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Aligning exam questions with course learning outcomes and linking them to
program learning outcomes is often a time-consuming process that is prone
to human error. This study examines the effectiveness of machine learning
techniques for automatically mapping exam questions to Program Learning
Outcomes (PLOs) and performance levels. A dataset of 414 multiple-choice
questions was used to develop prediction models based on both joint and
single-model architectures. The results show that the automated models
achieved higher accuracy than human evaluations, indicating strong
potential for the use of Al-based tools in educational quality assurance. The
proposed approach can support academic institutions by automating
assessment-related tasks, reducing faculty workload, and improving
curriculum alignment. To the best of our knowledge, this study is the first to
address the automated mapping of exam questions to program learning

outcomes using machine learning methods.

© 2026 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent decades, higher education has faced
pressure to improve academic quality because of
concerns about slipping standards, a more globalized
landscape, and the need for efficient learning
methods. Quality assurance is a key response to
these challenges (Aamodt et al., 2018). Multiple
international organizations have provided standards
for program accreditation to ensure the quality
assurance of different academic programs. This
includes organizations such as the Accreditation
Board for Engineering and Technology (ABET),
which specializes in accrediting programs in science,
technology, engineering, and mathematics (STEM),
and the Southern Association of Colleges and Schools
Commission on Colleges (SACSCOC), which grants
accreditation to higher education institutions.

In addition, many countries have started national
accreditation organizations to set standards for
academic programs. In the Kingdom of Saudi Arabia,
the Higher Education Council established the
National Commission for Academic Accreditation
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and Assessment (NCAAA). The NCAAA acts as a
gatekeeper of educational quality in Saudi Arabia.
Their tasks encompass accrediting both institutions
and individual programs, overseeing institutions
seeking international recognition, and monitoring
the ongoing quality of the accredited programs.
Additionally, the NCAAA conducts evaluations of
domestic institutions and programs and collaborates
with relevant organizations both within and outside
the kingdom.

Accreditation emphasizes an institution’s ability
to achieve its goals. One of the key goals of colleges is
student learning. Accreditors assess this by
considering student outcomes, the college’s mission,
learning objectives, and how they measure student
progress. The challenge for colleges lies in defining
their specific student learning goals, considering
their mission and curriculum, and creating ways to
measure them effectively (Beno, 2004). To achieve
accreditation, institutions must demonstrate that
they effectively equip students with the knowledge
and skills necessary for success. Program learning
outcomes (PLOs) play a critical role in this process.
PLOs are clearly defined statements that outline the
specific competencies students will acquire at the
end of the program. They define the knowledge,
skills, and abilities that students are expected to
master by the end of a program. Accrediting agencies
evaluate how well the curriculum and assessment
methods of a program align with PLOs. This ensures
that the program delivers on its promises, producing
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graduates who are well-prepared for their chosen
field. Accreditation acts as a public seal of approval,
whereas PLOs provide a roadmap for achieving this
distinction. Table 1 presents three examples of

program learning outcomes categorized into the
domains of Knowledge and Understanding, Skills,
and Values, Autonomy, and Responsibility.

Table 1: Domains of learning and their corresponding program learning outcomes

Domains of learning

PLO statement

Knowledge and understanding
Skills
Values, autonomy, and responsibility

Recognize the major theories of machine learning techniques including neural networks.
Explore, analyze, manage, and visualize large data sets using the latest technologies.
Evaluate opportunities to employ data science solutions in accordance with business ethics and values.

Program Learning Outcomes serve as general
guidelines for structuring an academic program,
while course learning outcomes (CLOs) are defined
with greater specificity, outlining the knowledge,
skills, or values that students are expected to attain
at the end of a particular course. These outcomes
directly align with the course content and activities
while contributing to broader PLOs.

Course performance levels are denoted by I
(Introduction), P (Practiced), and M (Mastered) to
signify the stages in which learning outcomes are
integrated into a program’s curriculum. “I”
(Introduction) indicates that students are introduced
to the PLO, establishing the essential knowledge and
comprehension required for further learning. The
level “P” (Practiced) means that the PLO is
strengthened through experiential activities,
including tutorials, labs, or discussions centered on
case studies, thereby allowing students to enhance
their skills. The level “M” (Mastered) indicates that
students have achieved adequate practice to
demonstrate mastery over the skills or knowledge
connected to the PLO.

Strong academic programs are built on the
foundation of program learning outcomes. They
serve as a roadmap, explicitly defining the
competencies that students will have at graduation.
Having well-defined PLOs benefits universities,
colleges, academic staff, and students. After gaining a
thorough  understanding of the program’s
expectations, staff members can design courses that
precisely address these outcomes, ensuring a
consistent curriculum. PLOs offer a structure for
academic program evaluation that enables
organizations to measure student progress and
consistently improve program efficiency.

Beyond their internal benefits, program learning
outcomes play a critical role in attaining program
accreditation. Accreditation from a recognized
organization such as ABET indicates that a program
meets conventional quality standards. Accrediting
organizations use PLOs to evaluate how efficiently a
program prepares students for their major. By
demonstrating the alignment between PLOs,
curricula, and assessment methods, institutions can
show accreditors that their program equips
graduates with the necessary knowledge and skills.
This improves a program’s reputation and appeal to
prospective students in addition to securing
accreditation. Explicit Program Learning Outcomes
provide students with a clear understanding of
academic expectations and methods for self-
evaluation while also offering employers and
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accrediting bodies proof of the program’s success in
imparting the necessary knowledge and skills to
graduates (Japee and Oza, 2021).

Program learning outcomes act as powerful tools
for strengthening assessment practices. By aligning
assessments with PLOs, educators ensure that they
are measuring what truly matters: student
achievement of core program objectives. This
targeted approach avoids irrelevant assessments
and provides valuable data for improvement.
Effective assessment strategies have been applied,
for example, direct assessments, which measure PLO
achievement directly (e.g., exams), with indirect
assessments that assess broader skills (e.g., surveys
and interviews), providing a holistic assessment of
student learning outcomes. Additionally, crafting
assessments that mirror real-world scenarios allows
students to apply their knowledge and skills in
practical contexts, thereby authentically
demonstrating their mastery of PLOs (Gao et al,
2020). Thus, well-defined program learning
outcomes pave the way for effective assessment.

In assessing student learning, it is crucial to
ensure that assessments align with their intended
purposes. This can be accomplished by linking each
assessment question to specific Course Learning
Outcomes (CLOs). By mapping questions with
individual CLOs, educators can verify that the
assessments measure the correct learning objectives
of the course and that the questions thoroughly
cover all the course goals. CLOs are designed to
contribute to broader PLOs, which represent the
principal goals of the program. This hierarchical
mapping helps educators track how individual
assessment items support the achievement of
program-level goals.

In addition, it provided students with a clear
understanding of the objective of each question and
its relevance to their learning progression. This
systematic approach also facilitates the collection of
valuable data, enabling educators to analyze the
extent to which students achieve specific CLOs and
PLOs. Such insights can guide continuous
improvement efforts, ensuring that assessments,
courses, and programs remain aligned with the
intended outcomes and meet the accreditation
requirements.

Manually linking questions in assignments and
exams to CLOs and subsequently to PLOs is time-
consuming and error-prone. This task required
instructors to carefully assess each question and
align it with the relevant CLO. The process becomes
even more challenging in programs with large
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question banks, a large number of learning
outcomes, and interdisciplinary courses.
Inconsistencies and personal interpretations can
arise, leading to potential misalignments between
assessments and learning objectives. This challenge
can be effectively addressed using machine learning
(ML) techniques.

This research tackles a crucial challenge in
education: ensuring that assessments accurately
measure students’ achievement of program learning
outcomes. We present a novel approach that
automatically predicts which PLO a given
assessment question belongs to. This can
significantly increase the effectiveness and efficiency
of the assessment design. By leveraging natural
language processing (NLP), ML models can analyze
the textual content of questions and map them to
predefined PLOs. Teachers can increase the
regularity and quality of assessment alignment with
program goals, while also saving a significant
amount of time by automating this process. This
ultimately leads to a more robust assessment system
that truly reflects student learning in the program.

We examined the effectiveness of employing
machine learning to link exam questions with
program learning outcomes and performance levels.
A dataset of 414 multiple-choice questions from both
midterm and final exams within the data science
curriculum was gathered. Various machine learning
and deep learning techniques have been applied to
predict PLOs and their performance levels (I, P, and
M), both jointly and separately. The best-performing
model predictions were analyzed using human
evaluations. To the best of our knowledge, this is the
first study to automate the process of exam question
mapping to program learning outcomes.

Given that CLOs are specific to individual courses,
accurate prediction requires a large number of
questions per course. However, given that every
course is designed with specific CLOs that align with
the PLOs, mapping them is straightforward. In cases
in which CLOs are uniquely linked to individual
PLOs, determining the CLO associated with a
question becomes straightforward once the
predictive model identifies the corresponding PLO.
However, in scenarios where multiple CLOs are
mapped to the same PLO, the mapping process
becomes more complex. In such instances, the model
can suggest potential CLOs for the instructor to
choose, thus enabling informed decisions based on
the context of the question. This approach not only
simplifies the mapping process but also provides
flexibility for instructors to validate and refine the
mappings as needed.

The remainder of this paper is organized as
follows. Section 2 examines the relevant literature.
Section 3 describes the proposed methodology, and
Section 4 details the evaluation approach, including
the materials used and experimental settings. The
results and a discussion of the findings are presented
in Section 5. Finally, Section 6 summarizes the key
findings, highlights their contributions to the field,
and discusses future research.
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2. Literature review

Natural language processing and machine
learning have been increasingly utilized in quality
assurance and various educational processes,
ranging from automated assessment grading (Valenti
et al,, 2003) to curriculum alignment (Pattnaik et al.,
2024) and personalized learning (Mathew et al,
2021).

Ujkani et al. (2021) proposed a system to analyze
learning outcomes from syllabi and program
curricula by identifying inconsistencies. This ensures
that the programs deliver the knowledge and skills
promised to students. By aiding both quality
assurance officers and lecturers, the system aims to
contribute to a more robust quality assurance
process in universities. Putri et al. (2022) presented
an overview of how artificial intelligence (AI),
machine learning, and deep learning (DL) transform
education for students, educators, and
administrators. This study proposes a new way to
examine the role of Al across the entire educational
journey. This framework considers proactive
planning (admission and course scheduling) and
reactive execution (knowledge delivery and
assessment). This review analyzes 194 research
articles published between 2003 and 2022 to
identify key research trends in Al-driven education
for both the proactive and reactive phases. It
explores the evolution of the choice of data and
algorithms used in the AI solutions over time. This
review also examines the impact of the COVID-19
pandemic on education and how it accelerates the
adoption of Al tools. Finally, it discusses the
limitations of Al in education and suggests directions
for future research and development.

Transfer learning techniques were adopted by
Lagus et al. (2018) to boost the prediction accuracy
of learning outcomes, particularly when dealing with
limited training data, such as when making early
predictions in a new setting. However,
improvements in predictive power are often modest.
Traditional machine learning models can still be
quite accurate, as long as the contexts being
compared are very similar and the student activity
features are designed to minimize the influence of
minor differences between those contexts. Zaki et al.
(2023) introduced an Al system that automates the
mapping of learning outcomes between courses and
programs. The system uses natural language
processing to analyze the text and automatically
perform mapping. Tests using real data from two
educational programs showed promising results.
The Al system achieved high accuracy (over 83%)
compared to human experts performing the same
task. These findings suggest that the proposed Al
framework has significant potential to streamline
this process. Shaikh et al. (2021) proposed a new
method for classifying learning objectives and
assessments according to Bloom’s taxonomy, a
framework that categorizes educational goals based
on cognitive complexity. Current methods using
keywords have low accuracy. Shaikh et al. (2021)
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addressed this by proposing a deep learning model
using Long Short-Term Memory (LSTM) networks,
which achieved significantly higher accuracy (87%
for learning objectives and 74% for assessments)
than keyword-based approaches (55% accuracy).
The simplicity of the model makes it appealing, and
its performance surpasses that of previous attempts
at this task. In Supraja et al. (2017), a new system
was introduced that automatically matched
assessment questions with learning goals. The
authors used a simplified version of a common
framework for classifying learning objectives
(Bloom’s taxonomy). Their research reduced
Bloom’s taxonomy into three categories: remember
(involving lower-order thinking), apply (focused on
application-based questions), and transfer (involving
higher-order thinking that necessitates analysis and
synthesis). The system analyzed the text of the
questions and assigned labels based on the intended
learning goals. It uses techniques to convert the
question text into a format that the system can

Question text l

BERT layer
(None, )

understand. They trained it on questions labeled by
an expert, and then validated its performance using
real-world questions from online sources. The
results showed that their system performed very
well (86% accuracy) compared to a human expert,
indicating its potential to improve the efficiency and
effectiveness of assessments in education.

3. Methodology

This study examined two strategies for predicting
program learning outcomes and performance levels:
the joint model and the single model.
3.1. Joint model approach

This approach uses a single neural framework to
simultaneously predict both labels. The architecture

of the joint model consists of the components shown
in Fig. 1.

l Course code

Embedding
layer
(None, 1, 5)

Concatenate
(None,

)

Dense layers
(None,

)

l

PLO Output layer
(None, 6)

Predicted PLO l

l

Level Output layer
(None, 3)

l Predicted level

Fig. 1: The proposed joint model architecture

Question input layer: This layer takes a sequence
of tokens and encodes them using a pre-trained
BERT model, particularly the bert-base-uncased
checkpoint from the HuggingFace Transformers
library. The output is a dense representation
acquired by mean-pooling the final hidden states,
which results in a 768-dimensional embedding that
captures the semantics of the textual input.

Course code layer: This embedding layer
transforms each of the 11 course codes into a
trainable 5-dimensional dense representation.

Subsequently, a flattened layer is applied to reshape
these vectors into a one-dimensional array.
Concatenate layer: This layer combines the
outputs from the preceding layers, namely BERT-
encoded questions and dense course code
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representations, and creates an integrated
representation vector consisting of 773 dimensions.

Fully connected layers: 0, 1, or 2 fully connected
layers are added after the concatenation layer. We
experimented with multiple numbers of hidden
layers and different neuron sizes.

PLO output layer: A softmax output layer with six
units representing the number of PLO classes.

Level output layer: A softmax output layer with
three units representing the number of performance
levels.

The model was compiled using the Adam
optimizer. Because both outputs require multiclass
predictions, the categorical cross-entropy function
was employed as the loss function, and accuracy was
used as the evaluation metric for each output.
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3.2. Single model

Here, the multilabel classification task is
decomposed into two independent classification
tasks, in which each label is predicted separately.
Unlike the joint model, this approach assumes a lack
of dependence between labels. We considered
multiple classifiers: Logistic regression (LR), support
vector machine (SVM), and random forest (RF). The
PLO and performance-level classifiers were trained
on the same input features; however, they were
independently optimized. Three feature extraction

Preprocessing

Convert to Lowercase |

|

Preprocessing

methods were used: TF-IDF vectorization, GloVe,
embeddings (Pennington et al, 2014), and BERT
embeddings (Devlin et al., 2019).

4., Evaluation

In this section, we describe the evaluation
framework in detail. Fig. 2 shows an overview of the
framework, comprising the collection of the dataset,
preprocessing and extraction of features, and
development and evaluation of models.

Dataset

| Extract Questions and CLOs |

Link CLOs to Program PLOs and
Levels

Remove Punctuation and
Special Characters,
Stopwords, multiple-choice

identifiers Sets

Split Data into Train and Test

! | ]

Lemmatization

embeddings

Taging Codeing questions

i Text representation - TF-IDF and

! —

Model Evaluation

Similarity removal |

| Singel Model

| Joint Model |

Evaluate Model Mapping Performance

Compare Model Mapping wiht Human

| Model Evaluation

Expert Mapping

—

Fig. 2: Overview of the proposed framework

4.1. Dataset

We collected 414 English multiple-choice exam
questions from 11 courses of the Data Science
Master’s Program. Each question is linked to a
Course Learning Outcome (CLO) that is associated
with a program learning outcome (PLO) and
performance level. An example question, with its
corresponding CLO, PLO, and Level, is presented in
Table 2. Given that CLOs are specific to individual
courses, accurate prediction requires a large number
of questions per course. Our main objective,
however, is to determine the PLO and Level for each
question. There are six PLOs in the Data Science
Master’s program. Level, however, categorizes
performance into three distinct classes: I, P, and M.

4.2. Metrics

We evaluated performance using accuracy,
weighted precision, recall, and F1 score. These
weighted metrics consider the class imbalance by
considering wi, which denotes the proportion of true
instances for each class i among the total number of
classes C, calculated as follows:

Number of true instances in class i

w; = -
: Total instances
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c
Weighted Precision = Z w; - Precision;

i=1
C

Weighted Recall = Z w; - Recall;
i=1
Weighted F-score = 2
Weighted Precision - Weighted Recall

. Weighted Precision + Weighted Recall

4.3. Experimental settings
4.3.1. Preprocessing

To prepare the text for analysis, we implemented
standard preprocessing techniques. We converted
the question texts to lowercase, removed
punctuation words, and eliminated the NLTK stop
words. The NLTK English stop word list includes WH
question words (e.g., what and where), which may
be important for the classification of questions.
Consequently, these terms were excluded from the
list of stop words before their removal. Furthermore,
we deleted multiple-choice identifiers such as “a.”
and “b.” which are part of any multiple-choice
question. Subsequently, we conducted
lemmatization to convert the words into their root
forms using WordNet.
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Table 2: An example of one question with its associated CLO, PLO, and level

Course Question

CLO PLO Level

DS510

What will be the probability of getting odd numbers if a dice is thrown? a. 1/2b.2 c.4/2d.5/2

LO1 K2 I

Many questions contain code snippets that may
be unrecognized by pre-trained word-embedding
models; hence, we enhanced these questions with
related terms such as” programming” and “code.” For
this purpose, we utilize regular expressions to
identify patterns resembling code such as “def” and
“const” To identify near-duplicate questions that
were slightly paraphrased, we calculated cosine
similarities between the question pairs. If the
similarity exceeded the threshold of 80%, we
discarded a similar question.

4.3.2. Single model settings

The dataset was divided into training and testing
sets in an 80:20 ratio. The distribution of PLO labels
in the training set indicated a significant imbalance.
Classes V1 and S1 constituted approximately 4% and
6% of the data, respectively, while S2 and K2
accounted for approximately 34% and 27%. To
address this disparity, we employed random
oversampling to increase the representation of
underrepresented PLO classes, while maintaining
the natural distribution of levels. Oversampling was
exclusively applied to the training set.

We used sklearn to conduct the experiments and
fine-tuned the logistic regression, support vector
machines, and random forest. To determine the best
hyperparameters, we performed a grid search cross-
validation approach with imbpipeline (imbalanced-
learn.org), a pipeline used to split the training set
into five segments and apply random oversampling
to the training folds. The classifiers were trained
using oversampled segments and evaluated using
the wvalidation segment. Table 3 lists the
hyperparameters evaluated for each algorithm and
the best-performing algorithms.

A sklearn column transformer was used to
independently transform each column. The TF-IDF
weights are learned from the textual input of the
oversampled training segment, and the learned

and the PLO and Level labels were converted into
numerical values. We used fifty-dimensional pre-
trained GloVe word vectors to represent words and
then compute their average. Similarly, we used BERT
embeddings to encode the words and then averaged
them.

4.3.3. Joint model settings

The same training and testing splits were
maintained, and a random validation split of 20%
was adopted. The texts were tokenized and
represented using the BERT model (Devlin et al,
2019). Embeddings were used to represent the
categorical course inputs. Both output layers used
the categorical cross-entropy loss function during
training. Early stopping was adopted to observe the
total validation loss and to stop the training process
if there was no improvement for three epochs (Fig.
3). We experimented with multiple hyperparameters
and selected those that yielded the best performance
in the validation set (Table 3). The hyperparameters
are embedding sizes of 5 and 10, dropout rates of 0,
2, and 4, and the number of hidden layers post-
concatenation of 0, 1, and 2.

Training vs Validation Loss

—— Training loss
Validation loss

Loss
N
o
s

2.3

10.0 125 15.0 17.5 20.0

Epoch

2.5 5.0 7.5

Fig. 3: Training and validation loss during training the

transformation is applied to the validation set. The joint model
course input was transformed into one-hot encoding,
Table 3: Best hyperparameters
Model Oversampling Best hyperparameters
Joint model No number of hidden layers=0 embedding dim=>5; drop rate=0; epochs=20; batch size=16
BERT-LR No C: 1, penalty: 12

BERT-SVC No C: 10, kernel: rbf

GLOVE-SVC No C: 1, kernel: poly

GLOVE-LR No C: 1, penalty: 12

TF-IDF-SVC No C: 10, kernel: rbf

TF-IDF-SVC No C: 10, kernel: poly

BERT-SVC Yes C: 1, kernel: poly

BERT-SVC Yes C: 1, kernel: linear

GLOVE-SVC Yes C: 10, kernel: poly

GLOVE-SVC Yes C: 1, kernel: linear

TF-IDF-SVC Yes C: 1, kernel: rbf

TF-IDF-LR Yes C: 10, penalty: 12

4.3.4. Human-evaluation

Because mapping the exam questions to the
corresponding learning outcomes is subjective and
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dependent on  the instructor’s personal
interpretations, we compared the model predictions
to the judgments of human evaluators. Three
independent faculty members with domain
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experience who had taught more than two courses in
the program were recruited to manually map the
questions in the test set to their corresponding CLOs,
PLOs, and performance levels. Each instructor
received a list of test set questions along with the
corresponding course code, as shown in Table 2, and
was asked to select the learning outcomes that best
aligned with each question based on their teaching
experience in the program.

Inter-rater reliability: Fleiss’ Kappa statistical
analysis (Fleiss, 1971) was applied to measure the
degree of agreement among the three faculty
members on their mapping of the questions to PLOs
and Levels. CLOs mapping was excluded from the
analysis as they are specific to individual courses
and are associated with a program, PLOs, and
performance levels. The results showed fair
agreement between faculty members, with k = 0.341
and k 0.38, for PLOs and level mapping,
respectively. This result indicates that faculty might
have different perspectives or interpretations of the
questions, which makes reliable mapping of the
questions a challenging task.

5. Results and discussion

We  conducted cross-validation for the
combination of single models (i.e.,, SVC, LR, and RF)
and data representations (i.e,, BERT, GloVe, and TF-
IDF), and whether random oversampling was
applied. In addition to the joint classifier results,
Table 4 presents a comparison of the best

“Performance Level” classifiers for each of the data
representations, both with and without
oversampling. Fig. 4 shows the evaluation of the
prediction accuracy across the validation and test
sets. The TF-IDF-SVC model achieved the highest
performance without oversampling, yielding a test
set result of 0.68 accuracy. The impact of
oversampling varied, producing classification
accuracies that were 15% and 8% lower for
BERTSVC and TF-IDF-LR, respectively, and a 2%
increase for GLOVE-SVC.

Cross-validation was similarly performed to
identify the best combination of PLO single machine-
learning classifiers with data representations,
including the application of random oversampling.
Fig. 5 shows the validation and test classification
accuracies achieved by the top models. Table 5
presents the test results for the joint and single
models.

Overall, for all classifiers and evaluation metrics,
the results of the PLO classification were at least
13% lower than the “performance level” predictions.
This difference is expected because PLO involves six
labels, whereas the levels have only three labels.
Furthermore, the TF-IDF-SVC approach, without the
use of oversampling, delivered optimal performance
in every metric with an accuracy of 0.55% and an F-
score of 0.51%. Random sampling continues to yield
inconsistent outcomes, showing increased f-scores
for BERT-SVC and GLOVE-SVC but reduced accuracy
and f-score for TF-IDF-SVC.

Accuracy of Question Level Prediction

0
BERT-SVC

(Yes)
0.58
0.44

BERT-SVC
(No)

0.58
0.59

B Validation Accuracy

B Test Accuracy

(Yes)
0.61
0.63

GLOVE-sVC

GLOVE-LR
(No)

0.64
0.61

TF-IDF-LR
(Yes)
0.66
0.6

TF-IDF-SVC
(No)

0.65
0.68

Joint Model
(No)

0.68
0.54

Fig. 4: Validation and test accuracy for question-level prediction

Table 4: Test results for question performance level prediction

Model Oversampling Accuracy Precision Recall Fl-score

Yes 0.44 0.45 0.44 0.43
BERT-SVC No 0.59 0.60 0.59 0.58

Yes 0.63 0.63 0.63 0.62
GLOVE-SVC No 0.61 0.61 0.61 0.61
TF-IDF-LR Yes 0.60 0.60 0.60 0.60
TF-IDF-SVC No 0.68 0.68 0.68 0.68
Joint model No 0.54 0.54 0.54 0.53

The superior performance of the TF-IDF and SVM
models compared to that of the BERT-based model
could be attributed to the small size of the training
data. Support Vector Machines are recognized for

150

requiring only a few instances to identify the
maximum-margin hyperplane that is essential for
classification tasks (Moguerza and Muiioz, 2006).
However, fine-tuning a BERT model requires a large
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task-specific dataset to effectively modify its
parameters. Therefore, it is recommended that this
dataset be expanded in future studies to evaluate
this hypothesis. To further understand the
performance of TF-IDF-SVC without the use of
oversampling, Tables 6 and 7 show a breakdown of
the precision, recall, and f-score for each PLO and

performance-level label. The model performed well
for some PLO classes (e.g, Class 3) but struggled
with others, especially those with low support
(Classes 2 and 5). All three level classes have similar
F1l-scores (0.65-0.70), indicating fairly consistent
performance across the board.

Table 5: Test results for PLO prediction

Data representation Oversampling Accuracy Precision Recall F1-score
BERT-SVC Yes 0.41 0.37 0.41 0.39
BERT-LR No 0.41 0.38 0.41 0.37

GLOVE-SVC Yes 0.49 0.46 0.49 0.47
GLOVE-SVC No 0.49 0.41 0.49 0.41
TF-IDF-SVC Yes 0.53 0.48 0.53 0.50
TF-IDF-SVC No 0.55 0.50 0.55 0.51
Joint model No 0.44 0.30 0.44 0.35

Accuracy of PLO Predictions

0.6

o
e

)

BERT-SVC BERT-LR GLOVE-SVC
(Yes) (No) (Yes)
B Validation Accuracy 0.45 0.45 0.44
B Test Accuracy 0.41 0.41 0.49

GLOVE-SVC = TF-IDF-SVC = TF-IDF-SVC = Joint Model
(No) (Yes) (No) (No)
0.45 0.52 0.53 0.46
0.49 0.53 0.55 0.44

Fig. 5: Cross-validation and test accuracy for PLO prediction

The performance of faculty members’ PLOs and
level mappings was compared with the ground truth
labels of the test set (the ground truth refers to the
given labels in the collected dataset). As shown in
Table 8, the results illustrate that on average, faculty
members performed at an accuracy level of 0.42 and
0.57 for PLO and Level mapping, respectively, with
moderate precision and recall scores. It can be seen

from the result that there are differences in the
faculty performance, which highlights the variability
in how they interpreted the mapping task.
Interestingly, faculty members 2 and 3 demonstrated
higher accuracy than faculty member 1, which could
be attributed to their extensive teaching experience
within the program.

Table 6: Classification report for PLO predictions

Question’s PLO label Precision Recall F1-score Support
0 0.38 0.33 0.35 9
1 0.48 0.74 0.58 19
2 0.00 0.00 0.00 7
3 0.69 0.79 0.73 28
4 0.63 0.38 0.48 13
5 0.00 0.00 0.00 4
Table 7: Classification report for performance level predictions
Question’s Level Precision Recall Fl-score Support
0 0.63 0.76 0.69 25
1 0.79 0.63 0.70 24
2 0.65 0.65 0.65 31
Table 8: Faculty members’ mapping results compared with the ground truth labels
Faculty Accuracy Precision Recall F1-Score
PLOs
1 0.33 0.36 0.33 0.34
2 0.48 0.49 0.48 0.48
3 0.45 0.49 0.45 0.44
Average 0.42 0.45 0.42 0.42
Levels
1 0.53 0.53 0.53 0.52
2 0.60 0.64 0.60 0.60
3 0.60 0.60 0.60 0.60
Average 0.57 0.59 0.57 0.57
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These findings indicate that question-mapping is
difficult for faculty members. Improving mapping
guidelines and providing additional training could
lead to more accurate and consistent results for
faculty members. Comparing the human evaluation
results in Table 8 with the best model predictions
(Figs. 3 and 4), it is clear that the model predictions
outperform human predictions by 12% and 10% for
PLOs and Levels, respectively. This suggests that,
while the task is quite difficult for humans, a
machine learning model might offer a more reliable
and efficient solution, highlighting the need to
automate the question-mapping task. The superior
performance of ML models compared to that of
human experts implies that most labels adhere to a
consistent pattern. The model is likely to be
identified and generalized from this dominant
pattern, possibly ignoring anomalies and noise. The
model may have accurately captured the decision-
making processes used by course instructors when
labelling questions.

6. Conclusion

This study examines the effectiveness of machine
learning techniques for mapping exam questions to
program learning outcomes and associated
performance levels. We evaluated multiple machine
learning algorithms across three different feature
representations alongside a deep learning-based
joint model. To ensure robust evaluation, we
performed extensive cross-validation experiments to
optimize the hyperparameters both with and
without oversampling. The Support Vector Machine
using TF-IDF features without oversampling
achieved the highest accuracy in predicting both
PLOs and performance levels. We then compared the
model’s predictions with those of human evaluators
and found that the model consistently outperformed
human judgments, highlighting the significant
potential of Al-powered tools for enhancing quality
assurance in educational systems.

List of abbreviations

Accreditation Board for Engineering and

ABET Technology
Al Artificial intelligence
Bidirectional Encoder Representations from
BERT
Transformers
CLO Course learning outcome
CLOs Course learning outcomes
DL Deep learning
EMNLP Empiric.al Methods in Natural Language
Processing
GloVe Global Vectors for word representation
LR Logistic regression
LSTM Long short-term memory
ML Machine learning
National Commission for Academic
NCAAA Accreditation and Assessment
NLP Natural language processing
PLO Program learning outcome
RF Random forest

152

Southern Association of Colleges and Schools

SACSCOC -
Commission on Colleges

STEM Science, te'chnology, engineering, and
mathematics

SVM Support vector machine

Svc Support vector classifier

TF-IDF Term frequency-inverse document frequency
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