International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 8 (August 2018), Pages: 18-23

----------------------------------------------

 Original Research Paper

 Title: Programming codes of block-Milne's device for solving fourth-order ODEs

 Author(s): Oghonyon Jimevwo Godwin *, Bishop Sheila Amina, Eke Stella Kanayo

 Affiliation(s):

 Department of Mathematics, College of Science, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria

 https://doi.org/10.21833/ijaas.2018.08.003

 Full Text - PDF          XML

 Abstract:

Block-Milne’s device is an extension of block-predictor-corrector method and specifically developed to design a worthy step size, resolve the convergence criteria and maximize error. In this study, programming codes of block- Milne’s device (P-CB-MD) for solving fourth order ODEs are considered. Collocation and interpolation with power series as the basic solution are used to devise P-CB-MD. Analysing the P-CB-MD will give rise to the principal local truncation error (PLTE) after determining the order. The P-CB-MD for solving fourth order ODEs is written using Mathematica which can be utilized to evaluate and produce the mathematical results. The P-CB-MD is very useful to demonstrate speed, efficiency and accuracy compare to manual computation applied. Some selected problems were solved and compared with existing methods. This was made realizable with the support of the named computational benefits. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Block-Milne’s device, Mathematica programming codes, Convergence limit, Max calculated errors, Principal local truncation error

 Article History: Received 11 January 2018, Received in revised form 18 May 2018, Accepted 20 May 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.08.003

 Citation:

 Oghonyon JG, Bishop SA, and Eke SK (2018). Programming codes of block-Milne's device for solving fourth-order ODEs. International Journal of Advanced and Applied Sciences, 5(8): 18-23

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I8/Godwin.html

----------------------------------------------

 References (28) 

  1. Abell ML and Braselton JP (2009). Mathematica by example. 4th Edition. Elsevier, USA.   [Google Scholar] 
  2. Adesanya AO, Momoh AA, Alkali AM, and Tahir A (2012). Five steps block method for the solution of fourth order ordinary differential equations. International Journal of Engineering Research and Applications, 2(4): 991-998.   [Google Scholar]     
  3. Akinfenwa AO, Jator SN, and Yao NM (2013). Continuous block backward differentiation formula for solving stiff ordinary differential equations. Computers and Mathematics with Applications, 65(7): 996-1005. https://doi.org/10.1016/j.camwa.2012.03.111   [Google Scholar] 
  4. Anake TA and Adoghe LO (2013). A four point integration method for the solutions of IVP in ODE. Australian Journal of Basic and Applied Sciences, 7(10): 467-473.   [Google Scholar]     
  5. Anake TA, Adesanya AO, Oghonyon GJ, and Agarana MC (2013). Block algorithm for general third order ODEs. Icastor Journal of Mathematical Sciences, 7(2): 127-136.   [Google Scholar]     
  6. Ascher UM and Petzold LR (1998). Computer methods for ordinary differential equations and differential algebraic equations. SIAM, Philadelphia, USA. https://doi.org/10.1137/1.9781611971392   [Google Scholar] 
  7. Awoyemi DO, Kayode SJ, and Adoghe LO (2014). A five-step p-stable method for the numerical integration of third order ODEs. American Journal of Computational Mathematics, 4(3): 119-126. https://doi.org/10.4236/ajcm.2014.43011   [Google Scholar] 
  8. Awoyemi DO, Kayode SJ, and Adoghe LO (2015). A six-step continuous multistep method for the solution of general fourth order IVP of ODEs. Journal of Natural Sciences Research, 5(5): 131-138.   [Google Scholar]     
  9. Dormand JR (1996). Numerical methods for differential equations: A computational approach. Vol. 3, CRC Press, USA.   [Google Scholar]     
  10. Duromola MK (2016). An accurate five off-step points implicit block method for direct solution of fourth order differential equations. Open Access Library Journal, 3(6): 1-14. https://doi.org/10.4236/oalib.1102667   [Google Scholar] 
  11. Faires JD and Burden RL (2012). Initial-value problems for ODEs, variable step-size multistep methods. Dublin City University, Dublin, Republic of Ireland.   [Google Scholar] PMCid:PMC3532087     
  12. Gear CW (1971). Numerical initial value problems in ODEs (Automatic Computation). Prentice-Hall, New Jersey, USA.   [Google Scholar] PMCid:PMC1411756     
  13. Ibrahim ZB, Othman KI, and Suleiman M (2007). Implicit r-point block backward differentiation formula for solving first-order stiff ODEs. Applied Mathematics and Computation, 186(1): 558-565. https://doi.org/10.1016/j.amc.2006.07.116   [Google Scholar] 
  14. Jain MK, Iyengar SRK, and Jain RK (2007). Numerical methods for scientific and engineering computation. 5th Edition, New Age International, New Delhi, India.   [Google Scholar]     
  15. Kayode SJ (2008). An order six zero-stable method for direct solution of fourth order ODEs. American Journal of Applied Sciences, 5(11): 1461-1466. https://doi.org/10.3844/ajassp.2008.1461.1466   [Google Scholar] 
  16. Kayode SJ, Duromola MK, and Bolaji B (2014). Direct solution of initial value problems of fourth order ODEs using modified implicit hybrid block method. Journal of Scientific Research and Reports, 3(21): 2792-2800. https://doi.org/10.9734/JSRR/2014/11953   [Google Scholar] 
  17. Lambert JD (1973). Computational methods in ordinary differential equations. John Wiley and Sons, New York, USA.   [Google Scholar]     
  18. Lambert JD (1991). Numerical methods for ordinary differential systems, the initial value problem. John Wiley and Sons, New York, USA.   [Google Scholar]     
  19. Majid ZA and Suleiman M (2008). Parallel direct integration variable step block method for solving large system of higher order ordinary differential equations. World Academy of Science, Engineering and Technology, 2(4): 269-273.   [Google Scholar]     
  20. Majid ZA and Suleiman MB (2007). Implementation of four-point fully implicit block method for solving ordinary differential equations. Applied Mathematics and Computation, 184(2): 514-522. https://doi.org/10.1016/j.amc.2006.05.169   [Google Scholar] 
  21. Mehrkanoon S, Majid ZA, and Suleiman M (2010). A variable step implicit block multistep method for solving first-order ODEs. Journal of Computational and Applied Mathematics, 233(9): 2387-2394. https://doi.org/10.1016/j.cam.2009.10.023   [Google Scholar] 
  22. Mohammed U and Tech M (2010). A six step block method for solution of fourth order ordinary differential equations. The Pacific Journal of Science and Technology, 11(1): 259-265.   [Google Scholar]    
  23. Oghonyon JG, Okunuga SA, and Iyase SA (2016). Milne's implementation on block predictor-corrector methods. Journal of Applied Sciences, 16(5): 236-241. https://doi.org/10.3923/jas.2016.236.241   [Google Scholar] 
  24. Oghonyon JG, Okunuga SA, Omoregbe NA, and Olasunmbo OO (2015). Adopting a variable step size approach in implementing implicit block multi-step method for non-stiff ODEs. Journal of Engineering and Applied Sciences, 10(7): 174-180.   [Google Scholar]     
  25. Olabode BT (2009). A six-step scheme for the solution of fourth order ordinary differential equations. The Pacific Journal of Science and Technology, 10(1): 143-148.   [Google Scholar]     
  26. Olabode BT and Alabi TJ (2013). Direct block predictor-corrector method for the solution of general fourth order ODEs. Journal of Mathematical Research, 5(1): 26-33. https://doi.org/10.5539/jmr.v5n1p26   [Google Scholar] 
  27. Omar Z and Kuboye JO (2016). New seven-step numerical method for direct solution of fourth order ordinary differential equations. Journal of Mathematical and Fundamental Sciences, 48(2): 94-105. https://doi.org/10.5614/j.math.fund.sci.2015.48.2.1   [Google Scholar] 
  28. Zarina BI, Khairil IO, and Suleimann M (2007). Variable step block backward differentiation formula for solving first-order stiff ODEs. In the World Congress on Engineering, London, UK, 2: 2-6.   [Google Scholar]