International journal of


EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
line decor

 Volume 5, Issue 7 (July 2018), Pages: 15-26


 Review Paper

 Title: Measurement of small-strain stiffness of soil in a triaxial setup: Review of local instrumentation

 Author(s): B. W. Isah *, H. Mohamad, I. S. H. Harahap


 Civil and Environmental Engineering Department, Faculty of Engineering, Universiti Teknologi Petronas, Perak, Malaysia

 Full Text - PDF          XML


Accurate determination of soil stiffness at small strain (0.001 % - 0.1 % strain) is very important as it portrayed the stiffness of soil underneath geotechnical structures. To evaluate stiffness at small strain, it is important to achieve a minimum strain measurement accuracy of 10-4 %, this is attained using transducers, strain gauges and sensors which are attached on the specimen locally inside the triaxial cell. Several local strains measuring techniques have emerged with the intention of developing a seamless system which is easy, accurate and less expensive. This study epitomizes the existing types of small strain measuring instrumentation, their trend of development and technology. Those that can measure both axial and radial strain, axial strain alone and radial strain alone are distinguished and described. Also, the accuracy, features, merits, and demerits of each type of device have been discussed accordingly. This paper provides information that enables selection of a suitable device that will best fit a particular application. It is anticipated that the study will inspire further researches in the area. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (

 Keywords: Triaxial testing, Conventional method, Local measuring device, Small strain

 Article History: Received 22 December 2017, Received in revised form 9 April 2018, Accepted 21 April 2018

 Digital Object Identifier:


 Isah BW, Mohamad H, and Harahap ISH (2018). Measurement of small-strain stiffness of soil in a triaxial setup: Review of local instrumentation. International Journal of Advanced and Applied Sciences, 5(7): 15-26

 Permanent Link:


 References (73) 

  1. Ackerley SK, Standing JR, and Hosseini Kamal R (2016). A system for measuring local radial strains in triaxial apparatus. Géotechnique, 66(6): 515-522.   [Google Scholar] 
  2. Atkinson JH (1991). Experimental determination of stress-strain-time characteristics in laboratory and-in-situ tests (General report). In the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy, 3: 915-956.   [Google Scholar]     
  3. Atkinson JH (2000). Non-linear soil stiffness in routine design. Géotechnique, 50(5): 487-508.   [Google Scholar] 
  4. Bald G, Hight DW, and Thomas GE (1988). State-of-the-art paper: A reevaluation of conventional triaxial test methods. In the Advanced triaxial testing of soil and rock, ASTM International.   [Google Scholar]  
  5. Bishop AW and Henkel DJ (1957). The measurement of soil properties in the triaxial test. Edward Arnold (Publishers) Ltd., London, UK.   [Google Scholar]        
  6. Bonal J, Donohue S, and McNally C (2012). Wavelet analysis of bender element signals. Geotechnique, 62(3): 243-252.   [Google Scholar] 
  7. Boyce JR and Brown SF (1976). Measurement of elastic strain in granular material. Geotechnique, 26(4): 637-640.   [Google Scholar] 
  8. Brosse A, Hosseini Kamal R, Jardine RJ, and Coop MR (2017). The shear stiffness characteristics of four Eocene-to-Jurassic UK stiff clays. Géotechnique, 67(3): 242-259.   [Google Scholar] 
  9. Brown SF and Snaith MS (1974). The measurement of recoverable and irrecoverable deformations in the repeated load triaxial test. Geotechnique, 24(2): 255-259.   [Google Scholar] 
  10. Burland JB (1989). Ninth laurits bjerrum memorial lecture:" small is beautiful"—the stiffness of soils at small strains. Canadian geotechnical journal, 26(4): 499-516.   [Google Scholar] 
  11. Burland JB and Symes MJPR (1982). A simple axial displacement gauge for use in the triaxial apparatus. Geotechnique, 32(1): 62-65.   [Google Scholar] 
  12. Cabarkapa Z and Cuccovillo T (2006). Automated triaxial apparatus for testing unsaturated soils. Geotechnical Testing Journal, 29(1): 21-29.   [Google Scholar]     
  13. Clayton CR, Khatrush SA, Bica AVD, and Siddique A (1989). The use of Hall effect semiconductors in geotechnical instrumentation. Geotechnical Testing Journal, 12(1): 69-76.   [Google Scholar] 
  14. Clayton CRI (2011). Stiffness at small strain: research and practice. Géotechnique, 61(1): 5-37.   [Google Scholar] 
  15. Clayton CRI and Khatrush SA (1987). Discussion: A new device for measuring local axial strains on triaxial specimens. Géotechnique, 37(3): 413-417.   [Google Scholar] 
  16. Costa Filho LDM (1985). Measurement of axial strains in triaxial tests on London Clay. Geotechnical Testing Journal, 8(1): 3-13.   [Google Scholar] 
  17. Cuccovillo T and Coop MR (1997). The measurement of local axial strains in triaxial tests using LVDTs. Géotechnique, 47(1): 167-171.   [Google Scholar] 
  18. El-Ruwayih AA (1976). Discussion: Design manufacture and performance of a lateral strain device. Géotechnique, 26(3): 542-544.   [Google Scholar] 
  19. Enomoto T (2016). Effects of grading and particle characteristics on small strain properties of granular materials. Soils and Foundations, 56(4): 745-750.   [Google Scholar] 
  20. Enomoto T, Koseki J, Tatsuoka F, and Sato T (2016). Rate-dependent behaviour of undisturbed gravelly soil. Soils and Foundations, 56(3): 547-558.   [Google Scholar] 
  21. Figini R, Paolucci R, and Chatzigogos CT (2012). A macro‐element model for non‐linear soil–shallow foundation–structure interaction under seismic loads: theoretical development and experimental validation on large scale tests. Earthquake Engineering and Structural Dynamics, 41(3): 475-493.   [Google Scholar] 
  22. Gasparre A, Hight DW, Coop MR, and Jardine RJ (2014). The laboratory measurement and interpretation of the small-strain stiffness of stiff clays. Géotechnique, 64(12): 942-953.   [Google Scholar] 
  23. Gasparre A, Nishimura S, Minh NA, Coop MR, and Jardine RJ (2007). The stiffness of natural London Clay. Géotechnique, 57(1): 33-47.   [Google Scholar] 
  24. Goto S, Tatsuoka F, Shibuya S, Kim Y, and Sato T (1991). A simple gauge for local small strain measurements in the laboratory. Soils and Foundations, 31(1): 169-180.   [Google Scholar] 
  25. Gunasekaren M and Robinson RG (2008). On-Sample measurement of strains in Triaxial samples using strain gauges. Indian Geotechnical Journal, 38(1): 33–48. 
  26. Hartzell S, Bonilla LF, and Williams RA (2004). Prediction of nonlinear soil effects. Bulletin of the Seismological Society of America, 94(5): 1609-1629.   [Google Scholar] 
  27. Hashash Y, Phillips C, and Groholski DR (2010). Recent advances in non-linear site response analysis. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, USA: 1-23.   [Google Scholar]    
  28. Hird CC and Yung PCY (1989). The use of proximity transducers for local strain measurements in triaxial tests. Geotechnical Testing Journal, 12(4): 292-296.   [Google Scholar] 
  29. Hoque E, Sato T, and Tatsuoka F (1997). Performance evaluation of LDTs for use in triaxial tests. Geotechnical Testing Journal, 20(2): 149-167.   [Google Scholar] 
  30. Jardine RJ (1992). Some observations on the kinematic nature of soil stiffness. Soils and Foundations, 32(2): 111-124.   [Google Scholar] 
  31. Jardine RJ, Brooks NJ, and Smith PR (1985a). The use of electrolevel transducers for strain measurements in triaxial tests on weak rock. International Journal of Rock Mechanics and Mining Sciences, 22(5): 331–337.   [Google Scholar] 
  32. Jardine RJ, Fourie A, Maswoswe J, and Burland JB (1985b). Field and laboratory measurements of soil stiffness. In the 11th International Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam, The Netherlands, 2: 511-514.   [Google Scholar]  
  33. Jardine RJ, Potts DM, Fourie AB, and Burland JB (1986). Studies of the influence of non-linear stress–strain characteristics in soil–structure interaction. Geotechnique, 36(3): 377-396.   [Google Scholar] 
  34. Jardine RJ, Symes NJ and Burland JB (1985c). Discussion: The measurement of soil stiffness in the triaxial apparatus. Géotechnique, 35(3): 378-382.   [Google Scholar] 
  35. Jung YH, Finno RJ and Cho W (2012). Stress-strain responses of reconstituted and natural compressible Chicago glacial clay. Engineering Geology, 129–130: 9–19.   [Google Scholar] 
  36. Kim YS and Roesset JM (2004). Effect of nonlinear soil behavior on inelastic seismic response of a structure. International Journal of Geomechanics, 4(2): 104-114.   [Google Scholar] 
  37. Kolymbas D and Wu W (1989). A device for lateral strain measurement in triaxial tests with unsaturated specimens. Geotechnical Testing Journal, 12(3): 227-229.   [Google Scholar] 
  38. Kung GT (2007). Equipment and testing procedures for small strain triaxial tests. Journal of the Chinese Institute of Engineers, 30(4): 579-591.   [Google Scholar] 
  39. Kuwano R and Jardine RJ (2002). On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique, 52(10): 727-749.   [Google Scholar] 
  40. Kuwano R and Jardine RJ (2007). A triaxial investigation of kinematic yielding in sand. Géotechnique, 57(7): 563-579.   [Google Scholar] 
  41. Kuwano R, Connolly TM, and Jardine RJ (2000). Anisotropic stiffness measurements in a stress-path triaxial cell. Geotechnical Testing Journal, 23(2): 141-157.   [Google Scholar] 
  42. Lee JT, Tien KC, Te Ho Y, and Huang AB (2010). A fiber optic sensored triaxial testing device. Geotechnical Testing Journal, 34(2): 103-111.   [Google Scholar]    
  43. Likitlersuang S, Teachavorasinskun S, Surarak C, Oh E, and Balasubramaniam A (2013). Small strain stiffness and stiffness degradation curve of Bangkok clays. Soils and Foundations, 53(4): 498-509.   [Google Scholar] 
  44. Lo Presti D, Pallara O, Rainò M, and Maniscalco R (1994). A computer controlled triaxial apparatus: Preliminary results. Rivista Italiana Di Geotecnica, 28(1): 43-60.   [Google Scholar]     
  45. Lo Presti DL, Pallara O, and Puci I (1995). A modified commercial triaxial testing system for small strain measurements: Preliminary results on Pisa clay. Geotechnical Testing Journal, 18(1): 15-31.   [Google Scholar] 
  46. Muñoz-Castelblanco, Delage P, Pereira JM, and Cui YJ (2012). On-sample water content measurement for a complete local monitoring in Triaxial testing of unsaturated soils. Géotechnique, 62(7): 595–604.   [Google Scholar] 
  47. Ng CWW and Wang Y (2001). Field and laboratory measurements of small strain stiffness of decomposed granites. Soil and Foundation, 41(3): 57–71.   [Google Scholar]
  48. Ng CWW, Xu J, and Yung SY (2009). Effects of wetting–drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains. Canadian Geotechnical Journal, 46(9): 1062-1076.   [Google Scholar] 
  49. Nishimura S (2014). Assessment of anisotropic elastic parameters of saturated clay measured in triaxial apparatus: Appraisal of techniques and derivation procedures. Soils and Foundations, 54(3): 364-376.   [Google Scholar] 
  50. Nishimura S and Abdiel MD (2017). Cataloguing stiffness anisotropy of natural sedimentary soils–From clays to intermediate soils. Japanese Geotechnical Society Special Publication, 5(2): 101-106.   [Google Scholar] 
  51. Ratananikom W, Likitlersuang S, and Yimsiri S (2013). An investigation of anisotropic elastic parameters of Bangkok Clay from vertical and horizontal cut specimens. Geomechanics and Geoengineering, 8(1): 15–27.   [Google Scholar] 
  52. Roshan H, Masoumi H, and Regenauer-Lieb K (2017). Frictional behaviour of sandstone: A sample-size dependent triaxial investigation. Journal of Structural Geology, 94: 154-165.   [Google Scholar] 
  53. Saffari P, Noor MJM, Motamedi S, Hashim R, Ismail Z, and Hadi BA (2017). Experimental study on nonlinear shear strength behavior of a tropical granitic residual soil (Grade VI) at various initial moisture contents. Jurnal Teknologi, 79(2): 39-46.   [Google Scholar] 
  54. Scholey GK, Frost JD, Presti DL, and Jamiolkowski M (1995). A review of instrumentation for measuring small strains during triaxial testing of soil specimens. Geotechnical Testing Journal, 18(2): 137-156.   [Google Scholar] 
  55. Shankar Kumar S, Krishna AM, and Dey A (2016). Local strain measurements in Triaxial tests using on-sample transducers. In the Indian Geotechnical Conference, IIT Madras, Chennai, India: 1–4.   [Google Scholar] PMid:27018575     
  56. Shibuya S, Park CS, Tatsuoka F, Abe F, Teachavorasinskun S, Kohata Y, and Sato T (1994). The significance of local lateral-strain measurement of soil specimens for a wide range of strain. Soils and Foundations, 34(2): 95-105.   [Google Scholar] 
  57. Shih JY, Thompson DJ, and Zervos A (2017). The influence of soil nonlinear properties on the track/ground vibration induced by trains running on soft ground. Transportation Geotechnics, 11: 1-16.   [Google Scholar] 
  58. Skopek P and Cyre GP (1995). A resistance wire transducer for circumferential strain measurement in triaxial tests. Geotechnical Testing Journal, 18(1): 106-111.   [Google Scholar] 
  59. Surarak C, Likitlersuang S, and Wanatowski D (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and Foundations, 52(4): 682–697.   [Google Scholar] 
  60. Tatsuoka F (1992). Deformation characteristics of soils and rocks from field and laboratory tests. In the 9th ARC on SMFE, Bangkok, Thailand, 2: 101-170.   [Google Scholar]     
  61. Tatsuoka F, Shibuya S, Goto S, Sato T, and Kong XJ (1990). Discussion on "the use of hall effect semiconductors in geotechnical instrumentation" by CRI Clayton, SA Khatrush, AVD Bica, and A. Siddique. Geotechnical Testing Journal, 13(1): 63-67.   [Google Scholar] 
  62. Uchida S, Levenberg E, and Klar A (2015). On-specimen strain measurement with fiber optic distributed sensing. Measurement, 60: 104-113.   [Google Scholar] 
  63. Wild KM, Barla M, Turinett G, and Amann F (2017). A multi-stage Triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay. Journal of Rock Mechanics and Geotechnical Engineering, 9(3): 519–530.   [Google Scholar] 
  64. Wu C, Ye G, Han L, and Wang J (2014). Preliminary study on small-strain triaxial testing method for soft shanghai clays. In the Soil Behavior and Geomechanics, Shanghai, China: 379-388.   [Google Scholar] 
  65. Xu DS (2017). A new measurement approach for small deformations of soil specimens using fiber bragg grating sensors. Sensors, 17(5): 1016.   [Google Scholar]  PMid:28471388 PMCid:PMC5469539     
  66. Xu DS, Borana L, and Yin JH (2014). Measurement of small strain behavior of a local soil by fiber Bragg grating-based local displacement transducers. Acta Geotechnica, 9(6): 935-943.   [Google Scholar] 
  67. Yimsiri S and Soga K (2002). A review of local strain measurement systems for triaxial testing of soils. Journal of the Southeast Asian Geotechnical Society, 33(1), 42–52.   [Google Scholar]     
  68. Yimsiri S and Soga K (2011). Cross-anisotropic elastic parameters of two natural stiff clays. Géotechnique, 61(9): 809-814.   [Google Scholar] 
  69. Yimsiri S, Ratananikom W, and Likitlersuang S (2009). Investigation of some anisotropic characteristics of Bangkok Clay. In the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt: 1068-1071.   [Google Scholar]     
  70. Yimsiri S, Soga K, and Chandler SG (2005). Cantilever-type local deformation transducer for local axial strain measurement in triaxial test. Geotechnical Testing Journal, 28(5): 445-451.   [Google Scholar]     
  71. Yuen CMK, Lo KY, Palmer JHL, and Leonards GA (1978). A new apparatus for measuring the principal strains in anisotropic clays. Geotechnical Testing Journal, 1(1): 24-33.   [Google Scholar] 
  72. Zan YF, Chi YANG, Han DF, Yuan LH, and Li ZG (2016). A numerical model for pipelaying on nonlinear soil stiffness seabed. Journal of Hydrodynamics, Ser. B, 28(1): 10-22.   [Google Scholar]   
  73. Zlatović S and Szavits-Nossan A (1999). Local measurement of radial strain in triaxial apparatus: A new device. In the 2nd International Symposium on Pre-Failure Deformation Characteristics of Geomaterials, A.A. Balkema, Rotterdam: 245-248.   [Google Scholar]