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This study investigates thermoelastic damping (TED) and frequency shift 
(FS) in thin microbeam resonators within the framework of the Moore-
Gibson-Thompson (MGT) thermoelasticity theory. An explicit formula for 
thermoelastic damping is derived, and the effects of beam thickness, beam 
length, isothermal frequency, and thermal relaxation time are analyzed. 
Numerical results demonstrate that the thermal relaxation parameter plays a 
significant role in controlling thermoelastic damping and frequency shift at 
the microscale under different structural and frequency conditions. The 
findings indicate that the proposed design is suitable for a wide range of 
damping dissipation applications. 
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1. Introduction 

*Many problems can be solved using coupled 
thermoelasticity theory (Biot, 1956). According to 
this theory, motion is described by a hyperbolic 
partial differential equation, and energy 
conservation is described by a parabolic equation 
using Fourier's law for heat conduction. Thermal 
waves propagate at an infinite speed with this type 
of heat conduction. 

In the case of an isotropic body, Lord and 
Shulman (1967) proposed a generalized 
thermoelasticity theory with one relaxation time 
(Lord and Shulman, 1967). Non-Fourier's law 
replaces Fourier's law with a modified law of heat 
conduction that includes flux and its time derivative. 
In this theory, the heat equation associated with the 
propagation of heat is hyperbolic, thereby 
eliminating the paradox of infinite speed (Dhaliwal 
and Sherief, 1980). 

A wide range of critical applications, including 
the processing of mechanical signals, the use of 
scanning probe microscopes, the detection of 
ultrasensitive mass, etc., these devices use 
microresonators. One of the most important 
parameters of a microresonator is its Q factor, which 
is also known as the quality factor. This parameter is 
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closely connected to measurement accuracy. 
Resonators with a high-quality factor dissipate less 
energy during vibration and are more sensitive. 
Hence, studying the energy dissipation mechanism is 
vital to the development and improvement of 
micro/nanomechanical resonators (Ekinci and 
Roukes, 2005; Guo et al., 2012). 

Zener first investigated thermoelastic damping 
problems of viscoelastic material and developed his 
quality factor formula (Lifshitz and Roukes, 2000). 
According to the classical Fourier thermal 
conduction theory, Lifshitz and Roukes (2000) 
developed a formula for thermoelastic damping Q-
factor. In their model, there is a peak in 
thermoelastic damping around the micrometer scale 
(Guo et al., 2012; Lifshitz and Roukes, 2000). A beam 
height greater than or smaller than a nanometer will 
result in a decrease in thermoelastic damping. 
Experimental results, however, indicate that the Q-
factor decreases monotonically with the size of 
microresonators (Ekinci and Roukes, 2005). 

There have been numerous studies on 
thermoelastic damping, which is calculated using the 
classical theory of thermoelasticity and Fourier’s law 
for heat conduction (Guo et al., 2012; Lifshitz and 
Roukes, 2000; Li et al., 2012; Prabhakar and 
Vengallatore, 2008). According to this theory, 
Fourier's law offers thermal wave propagation with 
infinite speeds. To resolve this paradox, several non-
classical theories have been developed that permit 
thermal waves to spread at a finite speed. Adding the 
heat flux's first-time derivative to Fourier's law of 
heat conduction results in the second sound theory 
(Khisaeva and Ostoja-Starzewski, 2006). The 
generalized thermoelastic theory with one relaxation 
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time was applied to the analysis of thermoelastic 
damping of beam resonators by Sun et al. (2006). 
According to the Lord-Shulman theory of generalized 
thermoelasticity theory (L-S) (Sharma and Sharma, 
2011), Sharma and Sharma (2011) studied damping 
in micro-scale circular plate resonators. 

In our work, using the Moore-Gibson-Thompson 
(MGT) model to study the thermoelastic damping 
(TED) and frequency shift (FS) of a microbeam 
resonator is a novel study that has not been carried 
out before, therefore the results will be novel as well. 
As a result of applying the MGT model, the 
microbeam resonators become more sensitive and 
reduce energy dissipation. In another meaning, the 
MGT introduces high-quality microbeam resonators 
that reduce energy dissipation during vibration. 

2. Problem formulation 

2.1. Thermoelasticity equations based on MGT 
Theory 

According to the MGT heat equation, non-Fourier 
heat conduction occurs as follows (Quintanilla, 2019; 
Quintanilla, 2020; Kumar and Mukhopadhyay, 
2020): 
 

(
𝐾∗

𝐾
+

𝜕

𝜕𝑡
) (

𝜕2𝑇(𝑥,𝑦,𝑡)

𝜕𝑥2
+

𝜕2𝑇(𝑥,𝑦,𝑡)

𝜕𝑦2
) = (

𝜕2

𝜕𝑡2
+ 𝜏𝑞

𝜕3

𝜕𝑡3
) [

𝜌⬚𝐶𝑣

𝐾
𝑇 +

𝑇0(3𝜆+2𝜇)𝛼𝑇

𝐾
𝑒]                               (1) 

 

where, K is the thermal conductivity of the material, 

𝐾∗ =
(𝜆+2𝜇)𝐶𝜈

4
 is the conductivity rate parameter,𝜏𝑞 is 

the thermal relaxation time, 𝑇is temperature, 𝑇0is 
the uniform reference temperature, e is the strain, 
𝛼𝑇 is the thermal coefficient, 𝐶𝜈  is the specific heat, 
and 𝜌 is the beam density.  

Eq. 1 can be written as 
 

(
𝐾∗

𝐾
+

𝜕

𝜕𝑡
) (

𝜕2𝜃(𝑥,𝑦,𝑡)

𝜕𝑥2 +
𝜕2𝜃(𝑥,𝑦,𝑡)

𝜕𝑦2
) =

𝜌𝐶𝑣

𝐾
(

𝜕2𝜃

𝜕𝑡2 + 𝜏𝑞
𝜕3𝜃

𝜕𝑡3
) +

𝑇0(3𝜆+2𝜇)𝛼𝑇

𝐾
(

𝜕2𝑒

𝜕𝑡2 + 𝜏𝑞
𝜕3𝑒

𝜕𝑡3
)                                      (2) 

 

where, 𝜃 = 𝑇 − 𝑇0 is the temperature change. 

2.2. Thermoelastic damping in a microbeam 
resonator with a rectangular cross-section 

The cross-sectional dimension ℎ × 𝑏 of an elastic 
beam is rectangular with a length ℓ, is considered for 
small flexural vibrations. Take 𝑥 −axis along the axis 
of the beam, 𝑦 −axis along the thickness, and 𝑧 −axis 
along the width direction (Fig. 1). 

 

 
Fig. 1: Rectangular thermoelastic microbeam 

 

The strain takes forms (Guo et al., 2012; Li et al., 
2012): 
 

𝑒𝑥𝑥 = −𝑦
𝜕2𝑤

𝜕𝑥2
; 𝑒𝑦𝑦 = 𝑒𝑧𝑧 = 𝜈𝑦

𝜕2𝑤

𝜕𝑥2
+ (1 + 𝜈)𝛼𝑇𝜃                (3) 

 

and  
 

𝑒 = 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧 = −𝑦
𝜕2𝑤

𝜕𝑥2
+ 2𝜈𝑦

𝜕2𝑤

𝜕𝑥2
+ 2(1 + 𝜈)𝛼𝑇𝜃 (4) 

 

where, 𝑤 is the deflection of the beam,𝜈 is Poisson’s 
ratio. 

When a beam is free of stress and deformation 
and kept at a constant temperature 𝑇0, it is in 
equilibrium. According to the linear Euler-Bernoulli 
beam theory, the beam deflects due to flexural 
vibrations in the x-y plane.  

So, the beam's equation of motion with 
thermoelastic coupling is (Guo et al., 2012; Lifshitz 
and Roukes, 2000; Li et al., 2012): 

 
𝜕2𝑤

𝜕𝑡2
+

𝜕2

𝜕𝑥2
(

𝐸𝐼

𝜌𝐴

𝜕2𝑤

𝜕𝑥2
) +

𝐸𝛼𝑇

𝜌𝐴

𝜕2𝐼𝑇

𝜕𝑥2
= 0                                    (5) 

 
𝐴 = ℎ × 𝑏 is the area of the cross-section, 𝐼 and 𝐼𝑇  

are the moment of inertia and thermal moment of 
the beam, respectively, which are given by (Guo et 
al., 2012; Lifshitz and Roukes, 2000; Li et al., 2012): 
 
𝐼 = ∬ 𝑦2

𝐴
𝑑𝑦𝑑𝑧                                                                         (6) 

 

and 
 

𝐼𝑇 = ∬ 𝑦𝜃
𝐴

𝑑𝑦𝑑𝑧                                                                         (7) 

 
Euler-Bernoulli beams are described by Eq. 2 

 

𝜒 (
𝐾∗

𝐾
+

𝜕

𝜕𝑡
) (

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
) = (

𝜕2𝜃

𝜕𝑡2
+ 𝜏𝑞

𝜕3𝜃

𝜕𝑡3
) −

𝛥𝐸(1−2𝜈)

𝛼𝑇
𝑦 (

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+ 𝜏𝑞

𝜕5𝑤

𝜕𝑥2𝜕𝑡3
)                   (8) 

 

where, 𝜒 =
𝐾

𝜌𝐶𝜈
  is the material thermal diffusivity 

and 𝛥𝐸 =
𝑇0𝐸𝛼𝑇

2

𝜌𝐶𝜈
 is Young’s modulus for relaxation 

strength. 
The temperature change in a cross-section is 

much larger along the 𝑦 −axis than along the 𝑥 −axis 
and there are no changes along the 𝑧 −axis, so we 

replace 𝛻2 with 
𝜕2

𝜕𝑦2. Moreover, 𝛥𝐸 =
𝑇0𝐸𝛼2

𝜌𝐶𝜈
< 10−6 

then, Eq. 8 is simplified to 
 

𝜒 (
𝐾∗

𝐾
+

𝜕

𝜕𝑡
) (

𝜕2𝜃

𝜕𝑦2
) = (

𝜕2𝜃

𝜕𝑡2 + 𝜏𝑞
𝜕3𝜃

𝜕𝑡3
) −

𝛥𝐸(1−2𝜈)

𝛼𝑇
𝑦 (

𝜕4𝑤

𝜕𝑥2𝜕𝑡2 +

𝜏𝑞
𝜕5𝑤

𝜕𝑥2𝜕𝑡3
)                       (9) 

 

To solve Eq. 9, we assumed the beam executed 
harmonic vibrations with angular frequency ω so 
that the deflection and the temperature vibration 
can be expressed as (Guo et al., 2012; Lifshitz and 
Roukes, 2000; Li et al., 2012): 

 
𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑒𝑖𝜔𝑡 and 𝜃(𝑥, 𝑦, 𝑡) = 𝜙(𝑥, 𝑦)𝑒𝑖𝜔𝑡             (10) 
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by substituting Eq. 10 into Eq. 9 and 𝑎 =
𝐾∗

𝐾
, we 

obtain 
 

𝜒(𝑎 + 𝑖𝜔) (
𝜕2𝜙

𝜕𝑦2
) = −(𝜔2 + 𝑖𝜏𝑞𝜔3) (𝜙 −

𝛥𝐸(1−2𝜈)

𝛼𝑇
𝑦

𝜕2𝑊

𝜕𝑥2
)            (11) 

 
Eq. 11 can be written as: 
 

𝜕2𝜙

𝜕𝑦2
+

(𝜔2+𝑖𝜏𝑞𝜔3)

𝜒(𝑎+𝑖𝜔)
𝜙 =

(𝜔2+𝑖𝜏𝑞𝜔3)𝛥𝐸(1−2𝜈)𝑦

𝜒𝛼𝑇(𝑎+𝑖𝜔)

𝜕2𝑊

𝜕𝑥2
.               (12) 

 
Therefore, Eq. 12 has the following solution 
 

𝜙 = 𝐴 𝑐𝑜𝑠(𝑘𝑦) + 𝐵 𝑠𝑖𝑛(𝑘𝑦) +
𝛥𝐸𝑦(1−2𝜈)

𝛼𝑇

𝜕2𝑊

𝜕𝑥2
                      (13) 

 

where, 
 

𝑘 =
𝜔

√𝜒
√𝑎1 − 𝑖𝑎2 =

𝜉

ℎ
(𝜂 −

𝑖

𝜂
𝑎2)  

𝜉 = ℎ
𝜔

√2𝜒
 

𝜂 = √𝑎1 + √𝑎1
2 + 𝑎2

2  

𝑎1 =
𝑎+𝜏𝑞𝜔2

𝑎2+𝜔2
, 𝑎2 =

𝜔(1−𝑎𝜏𝑞)

𝑎2+𝜔2
. 

 
We assume that the beam's boundaries are 

adiabatic (Guo et al., 2012) is 
 

𝜕𝜙

𝜕𝑦
= 0 at  𝑦 = ±ℎ/2                                                    (14) 

 

The temperatures are distributed across the 
thickness as follows 

 

𝜙 =
𝛥𝐸(1−2𝜈)

𝛼𝑇

𝜕2𝑊

𝜕𝑥2
(𝑦 −

𝑠𝑖𝑛(𝑘𝑦)

𝑘 𝑐𝑜𝑠(𝑘ℎ/2)
)                                          (15) 

 

We can now determine the moment of inertia and 
thermal moment as 

 

𝐼 = ∬ 𝑦2
𝐴

𝑑𝑦𝑑𝑧 = ∫ ∫ 𝑦2𝑑𝑦𝑑𝑧 =
𝑏ℎ3

12

ℎ/2

−ℎ/2

𝑏

0
               (16) 

 

and 
 

𝐼𝑇 = ∬ 𝑦𝜃
𝐴

𝑑𝑦𝑑𝑧 = 𝑒𝑖𝜔𝑡 ∫ ∫ 𝑦𝜙𝑑𝑦𝑑𝑧
ℎ/2

−ℎ/2

𝑏

0
               (17) 

 
The thermal moment can be determined using 

Eq. 15 as follows 
 

𝐼𝑇 = 𝑒𝑖𝜔𝑡 𝑏ℎ3𝛥𝐸(1−2𝜈)

12𝛼𝑇
[1 +

24

ℎ3𝑘3 (
ℎ𝑘

2
− 𝑡𝑎𝑛 (

ℎ𝑘

2
))]

𝜕2𝑊

𝜕𝑥2 .       (18) 

 
By substituting Eqs. 10 and 18 in Eq. 5, we obtain 

 

𝜔2𝑊 =
𝐸𝐼

𝜌𝐴
[1 + 𝛥𝐸(1 − 2𝜈) [1 +

24

ℎ3𝑘3 (
ℎ𝑘

2
− 𝑡𝑎𝑛 (

ℎ𝑘

2
))]]

𝜕4𝑊

𝜕𝑥4
.   (19) 

 
By simplifying the last equation, we get the 

following 
 

𝜔2𝑊 =
𝐸𝐼

𝜌𝐴
[1 + 𝛥𝐸(1 − 2𝜈)(1 + 𝑓(𝜔))]

𝜕4𝑊

𝜕𝑥4 .                     (20) 

 

In this case, the complex function 𝑓(𝜔) has the 
following form 

𝑓(𝜔) = 𝑓(𝑘(𝜔)) =
24

ℎ3𝑘3 (
ℎ𝑘

2
− 𝑡𝑎𝑛 (

ℎ𝑘

2
)).                           (21) 

 
The vibration frequency can be driven as follows 

from Eq. 20 
 

𝜔 = 𝜔0√1 + 𝛥𝐸(1 − 2𝜈)(1 + 𝑓(𝜔)).                                  (22) 

 
where, 𝜔0 denotes that the isothermal frequency 
values will take the form 

 

𝜔0 = 𝑞𝑛
2ℎ√

𝐸

12𝜌
                                                                      (23) 

 
and 

 
𝑞𝑛𝐿 = {4.73,7.853,10.996, . . . }, 𝑛 = 1,2,3, . ..                      (24) 
 

Eq. 22 can be expanded to the first-order Taylor 
series as 
 

𝜔 = 𝜔0 [1 +
𝛥𝐸

2
(1 − 2𝜈)(1 + 𝑓(𝜔))].                                 (25) 

 
Due to the weak TED, we may replace 𝑓(𝜔) with 

𝑓(𝜔0). Then Eq. 25 can be written as 
 

𝜔 = 𝜔0 [1 +
𝛥𝐸

2
(1 − 2𝜈)(1 + 𝑓(𝜔0))].               (26) 

 

A TED is calculated as the inverse of a quality 
factor 𝑄−1 (Lifshitz and Roukes, 2000; Li et al., 2012; 
Sun et al., 2006; Wong et al., 2006) as 

 

𝑄−1 = 2 |
𝐼𝑚(𝜔)

𝑅𝑒(𝜔)
|                                                                      (27) 

 
The 𝑄−1 of the MGT model and the frequency 

shift 𝛺 can be expressed as: 
 
𝑄−1 = 24𝛥𝐸

𝑎2

𝜉2(𝜂2+
𝑎2

2

𝜂2)
2 −

24𝛥𝐸 [
(3𝜂𝑎2−

𝑎2
3

𝜂3) 𝑠𝑖𝑛(𝜂𝜉)−(𝜉3−
3𝑎2

2

𝜂
) 𝑠𝑖𝑛ℎ(

𝜉𝑎2
𝜂

)

𝜉3(𝜂2+
𝑎2

2

𝜂2)
3

[𝑐𝑜𝑠(𝜂𝜉)+𝑐𝑜𝑠ℎ(
𝜉𝑎2

𝜂
)]

]                (28) 

𝛺 = |
𝑅𝑒(𝜔)−𝜔0

𝜔0
|                                                                             (29) 

3. Numerical results and discussions 

The proposed model MGT is numerically 
analyzed and plotted using MAPLE software for the 
following cases (3.1 and 3.2) in this section. To 
investigate the variation of thermoelastic damping 
(TED) 𝑄−1 and frequency shift (FS) 𝛺 as a result of 
geometrical and material properties, selected 
particular values are for beam thickness ℎ, beam 
length ℓ, and isothermal frequency values 𝜔0 for 
different thermal relaxation times 𝜏𝑞 = {0.1,0.2,  0.3} 

for a silicon nitride microbeam resonator clamped at 
two ends.  
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According to Al-Lehaibi (2022) and Alghamdi 
(2020), silicon nitride (𝑆𝑖3𝑁4) has the following 
properties: 
 
𝑇0 = 293(𝐾), 𝜌 = 3200(𝑘𝑔𝑚−3),  
𝐾 = 43.5(𝑊𝑚−1𝑘−1), 𝐶𝜈 = 630(𝐽. 𝑘𝑔−1𝐾−1),  
𝛼𝑇 = 2.71 × 10−6(𝐾−1), 𝐸 = 165(𝐺𝑃𝑎),   
𝜈 = 0.22,  𝜆 = 217 × 109𝑁𝑚−2,  𝜇 = 108 × 109𝑁𝑚−2  
 

This section will conduct a comparison study to 
evaluate the results' reliability, validity, and 
accuracy. 

3.1. Influence of 𝝉𝒒 on TED 

In Figs. 2a, 2b, and 2c, the TED is calculated while 
varying beam thickness h(10−9 ≤ ℎ ≤ 9 ⋅ 10−7), 
beam length ℓ(10−9 ≤ ℓ ≤ 10−6), and the isothermal 
value of frequency 𝜔0(10 ≤ 𝜔0 ≤ 300) based on the 
MGT model with different values of thermal 

relaxation time (𝜏𝑞 = 0.1,  0.2,  0.3).  

According to the analysis, the damping 𝑄−1 is 
negligible if ℎ,  ℓ, 𝜔0 ≈ 0, and it reaches a maximum 
peak value called 𝑄𝑝𝑒𝑎𝑘

−1 . Figs. 2a, 2b, and 2c illustrate 

how the variation 𝑄−1 increases rapidly as 
ℎ,  ℓ,  𝑎𝑛𝑑 𝜔0 increase until it reaches a peak and 
then reverses direction to decrease till the end, then 
it stabilizes for higher values of ℎ,  ℓ, and 𝜔0.  

This means that the MGT model has less energy 
dissipation during vibration, resulting in high-quality 
resonator sensitivity.  

In contrast, the variation of thermal relaxation 
time 𝜏𝑞 affects the behavior of the damping 𝑄−1 of a 

two-sided microbeam clamped at two ends. 

3.2. Influence of 𝝉𝒒 on FS 

In addition, our study investigated the effect of 
thermal relaxation time 𝜏𝑞 on the frequency shift FS. 

According to Figs. 3a, 3b, and 3c, the FS is calculated 
while varying beam thickness h (10−9 ≤ ℎ ≤ 9 ⋅
10−7), beam length ℓ(10−9 ≤ ℓ ≤ 10−6), and 
isothermal frequency 𝜔0(10 ≤ 𝜔0 ≤ 300) based on 
the MGT model with different values of thermal 

relaxation time (𝜏𝑞 = 0.1,  0.2,  0.3). 

Figs. 3a and 3b show that 𝛺 is negligible as ℎ,  ℓ ≈
0. As ℎ 𝑎𝑛𝑑 ℓ increase, the variation of 𝛺 increases 
rapidly, after that 𝛺 is off and stabilizes for higher 
values of ℎ,  and ℓ. In addition, higher values of 
𝜏𝑞 lead to lower frequency shifts.  

According to Fig. 3c, the variation of 𝛺 start with 
the maximum stabilizes values for some small 
values 𝜔0, then it decreases rapidly with increasing 
𝜔0, until 𝛺 is off and stabilizes again. Also, higher 
values of 𝜏𝑞 lead to lower frequency shifts. 

From Figs. 3a, 3b, and 3c, the results show that 
the variation of 𝛺 has no peak points in cases of the 
variation to ℎ,  ℓ, and 𝜔0. Furthermore, the variation 
of 𝛺 is off and stabilizes for higher values of 
ℎ,  ℓ, and 𝜔0, which represents the phenomenon of 
energy dissipation. 

We conclude from two cases (3.1 and 3.2) that 
MGT is a new model for high-quality microbeam 
resonators, where this model decreases energy 
dissipation. The validity of our previous results was 
verified by comparing them to those reported in 
earlier studies (Youssef and Alghamdi, 2015; 
Alghamdi and Youssef, 2017; Alghamdi, 2016; Zhou 
et al., 2023; Kharnoob et al., 2024). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2: Variation of TED with respect to thermal relaxation 
time for (a) thickness, (b) length, and (c) isothermal 

frequency 
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(a) 

 
(b) 

 
(c) 

Fig 3: Variation of FS with respect to thermal relaxation 
time for (a) thickness, (b) length, and (c) isothermal 

frequency 

4. Conclusion 

In our work, a thermoelastic damping TED is 
derived analytically for small vibrations of a thin 
elastic microbeam resonator with a rectangular 
cross-section, and we conclude that: 

 

1. Relaxation time parameters play a significant role 
in TED in the presence of thickness variations h, 
length variations ℓ, and isothermal frequency 
variations 𝜔0. 

2. Relaxation time parameters play a significant role 
in FS in the presence of thick variations h, length 
variations ℓ, and isothermal frequency variations 
𝜔0. 

3. In microbeam resonators, the Moore-Gibson-
Thompson Thermoelasticity model reduces the 
amount of energy dissipated during flexural 
vibration and improves their sensitivity. 

4. As a result of the Moore-Gibson-Thompson 
Thermoelasticity theory, high-quality microbeam 
resonators are introduced where energy 
dissipation is decreased during vibration. 

List of symbols 

K Thermal conductivity 
Kr Conductivity rate parameter 
q Heat flux 
τ Thermal relaxation time 
T Temperature 
T₀ Reference temperature 
α Coefficient of thermal expansion 
C Specific heat 
ρ Material density 
θ Temperature change 
h Beam thickness 
L Beam length 
A Cross-sectional area 
e Strain 
w Beam deflection 
ν Poisson’s ratio 
I Moment of inertia 
IT Thermal moment 
χ Thermal diffusivity 
E Young’s modulus 
ω₀ Isothermal frequency 
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