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This study investigates thermoelastic damping (TED) and frequency shift
(FS) in thin microbeam resonators within the framework of the Moore-
Gibson-Thompson (MGT) thermoelasticity theory. An explicit formula for
thermoelastic damping is derived, and the effects of beam thickness, beam
length, isothermal frequency, and thermal relaxation time are analyzed.
Numerical results demonstrate that the thermal relaxation parameter plays a
significant role in controlling thermoelastic damping and frequency shift at
the microscale under different structural and frequency conditions. The
findings indicate that the proposed design is suitable for a wide range of
damping dissipation applications.

© 2026 The Authors. Published by IASE. This is an open access article under the CC

BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many problems can be solved using coupled
thermoelasticity theory (Biot, 1956). According to
this theory, motion is described by a hyperbolic
partial  differential = equation, and energy
conservation is described by a parabolic equation
using Fourier's law for heat conduction. Thermal
waves propagate at an infinite speed with this type
of heat conduction.

In the case of an isotropic body, Lord and
Shulman  (1967) proposed a  generalized
thermoelasticity theory with one relaxation time
(Lord and Shulman, 1967). Non-Fourier's law
replaces Fourier's law with a modified law of heat
conduction that includes flux and its time derivative.
In this theory, the heat equation associated with the
propagation of heat is hyperbolic, thereby
eliminating the paradox of infinite speed (Dhaliwal
and Sherief, 1980).

A wide range of critical applications, including
the processing of mechanical signals, the use of
scanning probe microscopes, the detection of
ultrasensitive mass, etc, these devices use
microresonators. One of the most important
parameters of a microresonator is its Q factor, which
is also known as the quality factor. This parameter is
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closely connected to measurement accuracy.
Resonators with a high-quality factor dissipate less
energy during vibration and are more sensitive.
Hence, studying the energy dissipation mechanism is
vital to the development and improvement of
micro/nanomechanical resonators (Ekinci and
Roukes, 2005; Guo et al,, 2012).

Zener first investigated thermoelastic damping
problems of viscoelastic material and developed his
quality factor formula (Lifshitz and Roukes, 2000).
According to the classical Fourier thermal
conduction theory, Lifshitz and Roukes (2000)
developed a formula for thermoelastic damping Q-
factor. In their model, there is a peak in
thermoelastic damping around the micrometer scale
(Guo et al., 2012; Lifshitz and Roukes, 2000). A beam
height greater than or smaller than a nanometer will
result in a decrease in thermoelastic damping.
Experimental results, however, indicate that the Q-
factor decreases monotonically with the size of
microresonators (Ekinci and Roukes, 2005).

There have been numerous studies on
thermoelastic damping, which is calculated using the
classical theory of thermoelasticity and Fourier’s law
for heat conduction (Guo et al, 2012; Lifshitz and
Roukes, 2000; Li et al, 2012; Prabhakar and
Vengallatore, 2008). According to this theory,
Fourier's law offers thermal wave propagation with
infinite speeds. To resolve this paradox, several non-
classical theories have been developed that permit
thermal waves to spread at a finite speed. Adding the
heat flux's first-time derivative to Fourier's law of
heat conduction results in the second sound theory
(Khisaeva and Ostoja-Starzewski, 2006). The
generalized thermoelastic theory with one relaxation
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time was applied to the analysis of thermoelastic
damping of beam resonators by Sun et al. (2006).
According to the Lord-Shulman theory of generalized
thermoelasticity theory (L-S) (Sharma and Sharma,
2011), Sharma and Sharma (2011) studied damping
in micro-scale circular plate resonators.

In our work, using the Moore-Gibson-Thompson
(MGT) model to study the thermoelastic damping
(TED) and frequency shift (FS) of a microbeam
resonator is a novel study that has not been carried
out before, therefore the results will be novel as well.
As a result of applying the MGT model, the
microbeam resonators become more sensitive and
reduce energy dissipation. In another meaning, the
MGT introduces high-quality microbeam resonators
that reduce energy dissipation during vibration.

2. Problem formulation

2.1. Thermoelasticity equations based on MGT
Theory

According to the MGT heat equation, non-Fourier
heat conduction occurs as follows (Quintanilla, 2019;
Quintanilla, 2020; Kumar and Mukhopadhyay,
2020):

(£ 2 (e ot (2 o)
Bt | .

K

where, K is the thermal conductivity of the material,
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K+ = 20% s the conductivity rate parameter,, is

the thermal relaxation time, Tis temperature, Tis
the uniform reference temperature, e is the strain,
ar is the thermal coefficient, C, is the specific heat,
and p is the beam density.

Eg. 1 can be written as
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2.2. Thermoelastic damping in a microbeam
resonator with a rectangular cross-section

The cross-sectional dimension h X b of an elastic
beam is rectangular with a length ¥, is considered for
small flexural vibrations. Take x —axis along the axis
of the beam, y —axis along the thickness, and z —axis
along the width direction (Fig. 1).
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Fig. 1: Rectangular thermoelastic microbeam
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The strain takes forms (Guo et al., 2012; Li et al,,
2012):

2w

%w
xx = =Y 53 byy = € = Vy =+ (L +v)arb

(3)
and

2 2
e=exte,te,;= —yZTVZV+ ZVy% +2(1+v)ar6 (4)
where, w is the deflection of the beam,v is Poisson’s
ratio.

When a beam is free of stress and deformation
and kept at a constant temperature T,, it is in
equilibrium. According to the linear Euler-Bernoulli
beam theory, the beam deflects due to flexural
vibrations in the x-y plane.

So, the beam's equation of motion with
thermoelastic coupling is (Guo et al.,, 2012; Lifshitz
and Roukes, 2000; Li et al., 2012):

Ear 021y

?w 9?2 (EI 62\4/)
pA 0x?

2z T o paaxz =0 (5)
A = h X b is the area of the cross-section, I and I
are the moment of inertia and thermal moment of
the beam, respectively, which are given by (Guo et
al,, 2012; Lifshitz and Roukes, 2000; Li et al.,, 2012):

I=[[,y*dydz (6)

and

Ir = [[,y0 dydz (7)
Euler-Bernoulli beams are described by Eq. 2

x (e 3) G+ 59 = (v ma ) -

0y (G * Tz ®)

where, y = p% is the material thermal diffusivity
4

ToE %

and 4 = is Young’s modulus for relaxation

strength.

The temperature change in a cross-section is
much larger along the y —axis than along the x —axis
and there are no changes along the z —axis, so we

ToEa?
0*% <1076

. 92
replace V2 with 77 Moreover, 4 =
v

then, Eq. 8 is simplified to
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To solve Eq. 9, we assumed the beam executed
harmonic vibrations with angular frequency w so
that the deflection and the temperature vibration
can be expressed as (Guo et al., 2012; Lifshitz and
Roukes, 2000; Li et al., 2012):

w(x, t) = W(x)et and6(x,y,t) = ¢(x,y)el®t (10)
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by substituting Eq. 10 into Eq. 9 and a =K?, we

obtain
] 9%¢\ _ . Ap(1-2v) 9*W
x(a+iw) (m) = —(w? + itgw?) (d) e V% 2) (11)
Eq. 11 can be written as:
¢ | (0P+itgw®) | (wP+itgw?)ap(1-2v)y 32w
ay? x(a+iw) ¢ - xar(atio) ax2” (12)
Therefore, Eq. 12 has the following solution
2
¢ = Acos(ky) + Bsin(ky) + Ma (13)

0x?

We assume that the beam's boundaries are
adiabatic (Guo et al,, 2012) is

‘;—‘;’ =0at y = +h/2 (14)

The temperatures are distributed across the
thickness as follows

Ap(1-2v) 9?w
ar dx?

¢ — sin(ky) ) (15)

( - k cos(kh/2)

We can now determine the moment of inertia and
thermal moment as

h bh
1= [[,y*dydz = [ ['17 y?dydz = 2 (16)
and
I = [[,y0 dydz = et [ [')% ygdydz (17)

The thermal moment can be determined using
Eq. 15 as follows

I, = it PP4E1-2V) [1 42 (@_ tan (hk))] *w

12ar h3k3 2 dx2

(18)
By substituting Egs. 10 and 18 in Eq. 5, we obtain

R )

By simplifying the last equation,
following

E
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we get the
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In this case, the complex function f(w) has the

following form
h§i3 (_ —tan (hzk))

fl@) = f(k(w) =
The vibration frequency can be driven as follows
from Eq. 20

(21)

w= wo\/l +4p(1 = 2v)(1 + f(w)). (22)

where, w, denotes that the isothermal frequency
values will take the form

—qnh/ 2

and

(23)

qnl = {4.73,7.853,10.996,...},n = 1,2,3,... (24)
Eq. 22 can be expanded to the first-order Taylor
series as
= wo [1+E(1 - 20)(1+ ()] (25)
Due to the weak TED, we may replace f(w) with
f(wg). Then Eq. 25 can be written as
w = wo [1+%E 1 - 2v)(1 + f ()] (26)
A TED is calculated as the inverse of a quality

factor Q71 (Lifshitz and Roukes, 2000; Li et al,, 2012;
Sun et al,, 2006; Wong et al., 2006) as

-1 _ Im(w)
Q=2 Re(w) (27)
The Q™! of the MGT model and the frequency
shift 2 can be expressed as:
Q! =24l —— —
()
a% . 3 3a% . §ay
244, (3na2—n—3)sm(n§’) (E —T)smh( Tl) (28)
53(n2+ )[cos(n§)+cosh(§a2)]
0 = | (29)
3. Numerical results and discussions
The proposed model MGT is numerically

analyzed and plotted using MAPLE software for the
following cases (3.1 and 3.2) in this section. To
investigate the variation of thermoelastic damping
(TED) Q! and frequency shift (FS) 2 as a result of
geometrical and material properties, selected
particular values are for beam thickness h, beam
length ¢, and isothermal frequency values w, for
different thermal relaxation times 7, = {0.1,0.2, 0.3}
for a silicon nitride microbeam resonator clamped at
two ends.
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According to Al-Lehaibi (2022) and Alghamdi
(2020), silicon nitride (Si3N,) has the following
properties:

To = 293(K), p = 3200(kgm™3),

K = 43.5(Wm™1k™1),C, = 630(J. kg~1 K1),

ar =271 x107%(K™1),E = 165(GPa),

v=0.22 1=217%x10°Nm™=2, yu =108 x 10°Nm2

This section will conduct a comparison study to
evaluate the results' reliability, validity, and
accuracy.

3.1. Influence of 7, on TED

In Figs. 2a, 2b, and 2c, the TED is calculated while
varying beam thickness h(10™°<h <9-1077),
beam length £(107° < £ < 107°), and the isothermal
value of frequency wy(10 < w, < 300) based on the
MGT model with different values of thermal
relaxation time (7, = 0.1, 0.2, 0.3).

According to the analysis, the damping Q7! is
negligible if h, ¢, w, = 0, and it reaches a maximum
peak value called Q;;elak- Figs. 2a, 2b, and 2c illustrate
how the variation Q7! increases rapidly as
h, ¢, and w, increase until it reaches a peak and
then reverses direction to decrease till the end, then
it stabilizes for higher values of h, £,and w,.

This means that the MGT model has less energy
dissipation during vibration, resulting in high-quality
resonator sensitivity.

In contrast, the variation of thermal relaxation
time 7, affects the behavior of the damping Q™" of a
two-sided microbeam clamped at two ends.

3.2. Influence of Tqs0n FS

In addition, our study investigated the effect of
thermal relaxation time 7, on the frequency shift FS.
According to Figs. 3a, 3b, and 3c, the FS is calculated
while varying beam thickness h (107°<h<9-
1077), beam length £(107°<¢#<107°), and
isothermal frequency wy(10 < w, < 300) based on
the MGT model with different values of thermal
relaxation time (‘rq =0.1, 0.2, 0.3).

Figs. 3a and 3b show that (2 is negligible as h, ¢ =
0. As h and ¥ increase, the variation of (2 increases
rapidly, after that 2 is off and stabilizes for higher
values of h, and #. In addition, higher values of
74 lead to lower frequency shifts.

According to Fig. 3c, the variation of 2 start with
the maximum stabilizes values for some small
values w,, then it decreases rapidly with increasing
wy, until 2 is off and stabilizes again. Also, higher
values of 7, lead to lower frequency shifts.

From Figs. 3a, 3b, and 3c, the results show that
the variation of £2 has no peak points in cases of the
variation to h, ¢,and w,. Furthermore, the variation
of N is off and stabilizes for higher values of
h, £,and w,, which represents the phenomenon of
energy dissipation.

214

We conclude from two cases (3.1 and 3.2) that
MGT is a new model for high-quality microbeam
resonators, where this model decreases energy
dissipation. The validity of our previous results was
verified by comparing them to those reported in
earlier studies (Youssef and Alghamdi, 2015;
Alghamdi and Youssef, 2017; Alghamdi, 2016; Zhou
etal, 2023; Kharnoob et al.,, 2024).
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Fig. 2: Variation of TED with respect to thermal relaxation
time for (a) thickness, (b) length, and (c) isothermal
frequency
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4. Conclusion

In our work, a thermoelastic damping TED is
derived analytically for small vibrations of a thin
elastic microbeam resonator with a rectangular
cross-section, and we conclude that:
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1. Relaxation time parameters play a significant role
in TED in the presence of thickness variations h,
length variations ¢, and isothermal frequency
variations w,.

2. Relaxation time parameters play a significant role
in FS in the presence of thick variations h, length
variations ¥, and isothermal frequency variations
Wo-

3.In microbeam resonators, the Moore-Gibson-
Thompson Thermoelasticity model reduces the
amount of energy dissipated during flexural
vibration and improves their sensitivity.

4.As a result of the Moore-Gibson-Thompson
Thermoelasticity theory, high-quality microbeam
resonators are introduced where energy
dissipation is decreased during vibration.

List of symbols

K  Thermal conductivity
Conductivity rate parameter
q Heat flux

T Thermal relaxation time
T Temperature

To Reference temperature
Coefficient of thermal expansion
Specific heat

Material density
Temperature change
Beam thickness

Beam length
Cross-sectional area
Strain

Beam deflection
Poisson’s ratio

Moment of inertia
Thermal moment
Thermal diffusivity
Young’s modulus
Isothermal frequency
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