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Aligning exam questions with course learning outcomes and linking them to 
program learning outcomes is often a time-consuming process that is prone 
to human error. This study examines the effectiveness of machine learning 
techniques for automatically mapping exam questions to Program Learning 
Outcomes (PLOs) and performance levels. A dataset of 414 multiple-choice 
questions was used to develop prediction models based on both joint and 
single-model architectures. The results show that the automated models 
achieved higher accuracy than human evaluations, indicating strong 
potential for the use of AI-based tools in educational quality assurance. The 
proposed approach can support academic institutions by automating 
assessment-related tasks, reducing faculty workload, and improving 
curriculum alignment. To the best of our knowledge, this study is the first to 
address the automated mapping of exam questions to program learning 
outcomes using machine learning methods. 
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1. Introduction 

*In recent decades, higher education has faced 
pressure to improve academic quality because of 
concerns about slipping standards, a more globalized 
landscape, and the need for efficient learning 
methods. Quality assurance is a key response to 
these challenges (Aamodt et al., 2018). Multiple 
international organizations have provided standards 
for program accreditation to ensure the quality 
assurance of different academic programs. This 
includes organizations such as the Accreditation 
Board for Engineering and Technology (ABET), 
which specializes in accrediting programs in science, 
technology, engineering, and mathematics (STEM), 
and the Southern Association of Colleges and Schools 
Commission on Colleges (SACSCOC), which grants 
accreditation to higher education institutions. 

In addition, many countries have started national 
accreditation organizations to set standards for 
academic programs. In the Kingdom of Saudi Arabia, 
the Higher Education Council established the 
National Commission for Academic Accreditation 
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and Assessment (NCAAA). The NCAAA acts as a 
gatekeeper of educational quality in Saudi Arabia. 
Their tasks encompass accrediting both institutions 
and individual programs, overseeing institutions 
seeking international recognition, and monitoring 
the ongoing quality of the accredited programs. 
Additionally, the NCAAA conducts evaluations of 
domestic institutions and programs and collaborates 
with relevant organizations both within and outside 
the kingdom. 

Accreditation emphasizes an institution’s ability 
to achieve its goals. One of the key goals of colleges is 
student learning. Accreditors assess this by 
considering student outcomes, the college’s mission, 
learning objectives, and how they measure student 
progress. The challenge for colleges lies in defining 
their specific student learning goals, considering 
their mission and curriculum, and creating ways to 
measure them effectively (Beno, 2004). To achieve 
accreditation, institutions must demonstrate that 
they effectively equip students with the knowledge 
and skills necessary for success. Program learning 
outcomes (PLOs) play a critical role in this process. 
PLOs are clearly defined statements that outline the 
specific competencies students will acquire at the 
end of the program. They define the knowledge, 
skills, and abilities that students are expected to 
master by the end of a program. Accrediting agencies 
evaluate how well the curriculum and assessment 
methods of a program align with PLOs. This ensures 
that the program delivers on its promises, producing 
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graduates who are well-prepared for their chosen 
field. Accreditation acts as a public seal of approval, 
whereas PLOs provide a roadmap for achieving this 
distinction. Table 1 presents three examples of 

program learning outcomes categorized into the 
domains of Knowledge and Understanding, Skills, 
and Values, Autonomy, and Responsibility. 

 
Table 1: Domains of learning and their corresponding program learning outcomes 

Domains of learning PLO statement 
Knowledge and understanding Recognize the major theories of machine learning techniques including neural networks. 

Skills Explore, analyze, manage, and visualize large data sets using the latest technologies. 
Values, autonomy, and responsibility Evaluate opportunities to employ data science solutions in accordance with business ethics and values. 

 

Program Learning Outcomes serve as general 
guidelines for structuring an academic program, 
while course learning outcomes (CLOs) are defined 
with greater specificity, outlining the knowledge, 
skills, or values that students are expected to attain 
at the end of a particular course. These outcomes 
directly align with the course content and activities 
while contributing to broader PLOs. 

Course performance levels are denoted by I 
(Introduction), P (Practiced), and M (Mastered) to 
signify the stages in which learning outcomes are 
integrated into a program’s curriculum. “I” 
(Introduction) indicates that students are introduced 
to the PLO, establishing the essential knowledge and 
comprehension required for further learning. The 
level “P” (Practiced) means that the PLO is 
strengthened through experiential activities, 
including tutorials, labs, or discussions centered on 
case studies, thereby allowing students to enhance 
their skills. The level “M” (Mastered) indicates that 
students have achieved adequate practice to 
demonstrate mastery over the skills or knowledge 
connected to the PLO. 

Strong academic programs are built on the 
foundation of program learning outcomes. They 
serve as a roadmap, explicitly defining the 
competencies that students will have at graduation. 
Having well-defined PLOs benefits universities, 
colleges, academic staff, and students. After gaining a 
thorough understanding of the program’s 
expectations, staff members can design courses that 
precisely address these outcomes, ensuring a 
consistent curriculum. PLOs offer a structure for 
academic program evaluation that enables 
organizations to measure student progress and 
consistently improve program efficiency. 

Beyond their internal benefits, program learning 
outcomes play a critical role in attaining program 
accreditation. Accreditation from a recognized 
organization such as ABET indicates that a program 
meets conventional quality standards. Accrediting 
organizations use PLOs to evaluate how efficiently a 
program prepares students for their major. By 
demonstrating the alignment between PLOs, 
curricula, and assessment methods, institutions can 
show accreditors that their program equips 
graduates with the necessary knowledge and skills. 
This improves a program’s reputation and appeal to 
prospective students in addition to securing 
accreditation. Explicit Program Learning Outcomes 
provide students with a clear understanding of 
academic expectations and methods for self-
evaluation while also offering employers and 

accrediting bodies proof of the program’s success in 
imparting the necessary knowledge and skills to 
graduates (Japee and Oza, 2021).  

Program learning outcomes act as powerful tools 
for strengthening assessment practices. By aligning 
assessments with PLOs, educators ensure that they 
are measuring what truly matters: student 
achievement of core program objectives. This 
targeted approach avoids irrelevant assessments 
and provides valuable data for improvement. 
Effective assessment strategies have been applied, 
for example, direct assessments, which measure PLO 
achievement directly (e.g., exams), with indirect 
assessments that assess broader skills (e.g., surveys 
and interviews), providing a holistic assessment of 
student learning outcomes. Additionally, crafting 
assessments that mirror real-world scenarios allows 
students to apply their knowledge and skills in 
practical contexts, thereby authentically 
demonstrating their mastery of PLOs (Gao et al., 
2020). Thus, well-defined program learning 
outcomes pave the way for effective assessment. 

In assessing student learning, it is crucial to 
ensure that assessments align with their intended 
purposes. This can be accomplished by linking each 
assessment question to specific Course Learning 
Outcomes (CLOs). By mapping questions with 
individual CLOs, educators can verify that the 
assessments measure the correct learning objectives 
of the course and that the questions thoroughly 
cover all the course goals. CLOs are designed to 
contribute to broader PLOs, which represent the 
principal goals of the program. This hierarchical 
mapping helps educators track how individual 
assessment items support the achievement of 
program-level goals.  

In addition, it provided students with a clear 
understanding of the objective of each question and 
its relevance to their learning progression. This 
systematic approach also facilitates the collection of 
valuable data, enabling educators to analyze the 
extent to which students achieve specific CLOs and 
PLOs. Such insights can guide continuous 
improvement efforts, ensuring that assessments, 
courses, and programs remain aligned with the 
intended outcomes and meet the accreditation 
requirements. 

Manually linking questions in assignments and 
exams to CLOs and subsequently to PLOs is time-
consuming and error-prone. This task required 
instructors to carefully assess each question and 
align it with the relevant CLO. The process becomes 
even more challenging in programs with large 
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question banks, a large number of learning 
outcomes, and interdisciplinary courses. 
Inconsistencies and personal interpretations can 
arise, leading to potential misalignments between 
assessments and learning objectives. This challenge 
can be effectively addressed using machine learning 
(ML) techniques. 

This research tackles a crucial challenge in 
education: ensuring that assessments accurately 
measure students’ achievement of program learning 
outcomes. We present a novel approach that 
automatically predicts which PLO a given 
assessment question belongs to. This can 
significantly increase the effectiveness and efficiency 
of the assessment design. By leveraging natural 
language processing (NLP), ML models can analyze 
the textual content of questions and map them to 
predefined PLOs. Teachers can increase the 
regularity and quality of assessment alignment with 
program goals, while also saving a significant 
amount of time by automating this process. This 
ultimately leads to a more robust assessment system 
that truly reflects student learning in the program. 

We examined the effectiveness of employing 
machine learning to link exam questions with 
program learning outcomes and performance levels. 
A dataset of 414 multiple-choice questions from both 
midterm and final exams within the data science 
curriculum was gathered. Various machine learning 
and deep learning techniques have been applied to 
predict PLOs and their performance levels (I, P, and 
M), both jointly and separately. The best-performing 
model predictions were analyzed using human 
evaluations. To the best of our knowledge, this is the 
first study to automate the process of exam question 
mapping to program learning outcomes. 

Given that CLOs are specific to individual courses, 
accurate prediction requires a large number of 
questions per course. However, given that every 
course is designed with specific CLOs that align with 
the PLOs, mapping them is straightforward. In cases 
in which CLOs are uniquely linked to individual 
PLOs, determining the CLO associated with a 
question becomes straightforward once the 
predictive model identifies the corresponding PLO. 
However, in scenarios where multiple CLOs are 
mapped to the same PLO, the mapping process 
becomes more complex. In such instances, the model 
can suggest potential CLOs for the instructor to 
choose, thus enabling informed decisions based on 
the context of the question. This approach not only 
simplifies the mapping process but also provides 
flexibility for instructors to validate and refine the 
mappings as needed. 

The remainder of this paper is organized as 
follows. Section 2 examines the relevant literature. 
Section 3 describes the proposed methodology, and 
Section 4 details the evaluation approach, including 
the materials used and experimental settings. The 
results and a discussion of the findings are presented 
in Section 5. Finally, Section 6 summarizes the key 
findings, highlights their contributions to the field, 
and discusses future research. 

2. Literature review 

Natural language processing and machine 
learning have been increasingly utilized in quality 
assurance and various educational processes, 
ranging from automated assessment grading (Valenti 
et al., 2003) to curriculum alignment (Pattnaik et al., 
2024) and personalized learning (Mathew et al., 
2021). 

Ujkani et al. (2021) proposed a system to analyze 
learning outcomes from syllabi and program 
curricula by identifying inconsistencies. This ensures 
that the programs deliver the knowledge and skills 
promised to students. By aiding both quality 
assurance officers and lecturers, the system aims to 
contribute to a more robust quality assurance 
process in universities. Putri et al. (2022) presented 
an overview of how artificial intelligence (AI), 
machine learning, and deep learning (DL) transform 
education for students, educators, and 
administrators. This study proposes a new way to 
examine the role of AI across the entire educational 
journey. This framework considers proactive 
planning (admission and course scheduling) and 
reactive execution (knowledge delivery and 
assessment). This review analyzes 194 research 
articles published between 2003 and 2022 to 
identify key research trends in AI-driven education 
for both the proactive and reactive phases. It 
explores the evolution of the choice of data and 
algorithms used in the AI solutions over time. This 
review also examines the impact of the COVID-19 
pandemic on education and how it accelerates the 
adoption of AI tools. Finally, it discusses the 
limitations of AI in education and suggests directions 
for future research and development.  

Transfer learning techniques were adopted by 
Lagus et al. (2018) to boost the prediction accuracy 
of learning outcomes, particularly when dealing with 
limited training data, such as when making early 
predictions in a new setting. However, 
improvements in predictive power are often modest. 
Traditional machine learning models can still be 
quite accurate, as long as the contexts being 
compared are very similar and the student activity 
features are designed to minimize the influence of 
minor differences between those contexts. Zaki et al. 
(2023) introduced an AI system that automates the 
mapping of learning outcomes between courses and 
programs. The system uses natural language 
processing to analyze the text and automatically 
perform mapping. Tests using real data from two 
educational programs showed promising results. 
The AI system achieved high accuracy (over 83%) 
compared to human experts performing the same 
task. These findings suggest that the proposed AI 
framework has significant potential to streamline 
this process. Shaikh et al. (2021) proposed a new 
method for classifying learning objectives and 
assessments according to Bloom’s taxonomy, a 
framework that categorizes educational goals based 
on cognitive complexity. Current methods using 
keywords have low accuracy. Shaikh et al. (2021) 
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addressed this by proposing a deep learning model 
using Long Short-Term Memory (LSTM) networks, 
which achieved significantly higher accuracy (87% 
for learning objectives and 74% for assessments) 
than keyword-based approaches (55% accuracy). 
The simplicity of the model makes it appealing, and 
its performance surpasses that of previous attempts 
at this task. In Supraja et al. (2017), a new system 
was introduced that automatically matched 
assessment questions with learning goals. The 
authors used a simplified version of a common 
framework for classifying learning objectives 
(Bloom’s taxonomy). Their research reduced 
Bloom’s taxonomy into three categories: remember 
(involving lower-order thinking), apply (focused on 
application-based questions), and transfer (involving 
higher-order thinking that necessitates analysis and 
synthesis). The system analyzed the text of the 
questions and assigned labels based on the intended 
learning goals. It uses techniques to convert the 
question text into a format that the system can 

understand. They trained it on questions labeled by 
an expert, and then validated its performance using 
real-world questions from online sources. The 
results showed that their system performed very 
well (86% accuracy) compared to a human expert, 
indicating its potential to improve the efficiency and 
effectiveness of assessments in education. 

3. Methodology 

This study examined two strategies for predicting 
program learning outcomes and performance levels: 
the joint model and the single model.  

3.1. Joint model approach  

This approach uses a single neural framework to 
simultaneously predict both labels. The architecture 
of the joint model consists of the components shown 
in Fig. 1. 

 

BERT layer
(None, 768)

Embedding 
layer

(None, 1, 5)

Question text Course code

Concatenate 
(None, 773)

Dense layers
(None, 128)

PLO Output layer
(None, 6)

Level Output layer
(None, 3)

Predicted levelPredicted PLO

 
Fig. 1: The proposed joint model architecture 

 

Question input layer: This layer takes a sequence 
of tokens and encodes them using a pre-trained 
BERT model, particularly the bert-base-uncased 
checkpoint from the HuggingFace Transformers 
library. The output is a dense representation 
acquired by mean-pooling the final hidden states, 
which results in a 768-dimensional embedding that 
captures the semantics of the textual input. 

Course code layer: This embedding layer 
transforms each of the 11 course codes into a 
trainable 5-dimensional dense representation. 
Subsequently, a flattened layer is applied to reshape 
these vectors into a one-dimensional array. 

Concatenate layer: This layer combines the 
outputs from the preceding layers, namely BERT-
encoded questions and dense course code 

representations, and creates an integrated 
representation vector consisting of 773 dimensions. 

Fully connected layers: 0, 1, or 2 fully connected 
layers are added after the concatenation layer. We 
experimented with multiple numbers of hidden 
layers and different neuron sizes.  

PLO output layer: A softmax output layer with six 
units representing the number of PLO classes.  

Level output layer: A softmax output layer with 
three units representing the number of performance 
levels.  

The model was compiled using the Adam 
optimizer. Because both outputs require multiclass 
predictions, the categorical cross-entropy function 
was employed as the loss function, and accuracy was 
used as the evaluation metric for each output. 
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3.2. Single model 

Here, the multilabel classification task is 
decomposed into two independent classification 
tasks, in which each label is predicted separately. 
Unlike the joint model, this approach assumes a lack 
of dependence between labels. We considered 
multiple classifiers: Logistic regression (LR), support 
vector machine (SVM), and random forest (RF). The 
PLO and performance-level classifiers were trained 
on the same input features; however, they were 
independently optimized. Three feature extraction 

methods were used: TF-IDF vectorization, GloVe, 
embeddings (Pennington et al., 2014), and BERT 
embeddings (Devlin et al., 2019). 

4. Evaluation 

In this section, we describe the evaluation 
framework in detail. Fig. 2 shows an overview of the 
framework, comprising the collection of the dataset, 
preprocessing and extraction of features, and 
development and evaluation of models. 

 

Convert to Lowercase

Remove Punctuation and 
Special Characters, 

Stopwords, multiple-choice 
identifiers

Lemmatization

Taging Codeing questions

Similarity removal

Preprocessing
Dataset

Preprocessing

Split Data into Train and Test 
Sets

Text representation - TF-IDF and 
embeddings

Singel Model Joint Model

Model Evaluation

Extract Questions and CLOs

Link CLOs to Program PLOs and 
Levels

Dataset

Evaluate Model Mapping Performance

Compare Model Mapping wiht Human 
Expert Mapping

Model Evaluation

 
Fig. 2: Overview of the proposed framework 

 

4.1. Dataset 

We collected 414 English multiple-choice exam 
questions from 11 courses of the Data Science 
Master’s Program. Each question is linked to a 
Course Learning Outcome (CLO) that is associated 
with a program learning outcome (PLO) and 
performance level. An example question, with its 
corresponding CLO, PLO, and Level, is presented in 
Table 2. Given that CLOs are specific to individual 
courses, accurate prediction requires a large number 
of questions per course. Our main objective, 
however, is to determine the PLO and Level for each 
question. There are six PLOs in the Data Science 
Master’s program. Level, however, categorizes 
performance into three distinct classes: I, P, and M. 

4.2. Metrics 

We evaluated performance using accuracy, 
weighted precision, recall, and F1 score. These 
weighted metrics consider the class imbalance by 
considering wi, which denotes the proportion of true 
instances for each class i among the total number of 
classes C, calculated as follows: 
 

𝑤𝑖 =
Number of true instances in class 𝑖

Total instances
 

 

Weighted Precision =∑𝑤𝑖

𝐶

𝑖=1

⋅ Precision𝑖 

Weighted Recall =∑𝑤𝑖

𝐶

𝑖=1

⋅ Recall𝑖  

Weighted F-score = 2

⋅
Weighted Precision ⋅ Weighted Recall

Weighted Precision+ Weighted Recall
 

4.3. Experimental settings 

4.3.1. Preprocessing 

To prepare the text for analysis, we implemented 
standard preprocessing techniques. We converted 
the question texts to lowercase, removed 
punctuation words, and eliminated the NLTK stop 
words. The NLTK English stop word list includes WH 
question words (e.g., what and where), which may 
be important for the classification of questions. 
Consequently, these terms were excluded from the 
list of stop words before their removal. Furthermore, 
we deleted multiple-choice identifiers such as “a.” 
and “b.” which are part of any multiple-choice 
question. Subsequently, we conducted 
lemmatization to convert the words into their root 
forms using WordNet. 
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Table 2: An example of one question with its associated CLO, PLO, and level 
Course Question CLO PLO Level 
DS510 What will be the probability of getting odd numbers if a dice is thrown? a. 1/2 b. 2 c. 4/2 d. 5/2 LO1 K2 I 

 

Many questions contain code snippets that may 
be unrecognized by pre-trained word-embedding 
models; hence, we enhanced these questions with 
related terms such as” programming” and “code.” For 
this purpose, we utilize regular expressions to 
identify patterns resembling code such as “def” and 
“const.” To identify near-duplicate questions that 
were slightly paraphrased, we calculated cosine 
similarities between the question pairs. If the 
similarity exceeded the threshold of 80%, we 
discarded a similar question. 

4.3.2. Single model settings 

The dataset was divided into training and testing 
sets in an 80:20 ratio. The distribution of PLO labels 
in the training set indicated a significant imbalance. 
Classes V1 and S1 constituted approximately 4% and 
6% of the data, respectively, while S2 and K2 
accounted for approximately 34% and 27%. To 
address this disparity, we employed random 
oversampling to increase the representation of 
underrepresented PLO classes, while maintaining 
the natural distribution of levels. Oversampling was 
exclusively applied to the training set.  

We used sklearn to conduct the experiments and 
fine-tuned the logistic regression, support vector 
machines, and random forest. To determine the best 
hyperparameters, we performed a grid search cross-
validation approach with imbpipeline (imbalanced-
learn.org), a pipeline used to split the training set 
into five segments and apply random oversampling 
to the training folds. The classifiers were trained 
using oversampled segments and evaluated using 
the validation segment. Table 3 lists the 
hyperparameters evaluated for each algorithm and 
the best-performing algorithms. 

A sklearn column transformer was used to 
independently transform each column. The TF-IDF 
weights are learned from the textual input of the 
oversampled training segment, and the learned 
transformation is applied to the validation set. The 
course input was transformed into one-hot encoding, 

and the PLO and Level labels were converted into 
numerical values. We used fifty-dimensional pre-
trained GloVe word vectors to represent words and 
then compute their average. Similarly, we used BERT 
embeddings to encode the words and then averaged 
them. 

4.3.3. Joint model settings 

The same training and testing splits were 
maintained, and a random validation split of 20% 
was adopted. The texts were tokenized and 
represented using the BERT model (Devlin et al., 
2019). Embeddings were used to represent the 
categorical course inputs. Both output layers used 
the categorical cross-entropy loss function during 
training. Early stopping was adopted to observe the 
total validation loss and to stop the training process 
if there was no improvement for three epochs (Fig. 
3). We experimented with multiple hyperparameters 
and selected those that yielded the best performance 
in the validation set (Table 3). The hyperparameters 
are embedding sizes of 5 and 10, dropout rates of 0, 
2, and 4, and the number of hidden layers post-
concatenation of 0, 1, and 2. 

 

 
Fig. 3: Training and validation loss during training the 

joint model 

 
Table 3: Best hyperparameters 

Model Oversampling Best hyperparameters 

Joint model No number of hidden layers=0 embedding dim=5; drop rate=0; epochs=20; batch size=16 
BERT-LR No C: 1, penalty: l2 

BERT-SVC No C: 10, kernel: rbf 
GLOVE-SVC No C: 1, kernel: poly 
GLOVE-LR No C: 1, penalty: l2 

TF-IDF-SVC No C: 10, kernel: rbf 
TF-IDF-SVC No C: 10, kernel: poly 
BERT-SVC Yes C: 1, kernel: poly 
BERT-SVC Yes C: 1, kernel: linear 

GLOVE-SVC Yes C: 10, kernel: poly 
GLOVE-SVC Yes C: 1, kernel: linear 
TF-IDF-SVC Yes C: 1, kernel: rbf 
TF-IDF-LR Yes C: 10, penalty: l2 

 

4.3.4. Human-evaluation 

Because mapping the exam questions to the 
corresponding learning outcomes is subjective and 

dependent on the instructor’s personal 
interpretations, we compared the model predictions 
to the judgments of human evaluators. Three 
independent faculty members with domain 
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experience who had taught more than two courses in 
the program were recruited to manually map the 
questions in the test set to their corresponding CLOs, 
PLOs, and performance levels. Each instructor 
received a list of test set questions along with the 
corresponding course code, as shown in Table 2, and 
was asked to select the learning outcomes that best 
aligned with each question based on their teaching 
experience in the program.  

Inter-rater reliability: Fleiss’ Kappa statistical 
analysis (Fleiss, 1971) was applied to measure the 
degree of agreement among the three faculty 
members on their mapping of the questions to PLOs 
and Levels. CLOs mapping was excluded from the 
analysis as they are specific to individual courses 
and are associated with a program, PLOs, and 
performance levels. The results showed fair 
agreement between faculty members, with k = 0.341 
and k = 0.38, for PLOs and level mapping, 
respectively. This result indicates that faculty might 
have different perspectives or interpretations of the 
questions, which makes reliable mapping of the 
questions a challenging task. 

5. Results and discussion 

We conducted cross-validation for the 
combination of single models (i.e., SVC, LR, and RF) 
and data representations (i.e., BERT, GloVe, and TF-
IDF), and whether random oversampling was 
applied. In addition to the joint classifier results, 
Table 4 presents a comparison of the best 

“Performance Level” classifiers for each of the data 
representations, both with and without 
oversampling. Fig. 4 shows the evaluation of the 
prediction accuracy across the validation and test 
sets. The TF-IDF-SVC model achieved the highest 
performance without oversampling, yielding a test 
set result of 0.68 accuracy. The impact of 
oversampling varied, producing classification 
accuracies that were 15% and 8% lower for 
BERTSVC and TF-IDF-LR, respectively, and a 2% 
increase for GLOVE-SVC. 

Cross-validation was similarly performed to 
identify the best combination of PLO single machine-
learning classifiers with data representations, 
including the application of random oversampling. 
Fig. 5 shows the validation and test classification 
accuracies achieved by the top models. Table 5 
presents the test results for the joint and single 
models. 

Overall, for all classifiers and evaluation metrics, 
the results of the PLO classification were at least 
13% lower than the “performance level” predictions. 
This difference is expected because PLO involves six 
labels, whereas the levels have only three labels. 
Furthermore, the TF-IDF-SVC approach, without the 
use of oversampling, delivered optimal performance 
in every metric with an accuracy of 0.55% and an F-
score of 0.51%. Random sampling continues to yield 
inconsistent outcomes, showing increased f-scores 
for BERT-SVC and GLOVE-SVC but reduced accuracy 
and f-score for TF-IDF-SVC. 

 

 
Fig. 4: Validation and test accuracy for question-level prediction 

 
Table 4: Test results for question performance level prediction 

Model Oversampling Accuracy Precision Recall F1-score 

BERT-SVC 
Yes 0.44 0.45 0.44 0.43 
No 0.59 0.60 0.59 0.58 

GLOVE-SVC 
Yes 0.63 0.63 0.63 0.62 
No 0.61 0.61 0.61 0.61 

TF-IDF-LR Yes 0.60 0.60 0.60 0.60 
TF-IDF-SVC No 0.68 0.68 0.68 0.68 
Joint model No 0.54 0.54 0.54 0.53 

 

The superior performance of the TF-IDF and SVM 
models compared to that of the BERT-based model 
could be attributed to the small size of the training 
data. Support Vector Machines are recognized for 

requiring only a few instances to identify the 
maximum-margin hyperplane that is essential for 
classification tasks (Moguerza and Muñoz, 2006). 
However, fine-tuning a BERT model requires a large 
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task-specific dataset to effectively modify its 
parameters. Therefore, it is recommended that this 
dataset be expanded in future studies to evaluate 
this hypothesis. To further understand the 
performance of TF-IDF-SVC without the use of 
oversampling, Tables 6 and 7 show a breakdown of 
the precision, recall, and f-score for each PLO and 

performance-level label. The model performed well 
for some PLO classes (e.g., Class 3) but struggled 
with others, especially those with low support 
(Classes 2 and 5). All three level classes have similar 
F1-scores (0.65–0.70), indicating fairly consistent 
performance across the board. 

 
Table 5: Test results for PLO prediction 

Data representation Oversampling Accuracy Precision Recall F1-score 
BERT-SVC Yes 0.41 0.37 0.41 0.39 
BERT-LR No 0.41 0.38 0.41 0.37 

GLOVE-SVC Yes 0.49 0.46 0.49 0.47 
GLOVE-SVC No 0.49 0.41 0.49 0.41 
TF-IDF-SVC Yes 0.53 0.48 0.53 0.50 
TF-IDF-SVC No 0.55 0.50 0.55 0.51 
Joint model No 0.44 0.30 0.44 0.35 

 

 
Fig. 5: Cross-validation and test accuracy for PLO prediction 

 

The performance of faculty members’ PLOs and 
level mappings was compared with the ground truth 
labels of the test set (the ground truth refers to the 
given labels in the collected dataset). As shown in 
Table 8, the results illustrate that on average, faculty 
members performed at an accuracy level of 0.42 and 
0.57 for PLO and Level mapping, respectively, with 
moderate precision and recall scores. It can be seen 

from the result that there are differences in the 
faculty performance, which highlights the variability 
in how they interpreted the mapping task. 
Interestingly, faculty members 2 and 3 demonstrated 
higher accuracy than faculty member 1, which could 
be attributed to their extensive teaching experience 
within the program. 

 
Table 6: Classification report for PLO predictions 

Question’s PLO label Precision Recall F1-score Support 

0 0.38 0.33 0.35 9 
1 0.48 0.74 0.58 19 
2 0.00 0.00 0.00 7 
3 0.69 0.79 0.73 28 
4 0.63 0.38 0.48 13 
5 0.00 0.00 0.00 4 

 
Table 7: Classification report for performance level predictions 

Question’s Level Precision Recall F1-score Support 
0 0.63 0.76 0.69 25 
1 0.79 0.63 0.70 24 
2 0.65 0.65 0.65 31 

 
Table 8: Faculty members’ mapping results compared with the ground truth labels 

Faculty Accuracy Precision Recall F1-Score 

PLOs 
1 0.33 0.36 0.33 0.34 
2 0.48 0.49 0.48 0.48 
3 0.45 0.49 0.45 0.44 

Average 0.42 0.45 0.42 0.42 
Levels 

1 0.53 0.53 0.53 0.52 
2 0.60 0.64 0.60 0.60 
3 0.60 0.60 0.60 0.60 

Average 0.57 0.59 0.57 0.57 
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These findings indicate that question-mapping is 
difficult for faculty members. Improving mapping 
guidelines and providing additional training could 
lead to more accurate and consistent results for 
faculty members. Comparing the human evaluation 
results in Table 8 with the best model predictions 
(Figs. 3 and 4), it is clear that the model predictions 
outperform human predictions by 12% and 10% for 
PLOs and Levels, respectively. This suggests that, 
while the task is quite difficult for humans, a 
machine learning model might offer a more reliable 
and efficient solution, highlighting the need to 
automate the question-mapping task. The superior 
performance of ML models compared to that of 
human experts implies that most labels adhere to a 
consistent pattern. The model is likely to be 
identified and generalized from this dominant 
pattern, possibly ignoring anomalies and noise. The 
model may have accurately captured the decision-
making processes used by course instructors when 
labelling questions. 

6. Conclusion 

This study examines the effectiveness of machine 
learning techniques for mapping exam questions to 
program learning outcomes and associated 
performance levels. We evaluated multiple machine 
learning algorithms across three different feature 
representations alongside a deep learning–based 
joint model. To ensure robust evaluation, we 
performed extensive cross-validation experiments to 
optimize the hyperparameters both with and 
without oversampling. The Support Vector Machine 
using TF-IDF features without oversampling 
achieved the highest accuracy in predicting both 
PLOs and performance levels. We then compared the 
model’s predictions with those of human evaluators 
and found that the model consistently outperformed 
human judgments, highlighting the significant 
potential of AI-powered tools for enhancing quality 
assurance in educational systems. 
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