International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 11 (November 2018), Pages: 86-90

----------------------------------------------

 Original Research Paper

 Title: Formulating Mathematica pseudocodes of block-Milne's device for accomplishing third-order ODEs

 Author(s): Jimevwo Godwin Oghonyon *, Solomon Adewale Okunuga, Stella Kanayo Eke, Ogbu Famous Imaga

 Affiliation(s):

 Department of Mathematics, College of Science, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria

 https://doi.org/10.21833/ijaas.2018.11.012

 Full Text - PDF          XML

 Abstract:

Formulating Mathematica pseudocodes for carrying out third-order ordinary differential equations (ODEs) is of essence necessary for proficient computation. This research paper is prepared to formulate Mathematica Pseudocodes block Milne’s device (FMPBMD) for accomplishing third-order ODEs. The coming together of Mathematica pseudocodes and proficient computing using block Milne’s device will bring about ease in ciphering, proficiency, acceleration and better accuracy. Side by side estimation and extrapolation is considered with successive function approximation gives rise to FMPBMD.  This FMPBMD turns out to bring about the star local truncation error thereby finding the degree of the scheme. FMPBMD will be implemented on some numerical examples to corroborate the superiority over other block methods established by employing fixed step size and handled computation. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: FMPBMD, Mathematica pseudocodes, Converging standards, max computed errors, Star local truncation error

 Article History: Received 3 May 2018, Received in revised form 7 September 2018, Accepted 18 September 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.11.012

 Citation:

 Oghonyon JG, Okunuga SA, and Eke SK et al. (2018). Formulating Mathematica pseudocodes of block-Milne's device for accomplishing third-order ODEs. International Journal of Advanced and Applied Sciences, 5(11): 86-90

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I11/Oghonyon.html

----------------------------------------------

 References (25) 

  1. Akinfenwa OA, Jator SN, and Yao NM (2013). Continuous block backward differentiation formula for solving stiff ordinary differential equations. Computers and Mathematics with Applications, 65(7): 996-1005. https://doi.org/10.1016/j.camwa.2012.03.111   [Google Scholar]
  1. Anake TA, Adesanya AO, Oghonyon JG, and Agarana MC (2013). Block algorithm for general third order ordinary differential equation. Icastor Journal of Mathematical Sciences, 7(2): 127-136.   [Google Scholar]
  1. Anake TA, Awoyemi DO, and Adesanya AO (2012). One-step implicit hybrid block method for the direct solution of general second order ordinary differential equations. IAENG International Journal of Applied Mathematics, 42(4): 1-5.   [Google Scholar]
  1. Ascher UM and Petzold LR (1998). Computer methods for ordinary differential equations and differential-algebraic equations. Vol. 61, Siam, Philadelphia, Pennsylvania, USA. https://doi.org/10.1137/1.9781611971392   [Google Scholar]
  1. Awoyemi DO (2003). A P-stable linear multistep method for solving general third order ordinary differential equations. International Journal of Computer Mathematics, 80(8): 985-991. https://doi.org/10.1080/0020716031000079572   [Google Scholar]
  1. Dormand JR (1996). Numerical methods for differential equations: A computational approach. Vol. 3, CRC Press, Florida, USA.   [Google Scholar]
  1. Faires JD and Burden RL (2012). Initial-value problems for ODEs. 3rd Edition, Dublin City University, Dublin, Ireland.   [Google Scholar] PMCid:PMC3532087
  1. Gear CW (1971). Numerical initial value problems in ODEs (Automatic computation). Prentice-Hall, Inc., Upper Saddle River, New Jersey, USA.   [Google Scholar] PMCid:PMC1411756
  1. Ibrahim ZB, Othman KI, and Suleiman M (2007). Implicit r-point block backward differentiation formula for solving first-order stiff ODEs. Applied Mathematics and Computation, 186(1): 558-565. https://doi.org/10.1016/j.amc.2006.07.116   [Google Scholar]
  1. Jain MK and Iyengar RK (2005). Numerical methods for scientific and engineering computation. New Age International Publishers, Delhi, India.   [Google Scholar]
  1. Kuboye JO and Omar Z (2015). Numerical solution of third order ordinary differential equations using a seven-step block method. International Journal of Mathematical Analysis, 9(15): 743-745. https://doi.org/10.12988/ijma.2015.5125   [Google Scholar]
  1. Lambert JD (1991). Numerical methods for ordinary differential systems: the initial value problem. John Wiley and Sons, Inc., Hoboken, New Jersey, USA.   [Google Scholar]
  1. Langkah KBDTE, Majid ZA, Azmi NA, Suleiman M, and Ibrahaim ZB (2012). Solving directly general third order ordinary differential equations using two-point four step block method. Sains Malaysiana, 41(5): 623-632.   [Google Scholar]
  1. Majid ZA and Suleiman M (2008). Parallel direct integration variable step block method for solving large system of higher order ordinary differential equations. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 2(4): 269-273.   [Google Scholar]
  1. Majid ZA and Suleiman MB (2007). Implementation of four-point fully implicit block method for solving ordinary differential equations. Applied Mathematics and Computation, 184(2): 514-522. https://doi.org/10.1016/j.amc.2006.05.169   [Google Scholar]
  1. Mehrkanoon S (2011). A direct variable step block multistep method for solving general third-order ODEs. Numerical Algorithms, 57(1): 53-66. https://doi.org/10.1007/s11075-010-9413-x   [Google Scholar]
  1. Mehrkanoon S, Majid ZA, and Suleiman M (2010). A variable step implicit block multistep method for solving first-order ODEs. Journal of Computational and Applied Mathematics, 233(9): 2387-2394. https://doi.org/10.1016/j.cam.2009.10.023   [Google Scholar]
  1. Mohammed U and Adeniyi RB (2014). A three step implicit Hybrid Linear Multistep Method for the solution of third order ordinary differential equations. Gen, 25(1): 62-74.   [Google Scholar]
  1. Oghonyon JG, Okunuga SA, and Iyase SA (2016). Milne's implementation on block predictor-corrector methods. Journal of Applied Sciences, 16(5): 236-241. https://doi.org/10.3923/jas.2016.236.241   [Google Scholar]
  1. Oghonyon JG, Okunuga SA, Omoregbe NA, and Agboola OO (2015). Adopting a variable step size approach in implementing implicit block multi-step method for non-stiff ordinary differential equations. Journal of Engineering and Applied Sciences, 10(7): 174-180.   [Google Scholar]
  1. Olabode BT (2009). An accurate scheme by block method for the third order ordinary differential equation. Pacific Journal of Science and Technology, 10(1): 136-142.   [Google Scholar]
  1. Olabode BT (2013). Block multistep method for the direct solution of third order of ordinary differential equations. FUTA Journal of Research in Sciences, 2(2013): 194-200.   [Google Scholar]
  1. Olabode BT and Yusuph Y (2009). A new block method for special third order ordinary differential equations. Journal of Mathematics and Statistics, 5(3): 167-170. https://doi.org/10.3844/jmssp.2009.167.170   [Google Scholar]
  1. Omar Z and Sulaiman M (2004). Parallel r-point implicit block method for solving higher order ordinary differential equations directly. Journal of ICT, 3(1): 53-66.   [Google Scholar]
  1. Rauf K, Aniki SA, Ibrahim S, and Omolehin JO (2015). A zero-stable block method for the solution of third order ordinary differential equations. Pacific Journal of Science and Technology, 16(1): 91-103.   [Google Scholar]