International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 4 (April 2018), Pages: 30-41

----------------------------------------------

 Original Research Paper

 Title: Modulation of cancer cell proliferation by unusually produced β(1-6) linked Mannan-oligosaccharides and β(1-6) linked Galactooligosaccharides using β–galactosidase from Aspergillus oryzae

 Author(s): Roger Salvacion Tan 1, 2, *

 Affiliation(s):

 1Department of Chemistry, College of Science, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
 2Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, TibangaIligan City 9200, Philippines

 https://doi.org/10.21833/ijaas.2018.04.005

 Full Text - PDF          XML

 Abstract:

This study introduced an alternative way to produce NDOs, utilizing the recently reported unusual β-galactosynthase-β-mannosynthase dual activity of this enzyme, using free monosaccharide substrates. The enzyme successfully converted galactose and mannose monomer sugars efficiently to NDOs. Glycoblotting and MALDI-TOFMS analyses confirmed that the enzyme produced a maximum of 46.37% galacto-oligosaccharides (36.88% galactobiose, 8.52 % galactotriose, and 0.9746 % galactotetraose) from galactose monosaccharides and 32.62 % mannan-oligosaccharides (30.95 % mannobiose and 1.68 % mannotriose) from mannose monosaccharides. Both MOS and GOS modulated cell growth of different human cancer cell lines, with apparent antiproliferative effect on prostate adenocarcinoma (PC-3) cells and mitogenic effects on A549, HepG2, and HT-29. Mitochondrial membrane potential and careful morphological evaluation of PC-3 cells treated with GOS and MOS suggested that MOS treated cells showed possible inhibition of cellular adhesion that might have caused apoptosis to advance.  The high-yielding NDOs synthase character of this cheaply available β–galactosidase makes this new strategy a good potential alternative in producing prebiotic NDOs. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Non-digestible oligosaccharides, Galacto-oligosaccharides, Mannan-oligosaccharides, Asprgillus oryzae, β-galactosidase, Glycoblotting

 Article History: Received 2 November 2017, Received in revised form 28 January 2018, Accepted 29 January 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.04.005

 Citation:

 Tan RS (2018). Modulation of cancer cell proliferation by unusually produced β(1-6) linked Mannan-oligosaccharides and β(1-6) linked Galactooligosaccharides using β–galactosidase from Aspergillus oryzae. International Journal of Advanced and Applied Sciences, 5(4): 30-41

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I4/Tan.html

----------------------------------------------

 References (50)

  1. Adachi M and Vallee R (2002). Recent research on glycolipid: New effects of oligosaccharides from brown seaweed. Fragr Journal, 30(5): 73-83.   [Google Scholar]  
  2. Albayrak N and Yang ST (2002a). Production of galacto‐oligosaccharides from lactose by Aspergillus oryzae β‐galactosidase immobilized on cotton cloth. Biotechnology and Bioengineering, 77(1): 8-19. https://doi.org/10.1002/bit.1195   [Google Scholar]  PMid:11745169 
  3. Albayrak N and Yang ST (2002b). Immobilization of β‐Galactosidase on fibrous matrix by polyethyleneimine for production of galacto‐oligosaccharides from lactose. Biotechnology Progress, 18(2): 240-251. https://doi.org/10.1021/bp010167b   [Google Scholar]  PMid:11934291 
  4. Boon MA, Janssen AEM, and Van der Padt A (1999). Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by β‐galactosidase from Bacillus circulans. Biotechnology and bioengineering, 64(5): 558-567. https://doi.org/10.1002/(SICI)1097-0290(19990905)64:5<558::AID-BIT6>3.0.CO;2-I   [Google Scholar] 
  5. Bosscher D, Breynaert A, Pieters L, and Hermans N (2009). Food-based strategies to modulate the composition of the intestinal microbiota and their associated health effects. Journal Physiol Pharmacol, 60(Suppl 6): 5-11.   [Google Scholar] PMid:20224145     
  6. Bubb WA (2003). NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts in Magnetic Resonance Part A, 19(1): 1-19. https://doi.org/10.1002/cmr.a.10080   [Google Scholar] 
  7. Burr G, Hume M, Neill WH, and Gatlin III DM (2008). Effects of prebiotics on nutrient digestibility of a soybean‐meal‐based diet by red drum Sciaenops ocellatus (Linnaeus). Aquaculture Research, 39(15): 1680-1686.   [Google Scholar]     
  8. Chen HL, Lu YH, and Ko LY (2000). Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutrition Research, 20(12): 1725-1733. https://doi.org/10.1016/S0271-5317(00)00274-8   [Google Scholar] 
  9. Chockchaisawasdee S, Athanasopoulos VI, Niranjan K, and Rastall RA (2005). Synthesis of galacto‐oligosaccharide from lactose using β‐galactosidase from Kluyveromyces lactis: Studies on batch and continuous UF membrane‐fitted bioreactors. Biotechnology and Bioengineering, 89(4): 434-443. https://doi.org/10.1002/bit.20357   [Google Scholar]  PMid:15627251 
  10. Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, and Brenchley JE (2003). Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. Journal of Bacteriology, 185(18): 5473-5482. https://doi.org/10.1128/JB.185.18.5473-5482.2003   [Google Scholar]  PMid:12949099 PMCid:PMC193751 
  11. Du YZ, Wang L, Yuan H, Wei XH, and Hu FQ (2009). Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids and Surfaces B: Biointerfaces, 69(2): 257-263. https://doi.org/10.1016/j.colsurfb.2008.11.030   [Google Scholar]  PMid:19131223 
  12. Freitas FF, Marquez LD, Ribeiro GP, Brandão GC, Cardoso VL, and Ribeiro EJ (2011). A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochemical Engineering Journal, 58: 33-38. https://doi.org/10.1016/j.bej.2011.08.011   [Google Scholar] 
  13. Fujimoto H, Miyasato M, Ito Y, Sasaki T, and Ajisaka K (1998). Purification and properties of recombinant β-galactosidase from Bacillus circulans. Glycoconjugate Journal, 15(2): 155-160. https://doi.org/10.1023/A:1006916222187   [Google Scholar]  PMid:9557875 
  14. Gambarin AG, Miyamoto CA, Lima GA, Nader HB, and Dietrich CP (1993). Mitogenic activity of acidic fibroblast growth factor is enhanced by highly sulfated oligosaccharides derived from heparin and heparan sulfate. Molecular and Cellular Biochemistry, 124(2): 121-129. https://doi.org/10.1007/BF00929204   [Google Scholar] 
  15. Gaur R, Pant H, Jain R, and Khare SK (2006). Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chemistry, 97(3): 426-430. https://doi.org/10.1016/j.foodchem.2005.05.020   [Google Scholar] 
  16. Hopkins MJ and Macfarlane GT (2003). Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro. Applied and Environmental Microbiology, 69(4): 1920-1927. https://doi.org/10.1128/AEM.69.4.1920-1927.2003   [Google Scholar]  PMid:12676665 PMCid:PMC154806     
  17. Johnstone KD, Karoli T, Liu L, Dredge K, Copeman E, Li CP, and Chiu FC (2010). Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth. Journal of Medicinal Chemistry, 53(4), 1686-1699. https://doi.org/10.1021/jm901449m   [Google Scholar]  PMid:20128596 
  18. Kim CS, Ji ES, and Oh DK (2004a). Characterization of a thermostable recombinant β‐galactosidase from Thermotoga maritima. Journal of Applied Microbiology, 97(5): 1006-1014. https://doi.org/10.1111/j.1365-2672.2004.02377.x   [Google Scholar]  PMid:15479416 
  19. Kim CS, Ji ES, and Oh DK (2004b). A new kinetic model of recombinant β-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochemical and Biophysical Research Communications, 316(3): 738-743. https://doi.org/10.1016/j.bbrc.2004.02.118   [Google Scholar] PMid:15033461 
  20. Macfarlane GT, Steed H, and Macfarlane S (2008). Bacterial metabolism and health‐related effects of galacto‐oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104(2): 305-344.   [Google Scholar] PMid:18215222     
  21. Mahious AS, Gatesoupe FJ, Hervi M, Metailler R, and Ollevier F (2006). Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquaculture International, 14(3): 219-229. https://doi.org/10.1007/s10499-005-9003-4   [Google Scholar] 
  22. Maksimainen M, Hakulinen N, Kallio JM, Timoharju T, Turunen O, and Rouvinen J (2011). Crystal structures of Trichoderma reesei β-galactosidase reveal conformational changes in the active site. Journal of Structural Biology, 174(1): 156-163. https://doi.org/10.1016/j.jsb.2010.11.024   [Google Scholar] PMid:21130883 
  23. Maksimainen M, Paavilainen S, Hakulinen N, and Rouvinen J (2012). Structural analysis, enzymatic characterization, and catalytic mechanisms of β‐galactosidase from Bacillus circulans sp. alkalophilus. The FEBS Journal, 279(10): 1788-1798. https://doi.org/10.1111/j.1742-4658.2012.08555.x   [Google Scholar]  PMid:22385475 
  24. Minoru S and Yoshio I (2002). Recent research on glycolipid: The molecular mechanism of skin moisturizing effect adored by oligosaccharides; the unique properties of trehalose. Fragr Journal, 30: 15-21.     
  25. Montaigne D, Marechal X, Baccouch R, Modine T, Preau S, Zannis K, and Neviere R (2010). Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart. Toxicology and Applied Pharmacology, 244(3): 300-307. https://doi.org/10.1016/j.taap.2010.01.006   [Google Scholar]  PMid:20096298 
  26. Moure A, Gullón P, Domínguez H, and Parajó JC (2006). Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41(9): 1913-1923. https://doi.org/10.1016/j.procbio.2006.05.011   [Google Scholar] 
  27. Neri DF, Balcão VM, Costa RS, Rocha IC, Ferreira EM, Torres DP, and Teixeira JA (2009). Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chemistry, 115(1): 92-99. https://doi.org/10.1016/j.foodchem.2008.11.068   [Google Scholar] 
  28. Nguyen TH, Splechtna B, Steinböck M, Kneifel W, Lettner HP, Kulbe KD, and Haltrich D (2006). Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 54(14): 4989-4998. https://doi.org/10.1021/jf053126u   [Google Scholar]  PMid:16819907     
  29. Nishio T, Hakamata W, Kimura A, Chiba S, Takatsuki A, Kawachi R, and Oku T (2002). Glycon specificity profiling of α-glucosidases using monodeoxy and mono-O-methyl derivatives of p-nitrophenyl α-D-glucopyranoside. Carbohydrate Research, 337(7): 629-634. https://doi.org/10.1016/S0008-6215(02)00026-5   [Google Scholar] 
  30. Pan C, Hu B, Li W, Sun YI, Ye H, and Zeng X (2009). Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe 3 O 4–chitosan nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 61(3): 208-215. https://doi.org/10.1016/j.molcatb.2009.07.003   [Google Scholar] 
  31. Patel S and Goyal A (2011). Functional oligosaccharides: production, properties and applications. World Journal of Microbiology and Biotechnology, 27(5): 1119-1128. https://doi.org/10.1007/s11274-010-0558-5   [Google Scholar] 
  32. Pestlin S, Prinz D, Starr JN, and Reilly PJ (1997). Kinetics and equilibria of condensation reactions between monosaccharide pairs catalyzed by Aspergillus niger glucoamylase. Biotechnology and Bioengineering, 56(1): 9-22. https://doi.org/10.1002/(SICI)1097-0290(19971005)56:1<9::AID-BIT2>3.0.CO;2-O   [Google Scholar] 
  33. Pocedicova K, Čurda L, Mišún D, Dryáková A, and Diblíková L (2010). Preparation of galacto-oligosaccharides using membrane reactor. Journal of Food Engineering, 99(4): 479-484. https://doi.org/10.1016/j.jfoodeng.2010.02.001   [Google Scholar] 
  34. Pokusaeva K, Fitzgerald GF, and van Sinderen D (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3): 285-306. https://doi.org/10.1007/s12263-010-0206-6  PMid:21484167 PMCid:PMC3145055     
  35. Qiang X, YongLie C, and QianBing W (2009). Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77(3): 435-441. https://doi.org/10.1016/j.carbpol.2009.03.016   [Google Scholar] 
  36. Rojas AL, Nagem RAP, Neustroev KN, Arand M, Adamska M, Eneyskaya EV, and Polikarpov I (2004). Crystal structures of β-galactosidase from Penicillium sp. and its complex with galactose. Journal of Molecular Biology, 343(5): 1281-1292. https://doi.org/10.1016/j.jmb.2004.09.012   [Google Scholar]  PMid:15491613     
  37. Sako T, Matsumoto K, and Tanaka R (1999). Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal, 9(1): 69-80. https://doi.org/10.1016/S0958-6946(99)00046-1   [Google Scholar] 
  38. Sánchez O, Guio F, Garcia D, Silva E, and Caicedo L (2008). Fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. Food and Bioproducts Processing, 86(2): 109-115. https://doi.org/10.1016/j.fbp.2008.02.003   [Google Scholar] 
  39. Spring P, Wenk C, Dawson KA, and Newman KE (2000). The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Science, 79(2): 205-211. https://doi.org/10.1093/ps/79.2.205   [Google Scholar]  PMid:10735748 
  40. Stahlhut SG, Tchesnokova V, Struve C, Weissman SJ, Chattopadhyay S, Yakovenko O, and Krogfelt KA (2009). Comparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli. Journal of Bacteriology, 191(21): 6592-6601. https://doi.org/10.1128/JB.00786-09   [Google Scholar]  PMid:19734306 PMCid:PMC2795292 
  41. Tan RS, Hinou H, and Nishimura SI (2016). Novel β-galactosynthase–β-mannosynthase dual activity of β-galactosidase from Aspergillus oryzae uncovered using monomer sugar substrates. RSC Advances, 6(56): 50833-50836. https://doi.org/10.1039/C6RA08060J   [Google Scholar] 
  42. Thakur M and Dixit VK (2008). Ameliorative effect of fructo-oligosaccharide rich extract of Orchis latifolia Linn. on sexual dysfunction in hyperglycemic male rats. Sexuality and Disability, 26(1): 37-46. https://doi.org/10.1007/s11195-007-9063-7   [Google Scholar] 
  43. Torrecillas S, Makol A, Caballero MJ, Montero D, Robaina L, Real F, and Izquierdo MS (2007). Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish and Shellfish Immunology, 23(5): 969-981. https://doi.org/10.1016/j.fsi.2007.03.007   [Google Scholar]  PMid:17766145 
  44. Tuohy KM, Rouzaud GCM, Bruck WM, and Gibson GR (2005). Modulation of the human gut microflora towards improved health using prebiotics-assessment of efficacy. Current Pharmaceutical Design, 11(1): 75-90. https://doi.org/10.2174/1381612053382331   [Google Scholar]  PMid:15638753     
  45. Van Munster IV and Nagengast FM (1993). The role of carbohydrate fermentation in colon cancer prevention. Scandinavian Journal of Gastroenterology, 28(sup200): 80-86.   [Google Scholar]     
  46. Vera C, Guerrero C, and Illanes A (2011). Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: Effect of pH, temperature, and galactose and glucose concentrations. Carbohydrate Research, 346(6): 745-752. https://doi.org/10.1016/j.carres.2011.01.030   [Google Scholar]  PMid:21439558 
  47. Villamiel M, Corzo N, Foda MI, Montes F, and Olano A (2002). Lactulose formation catalysed by alkaline-substituted sepiolites in milk permeate. Food Chemistry, 76(1): 7-11. https://doi.org/10.1016/S0308-8146(01)00239-4   [Google Scholar] 
  48. Waldroup PW, Fritts CA, and Yan F (2003). Utilization of Bio-Mos® mannan oligosaccharide and Bioplex® copper in broiler diets. International Journal of Poultry Science, 2(1): 44-52. https://doi.org/10.3923/ijps.2003.44.52   [Google Scholar] 
  49. Yamamoto K and Davis BG (2012). Creation of an α‐Mannosynthase from a Broad Glycosidase Scaffold. Angewandte Chemie, 124(30): 7567-7571. https://doi.org/10.1002/ange.201201081   [Google Scholar] 
  50. Zheng P, Yu H, Sun Z, Ni Y, Zhang W, Fan Y, and Xu Y (2006). Production of galacto‐oligosaccharides by immobilized recombinant β‐galactosidase from Aspergillus candidus. Biotechnology Journal, 1(12): 1464-1470. https://doi.org/10.1002/biot.200600100   [Google Scholar]  PMid:17161020