International journal of


EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
line decor

 Volume 5, Issue 7 (July 2018), Pages: 71-85


 Original Research Paper

 Title: Prediction of aerodynamic coefficients for irregularly shaped body using numerical simulations

 Author(s): Alan Catovic *, Elvedin Kljuno


 Mechanical Engineering Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina

 Full Text - PDF          XML


An evaluation of aerodynamic forces and moments that act on an irregularly shaped body (fragments of HE projectile) moving at high velocities was made, using numerical simulations, analytical models, and CAD methods. Using the results obtained for aerodynamic forces and moments, and known values of body exposed area, aerodynamic drag and lift coefficients were determined for different body orientations and different flow velocity. Analysis of the influence of the body front surface and body slenderness on the position of the maximum CD value (on the CD (Ma) curve) was performed. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (

 Keywords: Aerodynamic coefficients, Drag force, Lift force

 Article History: Received 20 February 2018, Received in revised form 26 April 2018, Accepted 2 May 2018

 Digital Object Identifier:


 Catovic A and Kljuno E (2018). Prediction of aerodynamic coefficients for irregularly shaped body using numerical simulations. International Journal of Advanced and Applied Sciences, 5(7): 71-85

 Permanent Link:


 References (24) 

  1. AASTP (2006). Manual of NATO safety principles for the storage of military ammunition and explosives. NATO/PFP UNCLASSIFIED, Allied Ammunition Storage and Transport Publication, USA. Available online at:   [Google Scholar] 
  2. Anderson JD (2016). Fundamentals of Aerodynamics. 6th Edition, McGraw-Hill Editions, New York, USA.   [Google Scholar]     
  3. Baker WE, Cox PA, Kulesz JJ, Strehlow RA, and Westine PS (2012). Explosion hazards and evaluation. Vol. 5, Elsevier, Berlin, Germany.   [Google Scholar]     
  4. Buresti G (2000). Bluff-body aerodynamics. Lecture Notes, International Advanced School on Wind-Excited and Aeroelastic Vibrations, Genoa, Italy.   [Google Scholar]     
  5. Crull M and Swisdak M (2003). Methodologies for calculating primary fragment characteristics (US DDESB Technical Paper). Department of Defense Explosives Safety Board, Alexandria, Egypt.   [Google Scholar]     
  6. Crull MM (1998). Prediction of primary fragmentation characteristics of cased munitions. Army Engineering and Support Center Huntsville Al, Huntsville, USA.   [Google Scholar]    
  7. Dunn DJ and Porter WR (1955). Air drag measurements of fragments. Ballistic Research Laboratories, Chandigarh, India.   [Google Scholar]     
  8. Fluent A (2010). Ansys fluent theory guide, Version 13.0. Ansys Inc., Canonsburg, USA.     
  9. Haverdings W (1994). General description of the missile systems damage assessment code (MISDAC) (No. PML-1994-A33). Prins Maurits Laboratorium TNO, Rijswijk, Netherlands.   [Google Scholar]   
  10. Hoerner SF (1965). Fluid-Dynamic drag. Hoerner, Midland Park, USA.   [Google Scholar]     
  11. Kljuno E and Catovic A (2017a). Instability estimation of irregularly shaped bodies moving through a resistive medium with high velocity. International Journal of Advanced and Applied Sciences, 4(9): 70-79.   [Google Scholar] 
  12. Kljuno E and Catovic A (2017b). Determination of the center of pressure and dynamic stability for irregularly shaped bodies. International Journal of Advanced and Applied Sciences, 4(10): 1-9.   [Google Scholar] 
  13. Kljuno E and Catovic A (2017c). Prediction of the trajectory of an irregularly shaped body moving through a resistive medium with high velocities. International Journal of Advanced and Applied Sciences, 4(11): 1-10.   [Google Scholar] 
  14. McCleskey F (1988). Drag coefficients for irregular fragments (No. NSWC-TR-87-89). Naval Surface Warfare Center Dahlgren, Naval base in Virginia, Dahlgren, USA.   [Google Scholar] 
  15. McDonald JW (1980). Bomb fragments. Eglin Air Force Base, Valparaiso, Florida, USA.   [Google Scholar]     
  16. Miller MC (1990). Drag coefficient measurements for typical bomb and projectile fragments. Army Research Development and Engineering Command Aberdeen Proving Ground, Maryland, USA.   [Google Scholar]     
  17. Moga NJ and Kisielewski KM (1979). Vertical wind tunnel tests to determine subsonic drag characteristics of unscored warhead fragments. NSWC TR 79-112, Dahlgren, Virginia, USA.   [Google Scholar] PMid:467838     
  18. Murman S (2010). Lift and drag behaviour of unconstrained bluff bodies. The National Aeronautics and Space Administration (NASA/TM-2010-216406), Washington, D.C., USA.   [Google Scholar] PMid:20410861   
  19. Murman S, Aftosmis M, and Rogers S (2005). Characterization of space shuttle ascent debris using CFD methods. In the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA: 1-20.   [Google Scholar] 
  20. Pope SB (2000). Turbulent flows. Cambridge University Press, Cambridge, UK.   [Google Scholar] 
  21. Ramsey RT, Powell Jr JG, and Smith III WD (1978). Fragment hazard investigation program (No. NSWC/DL-TR-3664). Naval Surface Weapons Center Dahlgren Lab, Virginia, USA.   [Google Scholar]  
  22. Schamberger RL (1971). An investigation of the use of spin-stabilized cubes as fragment simulators in armor evaluation No. GAM/MC/71-8. Air Force Inst of Tech Wright-Patterson Afb Oh School of Engineering, Ohio, USA.   [Google Scholar]     
  23. Twisdale LA and Vickery PJ (1992). Comparison of debris trajectory models for explosive safety hazard analysis. In the 25th DoD Explosive Safety Conferance, Applied Research Associates Inc., Anaheim, California, USA.   [Google Scholar]     
  24. Zehrt Jr WH and Crull MM (1998). Development of primary fragmentation separation distances for cased cylindrical munitions. Army Engineering and Support Center Huntsville Al, Huntsville, USA.   [Google Scholar]