International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 8 (August 2018), Pages: 34-36

----------------------------------------------

 Technical Note

 Title: Magnetic and thermal properties of CoFe2O4 nanoparticles for magnetic hyperthermia treatment

 Author(s): Eltayeb Ibrahim Ahmed Elbeshir *

 Affiliation(s):

 Physics Department, Faculty of Science and Arts, Almikhwah, Al Baha University, P.O. Box 1988, Al Baha, Saudi Arabia

 https://doi.org/10.21833/ijaas.2018.08.005

 Full Text - PDF          XML

 Abstract:

The sample of CoFe2O4 magnetic nanoparticles (MNPs) is synthesized via co-precipitation method from ferrous and ferric solutions. Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the powder synthesized from the sample. The average lattice parameter and the average size of CoFe2O4 were a = 8.4 Å and t = 13 nm. The magnetization measurements of CoFe2O4 at room temperature up to a maximum magnetic field (H) of 9000 (Oe) by using vibrating sample magnetometer (VSM) homemade and saturation magnetization (Ms = 48 emu/g), remanent magnetization (Mr = 10.8emu/g) and coercive force (Hc = 240 Oe) were evaluated. Induction heater operated at low frequencies 100 kHz was used to study the thermal properties of the CoFe2O4. The results shown; the maximum temperature (T = 59 oC), the heating rate (DT/Dt = 0.027 oC/sec) and the specific absorption rate (SAR = 224 W/g). 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: CoFe2O4, Magnetic nanoparticles, Properties and hyperthermia

 Article History: Received 7 March 2018, Received in revised form 21 May 2018, Accepted 22 May 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.08.005

 Citation:

 Elbeshir EIA (2018). Magnetic and thermal properties of CoFe2O4 nanoparticles for magnetic hyperthermia treatment. International Journal of Advanced and Applied Sciences, 5(8): 34-36

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I8/Elbeshir.html

----------------------------------------------

 References (11) 

  1. Calero-DdelC VL and Rinaldi C (2007). Synthesis and magnetic characterization of cobalt-substituted ferrite (CoxFe 3− xO 4) nanoparticles. Journal of Magnetism and Magnetic Materials, 314 (1): 60-67. https://doi.org/10.1016/j.jmmm.2006.12.030   [Google Scholar]  
  2. Davis EA and Mott N (1970). Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22(179): 0903-0922.   [Google Scholar]     
  3. El Ghandoor H, Zidan HM, Khalil MM, and Ismail MIM (2012a). Application of laser speckle interferometry for the study of CoxFe (1− x) Fe2O4 magnetic fluids. Physica Scripta, 86(1): 015403. https://doi.org/10.1088/0031-8949/86/01/015403   [Google Scholar] 
  4. El Ghandoor H, Zidan HM, Khalil MM, and Ismail MIM (2012b). Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. International Journal Electrochemical Science, 7(6): 5734-5745.   [Google Scholar]     
  5. Elbeshir EIA (2015). The thermal properties and the energy absorption of α-Fe2O3 nanoparticles at low frequency. The International Journal Research Publication, 4(7): 12-15.   [Google Scholar]     
  6. Elbeshir EIA (2016a). Evaluation of thermal properties of ferrite nanoparticles for magnetic hyperthermia treatment. International Journal of Science and Research, 5(2): 291-294.   [Google Scholar]     
  7. Elbeshir EIA (2016b). Abugomry induction heater design to study the thermal properties of magnetic nanoparticles. Journal of Physical Science and Application, 6(4): 44-47.   [Google Scholar]     
  8. Elbeshir EIA, Yassin OA, and Khalil AZ (2013). Study of CoFe2O4 nano-particles energy absorption used a new induction heating design operating at 100W-100 kHz. The International Journal Research Publication's Research Journal of Science and IT Management, 2(5): 22-30.   [Google Scholar]     
  9. Kumar V, Rana A, Yadav MS, and Pant RP (2008). Size-induced effect on nano-crystalline CoFe2O4. Journal of Magnetism and Magnetic Materials, 320(11): 1729-1734. https://doi.org/10.1016/j.jmmm.2008.01.021   [Google Scholar] 
  10. Motoyama J, Hakata T, Kato R, Yamashita N, Morino T, Kobayashi T, and Honda H (2008). Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy. Biomagnetic Research and Technology, 6(1): 4-13. https://doi.org/10.1186/1477-044X-6-4   [Google Scholar] PMid:18928573 PMCid:PMC2579422 
  11. Torres TE, Roca AG, Morales MP, Ibarra A, Marquina C, Ibarra MR, and Goya GF (2010). Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. Journal of Physics: Conference Series, 200(7): 072101. https://doi.org/10.1088/1742-6596/200/7/072101   [Google Scholar]