMAGIC image processing system. Journal of Structural Biology, 116(1): 17-24. https://doi.org/10.1006/jsbi.1996.0004   [Google Scholar]  PMid:8742718 
  34. Wang S, Chen H, and Yao X (2010). Negative correlation learning for classification ensembles. In the International Joint Conference on Neural Networks, IEEE, Barcelona, Spain: 1-8. https://doi.org/10.1109/IJCNN.2010.5596702   [Google Scholar] 
  35. Zaki MJ, Ho CT, and Agrawal R (1999). Parallel classification for data mining on shared-memory multiprocessors. In the 15th International Conference on Data Engineering, IEEE, Sydney, NSW, Australia: 198-205. https://doi.org/10.1109/ICDE.1999.754925   [Google Scholar] 
  36. Zeng ZQ, Yu HB, Xu HR, Xie YQ, and Gao J (2008). Fast training support vector machines using parallel sequential minimal optimization. In the 3rd International Conference on Intelligent System and Knowledge Engineering, IEEE, Xiamen, China, 1: 997-1001.   [Google Scholar]