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Early detection of garlic diseases is essential for improving agricultural
quality and productivity. This study presents a novel garlic disease
identification model based on near-infrared (NIR) spectroscopy and a
convolutional neural network, named ST-1DResNet (One-dimensional
Residual Networks with Squeeze-and-Excitation and tanh activation). The
model overcomes the vanishing gradient problem, adaptively adjusts channel
weights, and efficiently extracts spectral features without requiring
preprocessing or manual feature extraction. Experimental results show that
ST-1DResNet achieves a classification accuracy of 97.75%, outperforming the
original ResNet and four classical deep learning models by an average of
6.40%. Compared with traditional machine learning methods and optimized
SVM models, it improves accuracy by 11.63% and 2.67%, respectively. The
model is compact, computationally efficient, and supports fast training,
making it suitable for deployment in resource-limited environments. Its
strong generalization performance, validated using an external mango
dataset, highlights its scalability. Overall, ST-1DResNet provides a practical,
accurate, and non-destructive approach for crop disease detection,
contributing to quality control and intelligent diagnosis in modern
agriculture.

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

as characteristic symptoms initially appearing at the
pseudo stem base and bulb. The infection process

Garlic is not only a common seasoning that
imparts a distinctive flavor to food but also
possesses various pharmacological effects, including
antibacterial, antiviral, antitumor, and hypoglycemic
properties (Tudu et al, 2022). However, during its
growth cycle, garlic is highly susceptible to diseases
that severely impact both yield and quality, resulting
in significant economic losses for farmers (Anum et
al., 2024). Garlic cultivation was frequently affected
by several pathogenic diseases, including root rot,
leaf blight, gray leaf spot, purple spot, and
phytophthora (Dedecan et al, 2022). These
phytopathogens primarily infected and damaged the
foliage, pseudo stems, and bulbs of garlic, ultimately
compromising plant growth and significantly
reducing crop yield. Specifically, root rot manifested
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began with water-soaked lesions that progressively
darkened, developed necrotic ulcerations, and
eventually led to tissue maceration (Galvez and
Palmero, 2021). Disease progression typically
resulted in complete bulb rot under favorable
environmental conditions. Leaf blight primarily
infected the foliar tissues and floral stalks of garlic
plants. Initial symptoms appeared as small, white
necrotic lesions that subsequently expanded into
elongated, stripe-like patterns or developed
characteristic purple-hued spots (Sharifi et al,
2021). Similarly, purple spot disease predominantly
affected leaves and floral stalks. Early-stage
infections presented as slightly depressed, whitish
lesions with distinct purple pigmentation at the
center. As the disease progressed, these lesions
enlarged into fusiform (spindle-shaped) necrotic
areas with defined margins. Phytophthora primarily
affected garlic foliar tissues, with initial infection
typically manifesting as chlorotic (yellow-white)
water-soaked lesions at either leaf tips or mid-leaf
regions (Anum et al, 2024). These symptomatic
areas progressively expanded, leading to extensive
necrotic foliar damage. The pathological impact of
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these garlic diseases was economically significant,
causing substantial reductions in both crop yield.
Such losses directly compromised grower
profitability, particularly in intensive cultivation
systems where disease pressure was high (Workneh
etal, 2024).

Surveys have shown that disease-related losses
typically account for 10%-20% of garlic production,
with losses exceeding 30% or even higher in
particularly severe years and regions. Garlic leaf
blight represented the most destructive foliar
disease in garlic cultivation (Zewde et al, 2007).
Epidemiological studies demonstrated that severe
outbreaks typically resulted in 20-30% yield
reduction when control measures were delayed (Cui
et al,, 2024). In cases of acute infection, the pathogen
frequently induced premature plant senescence and
garlic scape rot, leading to significant production
losses that directly impacted grower profitability.
Garlic root rot in mildly affected areas generally
reduced yields by 20% to 30%, whereas in regions
with approximately 10 years of continuous garlic
cultivation, yield losses exceeded 30%. These
pathological effects brought serious economic losses
to garlic farmers (Shagun et al,, 2024). Therefore, the
ability to rapidly and accurately identify garlic
diseases at an early stage is crucial for implementing
timely control measures, minimizing damage, and
ensuring the sustainable development of the garlic
industry (Vijaykumar et al., 2023).

In the early stages of infection, symptomatic
manifestations in garlic plants are often subtle,
making it difficult for traditional machine vision
systems to achieve effective recognition. Moreover,
manual disease identification by non-specialists
tends to suffer from low accuracy and is constrained
by high labor intensity and low efficiency.
Accordingly, it becomes crucial to develop a
straightforward, non-damaging, and efficient
technique for detecting garlic diseases in their initial
stages.

In recent years, NIRS has been widely applied in
crop variety identification (Feng et al., 2021). For
instance, Sen et al. (2024) employed a characteristic
wavelength selection method based on adaptive
sliding window permutation entropy (ASW-PE)
combined with various classification models to
classify rice samples, achieving an accuracy rate of
95%. Similarly, Shao et al. (2017) utilized NIR
spectroscopy in  combination with  Linear
Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), and Support Vector Machine (SVM)
to classify papaya samples, reaching classification
accuracies of 94%, 96%, and 98%, respectively. Zhai
et al. (2024) used the Competitive Adaptive
Reweighted Sampling (CARS) algorithm to select
characteristic wavelengths and applied Least-
Squares Support Vector Machine (LS-SVM) modeling
to classify rice samples from different growth stages,
achieving a correct classification rate of 91.67%.

To enhance the predictive capability of models
when dealing with uncertain samples, current
research primarily focuses on reducing data
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dimensions, feature extraction, and data modeling
techniques (Liu et al, 2024). While conventional
chemometric techniques have been widely applied in
NIRS analysis, they continue to encounter significant
obstacles and constraints (Zou et al.,, 2025). These
include complex operational procedures, insufficient
model robustness, and an inability to fully meet the
growing demand for high-accuracy and intelligent
early disease detection.

Deep learning technologies, by contrast,
eliminate the need for complex data preprocessing
and feature extraction, allowing models to be trained
directly on raw data (Chen et al, 2024). Deep
learning approaches have been successfully applied
across a wide range of fields, including natural
language processing (Yeboah and Baz Musah, 2022),
image processing (Archana and Jeevaraj, 2024),
intelligent manufacturing (Neupane et al., 2021), and
signal identification (Tian et al., 2022). Researchers
have also explored the integration of deep learning
techniques with NIRS analysis for rapid plant disease

identification. For example, Feng et al. (2024)
proposed a model combining deformable
convolution and dilated convolution neural

networks to detect Asian soybean rust, achieving an
overall accuracy of 96.73%. Ong et al. (2025)
integrated convolutional neural networks with
continuous wavelet transform (CWT) spectrograms
and demonstrated that the Random Forest (RF)
model incorporating spectral derivative features
achieved the best performance in sugarcane disease
identification, with an accuracy of 94.87%.
Therefore, the combination of convolutional neural
networks (CNN) with spectral analysis techniques
has proven effective in improving the accuracy and
efficiency of plant disease recognition while reducing
manual intervention and associated costs.

At present, there are very few studies on the use
of NIRS combined with CNN for the identification of
garlic diseases. NIR spectral data are rich in chemical
and physical information, and compared with two-
dimensional image data, NIR datasets are more
lightweight and require less computational
resources (Shen et al, 2025). Hyperspectral image
data demonstrated superior capability for substance
characterization compared to conventional two-
dimensional RGB images, as the acquired spectral
signatures contained significantly more biochemical
information. This enhanced data dimensionality
enabled more accurate substance identification and
classification, since different materials exhibited
unique spectral fingerprints across the measured
wavelength range. Hence, employing an improved
one-dimensional CNN model to classify and detect
garlic based on NIR spectral data is both feasible and
advantageous.

2. Materials and methods
2.1. Data collection

Garlic samples were collected from the garlic
planting base in Da’an Town, Lufeng City, Guangdong
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Province, including 12 healthy plants, and plants
infected with root rot (5 plants), leaf blight (10
plants), phytophthora (10 plants), gray leaf spot (8

Root rot

Py hthora

plants), and purple spot (9 plants), totaling 54 garlic
samples. Fig. 1 shows the RGB images of various
early-stage garlic diseases taken at the planting base.

\

Gray leaf spot

Puple spot

Fig. 1: Images of different garlic diseases

To collect the infrared spectral data of garlic, we
employed a hyperspectral image acquisition system
consisting of a near-infrared hyperspectral camera
(GaiaSky mini, Dualix, Sichuan, China) and a specially
designed dark chamber, as illustrated in Fig. 2. The
hyperspectral camera was fixed at the top of the
dark chamber, covering a spectral range from 386.7
nm to 1,016.7 nm, with an image resolution of 696 x
700 pixels. Inside the dark chamber, a customized
scanning platform and a lighting system composed of
four 50W tungsten-halogen lamps were installed,
with the light sources positioned at a 45-degree
angle relative to the sample. During the spectral
acquisition process, garlic samples were placed flat
on the lifting platform, and data were collected using
diffuse reflectance. The exposure time was set to
9.98 ms, and the scanning speed was set to 0.8

mm/s. Fig. 3 presents the hyperspectral images of
garlic samples affected by different diseases.

A total of 591 near-infrared spectral data points
were collected from different positions of leaves
from the 54 garlic samples. The original spectral data
are shown in Fig. 4. Table 1 summarizes the
distribution of sample numbers and spectral data
across different garlic disease categories.

Table 1: Distribution of sample numbers and spectral data
by garlic disease category

Garlic category Number of Number of spectral
samples variables

Healthy 97 256
Root rot 84 256
Gray leaf spot 102 256
Leaf blight 102 256
Phytophthora 102 256
Purple spot 104 256

®

(D): Hyperspectral camera; (2): Light source; (3): Computer; (4): Scanning platform
Fig. 2: Hyperspectral image acquisition system

l

Leaf blight

Root rot

2.2. Garlic disease identification model based on
improved ResNet

The objective of this research is to accomplish
swift and precise detection of garlic diseases through
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Phytophthora
Fig. 3: Hyperspectral images of different garlic diseases

Purple spot

Gray leaf spot

the establishment of six deep learning models: VGG,
ResNet, Xception, MobileNet, DenseNet, and a model
named ST-1DResNet, which incorporates a channel
attention mechanism. The structure of the ST-
1DResNet model is shown in Fig. 5.
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Fig. 5: Structure of the ST-1DResNet model

2.2.1. Deep learning models

CNN is a common type of deep learning model,
mainly employed for tasks in computer vision like
object recognition, image recognition, and
classification (Zhang et al, 2024). The essence of
CNN lies in utilizing convolutional layers to extract
features, employing pooling layers to decrease data
dimensions and condense information, and
ultimately accomplishing image classification or
regression via fully connected layers (Muhammad et
al.,, 2022).

One-dimensional convolution, or 1D convolution,
primarily handles one-dimensional data streams or
sequences, with both the input and the convolutional
kernel being one-dimensional. By sliding the
convolution kernel along the input data and
performing element-wise  multiplication and
summation operations, 1D convolution computes a
single output value, thus capturing local features in
the sequential data (Ma et al.,, 2023).

In contrast, two-dimensional convolution is
mostly utilized for handling two-dimensional data
like images. In this case, the convolution kernel is a
two-dimensional matrix that slides over each local
region of the input data, performing element-wise
multiplication and summation operations to
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generate a single output value (Promboonruang and
Boonrod, 2023). 2D convolution effectively captures
spatial features in images, such as edges and
textures.

The VGG network, proposed by the Visual
Geometry Group at the University of Oxford in 2014
(Simonyan and Zisserman, 2014), is a deep
convolutional neural network  architecture
characterized by the use of small-sized convolution
kernels and a deeper network structure. This design
significantly enhances the model’s ability to extract
image features and improves its capability to fit
complex patterns by increasing network depth.

ResNet, proposed by He et al. (2016) at Microsoft
Research in 2015, is a deep convolutional neural
network architecture. In traditional CNN, as network
depth increases, the training process often becomes
complex and difficult to optimize due to vanishing or
exploding gradients. However, ResNet effectively
addresses this problem by introducing skip
connections (also called shortcut connections)
within residual blocks. This design allows gradients
to bypass multiple layers, significantly improving the
training efficiency and stability of deep networks,
thereby enabling more efficient learning and
optimization. Xception, inspired by the Inception
architecture, is a deep convolutional neural network
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proposed by Google in 2017, Deep Learning with
Depthwise Separable Convolutions (Chollet, 2017).
Its core innovation lies in replacing Inception
modules with depthwise separable convolutions,
thereby improving model performance without
significantly increasing computational complexity.

MobileNet, proposed by Google in 2017, is a
lightweight convolutional neural network
architecture (Howard et al, 2017) designed for
mobile and embedded devices. Its key innovation is
the  introduction of depthwise separable
convolutions, which break down traditional
convolution operations into two steps: Depthwise
convolution and pointwise convolution. This design
significantly reduces the number of parameters and
computational complexity while maintaining high
accuracy.

DenseNet, introduced by the Google Brain team
in 2016 (Huang et al, 2017), is a deep learning
architecture aimed at addressing the information
flow and vanishing gradient problem in traditional
CNN. DenseNet's core idea is dense connectivity,
where each layer is connected to every other
preceding layer. This approach maximizes the use of
features extracted by earlier layers, enhances feature
propagation, mitigates vanishing gradient problems,
and promotes feature reuse.

2.2.2. Squeeze-and-excitation module

In deep learning, CNN typically extract features
through convolution operations, but this process
often mixes spatial and channel information, leading
to insufficient ~modeling of inter-channel
relationships. To address this, the Squeeze-and-
Excitation (SE) module was proposed (Hu et al,
2018), aiming to  explicitly model the
interdependencies among feature channels.

The core idea of the SE module is to dynamically
recalibrate channel-wise feature responses by
learning the importance of each channel. Specifically,
the SE module comprises three main steps: Squeeze,
Excitation, and Scale.

e Squeeze: Global average pooling compresses the
spatial information of each channel into a single
scalar, capturing global context.

e Excitation: Two fully connected layers and non-
linear activation functions (ReLU and Sigmoid) are
used to generate channel-wise weights that reflect
each channel’s importance.

e Scale: The generated weights are applied to the
original feature maps to emphasize important
features and suppress less useful ones.

Essentially, the SE module implements an
attention mechanism along the channel dimension,
enabling the model to focus more effectively on
significant feature channels. The structure of the SE
attention mechanism is illustrated in Fig. 6.

2.2.3. Tanh activation function

Tanh (Hyperbolic Tangent Function) is a
commonly used activation function (Li and Ni, 2024),
with a domain of R and an output range of (-1, 1). Its
output is centered around =zero, which helps
accelerate neural network training by ensuring more
balanced gradient updates, thereby alleviating the
vanishing gradient problem. As a non-linear
function, Tanh enables neural networks to learn
complex features and patterns. Its mathematical
expression is shown in Eq. 1:

eX—e™*
eX+e™*

Tanh (x) =

1)
2.3. Model evaluation metrics

In machine learning and deep learning, model
recognition accuracy is typically evaluated using
metrics such as accuracy, precision, recall, F1 score,
and the kappa coefficient. By analyzing changes in
these metrics, corresponding model optimization
strategies can be adjusted. These standards help
assess model performance, identify problems, and
facilitate performance improvement.

Excitation

— [

= -
ST e

Scale

1*1*C

Feature maps
1*H*C

N
'@‘D

Feature maps
1*H*C

Fig. 6: Structure of the SE attention mechanism

Accuracy (Ninh et al., 2024) is a metric used to
measure model performance, which is calculated by
dividing the number of correct predictions by the
total number of samples. The calculation equation
for Accuracy is as follows:
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TP+TN

Accuracy = —
Y = TP TN+FP+FN

(2)

Precision (Liu et al, 2025) measures the
proportion of true positive predictions among all
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positive predictions, reflecting the model’s accuracy
in positive predictions.

Recall (Chouhan et al, 2024) refers to the
proportion of all actual positives that were classified
correctly as positives, reflecting the model’s ability
to identify positive samples.

F1 score (Chouhan et al., 2024) is the harmonic
mean of Precision and Recall, providing a balance
between the two metrics.

The kappa coefficient (Martin Andrés and Alvarez
Hernandez, 2025) is wused to evaluate the
performance of a classification model by considering
the effect of random chance, reflecting the difference
between the model’s classification results and
results expected by random chance.

The calculation formulas for Precision, Recall, F1
score, and kappa are shown in Egs. 3, 4, 5, and 6:

TP

Precision = 3
TI;’FP+FP

Recall = TPIFN ) (4)

2xrecallxprecision
F1 score = 2 XPTecision 5
recall+precision

Kappa — Po—Pe (6)

1-pe

In the aforementioned formulas:

o TP (True Positive) refers to the number of actual
positive samples correctly predicted as positive;

e FN (False Negative) refers to the number of actual
positive samples incorrectly predicted as negative;

e TN (True Negative) refers to the number of actual
negative samples correctly predicted as negative;

o FP (False Positive) refers to the number of actual
negative samples incorrectly predicted as positive;

Here, p, corresponds to the proportion of
observed agreement, while p, indicates the expected
chance of agreement.

3. Results

All experimental results presented below were
obtained under the Windows 11 operating system,
using a CPU of i5-12600KF and a GPU of NVIDIA
GeForce 4060Ti 16G. The code for constructing and
optimizing all models was run in the PyTorch 1.13.1
environment, with Python version 3.8.

3.1. Analysis of machine learning optimization
models

In this section, three optimization algorithms
were implemented: GA-SVM, PSO-SVM, and CFOA-
SVM. To accurately compare the classification
performance of each optimization algorithm, widely-
applied machine learning classification models were
chosen for performance comparison. These models
include Support Vector Machine (SVM), Random
Forest (RF), K-Nearest Neighbors (KNN), Decision
Tree (DT), and Multilayer Perceptron (MLP). The
classification performance was evaluated using
metrics such as accuracy, precision, recall, F1 score,
kappa, and the confusion matrix. The confusion
matrix was primarily used to compare the objective
results against the actual categories. The validation
methods all use ten-fold cross-validation. The
performance metrics and confusion matrices for
SVM, RF, KNN, DT, GA-SVM, PSO-SVM, and CFOA-
SVM were calculated and are presented in Table 2
and Fig. 7.

From the result statistics in Table 2, it could be
observed that during the establishment of the SVM
model for garlic disease classification, the CFOA-SVM
model achieved the highest classification accuracy of
95.63%. Under identical test samples and search
conditions, the CFOA algorithm demonstrated faster
and more optimized performance in identifying
SVM's two key parameters. Consequently, the CFOA-
SVM model significantly outperformed both GA-SVM
and PSO-SVM in garlic disease identification.
According to the confusion matrix results, the CFOA-
SVM model achieved a 100% correct recognition rate
for root rot and purple spot, while the accuracy for
all other categories exceeded 87%. Specifically,
3.23% of gray leaf spot samples were misclassified
as leaf blight, 9.68% and 3.23% of leaf blight samples
were misclassified as Phytophthora and purple spot,
respectively, 3.12% of purple spot samples were
misclassified as leaf blight, and 3.85% of root rot
samples were not correctly identified. The primary
reason for this misclassification lies in the highly
similar  near-infrared spectral data, where
differences in the chemical composition and physical
characteristics of garlic samples are not sufficiently
distinct.

Table 2: Comparison of prediction results for machine learning models

Methods Accuracy (%) Precision (%) Recall (%) F1 score (%) Kappa (%)
SVM 86.41 84.34 82.80 82.49 78.86
RF 89.51 90.44 89.79 89.63 87.39
KNN 87.84 88.88 88.22 87.95 85.39
DT 71.90 73.42 72.59 72.34 66.26
MLP 94.96 95.00 94.96 94.95 93.94
GA-SVM 95.03 95.15 95.04 95.03 94.03
PSO-SVM 94.59 94.76 94.70 94.70 93.51
CFOA-SVM 95.63 95.75 95.63 95.63 94.53

To further improve the precision and stability of
garlic disease classification, we proposed a deep
learning model, ST-1DResNet, which leverages the
powerful feature extraction capabilities of CNN to
capture subtler features within the near-infrared
spectral data of garlic samples.
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3.2. Analysis of deep learning optimization
models

To avoid potential category imbalance problems,
the synthetic minority oversampling technique
(SMOTE) method was employed to balance the
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category distributions before training, preventing
model bias from imbalanced classes. This research
utilized the widely adopted categorical cross-
entropy (CCE) loss function to assess the
discrepancy between predicted and actual outcomes.

The formula for the cross-entropy loss function is
given in Eq. 7:

Loss = <ML = =< ZM M yiclog(pic) (7)
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During training, the Adam optimizer is utilized
for model optimization, with a learning rate of 0.001,
a batch size of 16, and 100 iterations. Fig. 8
illustrates the changes in loss and accuracy for both
the ResNet model and its enhanced ST-1DResNet
model on the validation set throughout the training
process. With the increase in iterations, the loss of
the ST-1DResNet model gradually decreases.
Notably, the loss exhibits a rapid decline within the
first 40 iterations, after which it stabilizes and
approaches zero. Compared to the ResNet model, the
ST-1DResNet model demonstrates lower loss,
reduced volatility, and more stable convergence.

To assess the performance of the garlic disease
identification model on the test set, the results of the
original and enhanced models were compared
during testing. Fig. 9 presents the confusion matrices
of the models, which assess classification
performance and illustrate the relationship between
predicted and actual results for each category in
matrix form. In these matrices, the blue diagonal
represents correctly classified results, while all other
cells indicate misclassifications. The deeper the
color, the better the classification performance of the

categories exhibited varying degrees of confusion.
Specifically, 3.7% of healthy samples were
misclassified as root rot; 10.34% of leaf blight
samples were misclassified as phytophthora; and
6.06%, 3.03%, and 6.06% of phytophthora samples
were misclassified as leaf blight, purple spot, and
gray leaf spot, respectively. Additionally, 2.7% of
purple spot samples were misclassified as gray leaf
spot, and 5.88% of gray leaf spot samples were
misclassified as phytophthora.

In contrast, in the ST-1DResNet model, the
classifications of root rot, leaf blight, and purple spot
achieved 100% accuracy. However, 3.7% of healthy
samples were still misclassified as root rot, and
3.03% of Phytophthora samples were misclassified
as leaf blight. Furthermore, 2.94% and another
2.94% of gray leaf spot samples were misclassified
as leaf blight and phytophthora, respectively. The
primary reason for these misclassifications is that
leaf blight, phytophthora, and gray leaf spot share
highly similar spectral characteristics, making them
harder to distinguish.

Compared to the original model, the ST-1DResNet
model captures the spectral features of garlic

model. In the ResNet model, the classification of root diseases in greater detail, thus improving
rot was completely accurate, but the other five classification accuracy.
100 -
1.4
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ResNet 124\ ——ST-1DResNet
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g
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Fig. 8: Accuracy and loss curves of ResNet and ST-1DResNet
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Fig. 9: Comparison of confusion matrices between ResNet and ST-1DResNet
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4. Discussion
4.1. Analysis of model testing results

To further evaluate the performance of the
proposed ST-1DResNet model, a comparison was
made with the aforementioned machine learning
models and their optimized versions. The
comparison results are shown in Table 3. As can be
seen from Table 3, the ST-1DResNet model achieved
an accuracy of 97.75%, which outperformed all other
machine learning models. In addition to accuracy,
ST-1DResNet also achieved the highest values in
precision, recall, f1 score, and kappa coefficient
among all models.

These experimental results demonstrate that the
ST-1DResNet model not only delivers higher
prediction accuracy for garlic disease identification
compared to traditional machine learning models
but also exhibits superior robustness and reliability.

To test the performance of the attention
mechanism and activation function within our
proposed ST-1DResNet model, we performed
comparative studies against various other deep
learning models. The models used for comparison
include VGG, ResNet, Xception, MobileNet, DenseNet,

and ST-1DResNet. The classification results are
shown in Table 4. Table 4 presents the classification
prediction results and model complexity evaluations
for various deep learning models. It can be seen that
the attention mechanism-based ST-1DResNet model
achieves an accuracy of 97.75%, which markedly
surpasses the outcomes achieved with conventional
machine learning and deep learning approaches
discussed previously. This improvement is
attributed to the Tanh activation function used in the
residual connections, which enhances the model’s
stability and progressively amplifies feature effects
during training. Additionally, the channel attention
module concentrates on significant feature details,
thereby improving the model’s prediction accuracy.
Compared to other deep learning models, the ST-
1DResNet model has fewer parameters, with only
3.88M parameters, a model size of 14.79M, and
38.27M FLOPs. Although its FLOPs increase by just
6.77M compared to MobileNet, its accuracy improves
by 5.05%. Moreover, the ST-1DResNet model’s
training time is significantly shorter than that of
other deep learning models, requiring only 68.71
seconds. Its testing time is just 0.08 seconds, which is
lower than that of other deep learning models.

Table 3: Comparison of prediction results between ST-1DResNet and machine learning models

Methods Accuracy (%) Precision (%) Recall (%) F1 score (%) Kappa (%)
SVM 86.41 84.34 82.80 82.49 78.86
RF 89.51 90.44 89.79 89.63 87.39
KNN 87.84 88.88 88.22 87.95 85.39
DT 71.90 73.42 72.59 72.34 66.26
MLP 94.96 95.00 94.96 94.95 93.94
GA-SVM 95.03 95.15 95.04 95.03 94.03
PSO-SVM 94.59 94.76 94.70 94.70 93.51
CFOA-SVM 95.63 95.75 95.63 95.63 94.53
ST-1DResNet 97.75 97.85 97.75 97.76 97.28
Table 4: Comparison of deep learning models’ prediction results
Methods Accuracy Precision Recall F1 score Kappa Parameters Size FLOPs Train Test time
(%) (%) (%) (%) (%) M) M) M) time (s) (s)
DenseNet 85.39 85.69 85.39 85.44 82.34 7.44 28.37 1125 423.27 0.31
VGG 93.26 93.58 93.26 93.30 91.84 11.93 45.54 176.84 79.00 0.09
Xception 92.13 92.77 92.13 92.26 90.50 21.10 80.50 142.21 119.16 0.09
MobileNet 92.70 92.72 92.70 92.64 91.16 8.68 33.10 31.50 179.91 0.12
ResNet 93.26 93.30 93.26 93.26 91.84 3.85 14.67 38.35 101.99 0.08
ST-1DResNet 97.75 97.85 97.75 97.76 97.28 3.88 14.79 38.27 68.71 0.08

To verify the effectiveness of the ST-1DResNet
model we constructed and to assess the contribution
and impact of each module on the overall
performance, we conducted ablation experiments.
The results of these experiments are shown in Table
5, where “SE” and “Tanh” refer to the SE attention
mechanism and Tanh activation function,
respectively.

According to the analysis in Table 5, the ST-
1DResNet model achieves the highest classification
accuracy. The ablation experiment results indicate
that, with a slight increase in model size, both
modules contribute to improving the model’s
generalization performance. Adding only the SE
attention mechanism increases accuracy, precision,
recall, f1 score, and kappa by 1.68%, 1.77%, 1.68%,
1.67%, and 2.04%, respectively, while reducing
training time by 9.3 seconds. After adding only the
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Tanh activation function, accuracy, precision, recall,
f1 score, and kappa increase by 3.37%, 3.41%,
3.37%, 3.37%, and 4.08%, respectively. Meanwhile,
the parameters, size, and FLOPs decrease by 0.01M,
0.01M, and 0.02M, respectively, and the training time
is reduced by 32.22 seconds.

Compared to the original ResNet model, the
combination of both modules in the ST-1DResNet
model leads to a slight increase in model size, with
parameters and size increasing by 0.03M and 0.12M,
respectively. The computational cost slightly
decreases, with FLOPs reduced by 0.08M. In terms of
time, the training time decreases by 33.28 seconds.
However, the model achieves higher accuracy, with
accuracy, precision, recall, fl score, and kappa
improving by 4.49%, 4.55%, 4.49%, 4.50%, and
5.44%, respectively. In terms of testing time, testing
the 178 sets of data took only 0.08 seconds,
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averaging 0.45 milliseconds per set, which is faster
than other deep learning models.

After optimizing the model, accuracy was
improved without an increase in testing time,
indicating that the ST-1DResNet model is suitable for
application scenarios requiring rapid and accurate
identification. Therefore, by integrating the attention
mechanism and Tanh activation function into the

ResNet model, the ST-1DResNet model achieves
higher accuracy in garlic disease identification.

In the ablation experiments, the AUC-ROC curves
before and after the model improvement are shown
in Fig. 10. In the ST-1DResNet model, the AUC score
for phytophthora is 0.9996, while the AUC scores for
healthy samples, root rot, leaf blight, purple spot,
and gray leaf spot all reach 1.0, indicating the
excellent performance of the model.

Table 5: Ablation experiment results

SE Tanh Accuracy Precision Recall F1 score Kappa Parameters Size FLOPs Train Test
(%) (%) (%) (%) (%) () () M) time (s)  time (s)
93.26 93.30 93.26 93.26 91.84 3.85 14.67 38.35 101.99 0.08
94.94 95.07 94.94 94.93 93.88 3.88 14.80 38.39 92.69 0.08
v 96.63 96.71 96.63 96.63 95.92 3.84 14.66 38.23 69.77 0.08
v v 97.75 97.85 97.75 97.76 97.28 3.88 14.79 38.27 68.71 0.08
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0.8 0.8
2 2
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-g 0.6 -g 0.6
3 3
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Fig. 10: AUC-ROC curves for ResNet and ST-1DResNet

4.2. SHAP interpretability for visualizing feature
contributions

SHAP (SHapley Additive exPlanations) values
serve as a powerful model interpretation tool,
providing new perspectives for understanding and
trusting machine learning models (Lundberg and
Lee, 2017). The SHAP value is a cooperative game
theory-based method for interpreting feature
contributions to model outputs. By revealing the
decision logic within models, it enhances their
transparency and credibility. In this study, we
employed the SHAP method to analyze and visualize
spectral regions critical for model predictions. The
SHAP summary plot (global importance), feature
importance ranking, and waterfall plot were
generated using the top 20 most significant features
selected from 256 spectral bands, ordered by SHAP
value importance. These results highlighted the key
spectral regions prioritized by the model, as
illustrated in Fig. 11 and Fig. 12.

With Fig. 11, it could be observed that the
features located at the top of the graph exerted a
greater influence on the model predictions,
indicating that these features played a key role in
predicting garlic disease categories. Taking the 892.9
nm band in Fig. 11a as an example, the red dots were
predominantly distributed in the region of positive
SHAP values, which suggested that higher
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reflectance values at 892.9 nm tended to classify
garlic samples as healthy, while lower values tended
to associate them with diseased categories. Among
the remaining 19 feature bands, blue (low values)
and red (high values) regions differentially affected
positive and negative SHAP values, implying that
these features also significantly contributed to the
classification behavior. Fig. 11 revealed that 36
features primarily influenced the model predictions,
with seven co-occurring key features: 892.9 nm,
890.3 nm, 895.5 nm, 859.2 nm, 924.1 nm, 903.3 nm,
and 854.1 nm. Fig. 12 displayed the top 20 important
bands ranked by SHAP value importance. SHAP
values served as a powerful interpretative tool,
quantifying feature contributions to enhance the
transparency of the ST-1DResNet model predictions.

4.3. Generalization experiment

To verify the generalization ability of the model
proposed in this paper, we used the mango dataset
for validation. This dataset comes from the paper by
Anderson et al. (2020). The dataset includes ten
different mango varieties, such as Calypso, HG, and
Keitt, with a total of 12,011 data points. The original
spectral data of the mango dataset are shown in Fig.
13. The validation experiment results are shown in
Table 6.
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Table 6: Mango dataset validation experiment results
SE Tanh Accuracy (%) Precision (%) Recall (%) F1 score (%) Kappa (%)
93.73 94.51 93.73 93.63 92.34
v 94.03 94.23 94.03 93.68 92.69
Vv 95.17 95.60 95.17 95.25 94.11
v v 97.84 97.87 97.84 97.83 97.35

As shown in Table 6, the accuracy of the ST-
1DResNet model is 97.84%, which is a 4.11%
improvement over the ResNet model before
optimization, thus validating the generalization
ability of the model.

In summary, the ST-1DResNet model, based on
the attention mechanism and infrared spectroscopy
technology, yields better experimental results. The
model achieves an accuracy of 97.75%, precision of
97.85%, recall of 97.75%, f1 score of 97.76%, and
kappa coefficient of 97.28%, outperforming the
results obtained by traditional machine learning and
deep learning models. In contrast to traditional deep
learning models, the model constructed in this paper
allows the attention mechanism to focus on relevant
feature information while suppressing unrelated
features by calculating attention parameters. This
enhances the extraction of spectral features from
garlicc, while the Tanh function improves the
efficiency of weight updates, solving the vanishing
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gradient problem, and achieving more accurate
experimental results in prediction and classification.

In conclusion, the model proposed in this paper
demonstrates better performance in feature
extraction and application, leading to significant
improvements across all performance evaluation
metrics. This model can be applied in fields such as
garlic  disease  identification @ and  variety
classification, providing an effective reference value
for research in these areas.

5. Conclusion

This paper proposes a garlic disease
identification model based on the attention
mechanism and NIRS. The combination of NIRS and
deep learning methods provides a rapid and efficient
approach for the non-destructive detection of garlic
diseases, demonstrating its feasibility for the quick
identification of garlic diseases. To validate the
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effectiveness of the algorithm, we wused garlic
samples affected by different diseases as the
research objects and conducted comparative
experiments with several classic deep learning
models.

The experimental results show that the model
proposed in this paper outperforms the others in
terms of performance. This method provides a new,
effective, accurate, and non-destructive approach for
the identification of plant diseases in agriculture. The
model demonstrates good generalization ability and
is applicable in many fields. It is not only suitable for
garlic disease recognition but also applicable to
disease detection in other crops. This contributes to
improving the quality control and production
efficiency of agricultural products and has a positive
impact on the promotion of rapid, non-destructive
disease detection technology for crops.
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1DResNet One-dimensional residual networks

AUC Area under the curve
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CFOA Chaotic fruit fly optimization algorithm

CNN Convolutional neural network

CPU Central processing unit
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FLOPs Floating point operations
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FP False positive

GA-SVM Genet.ic algorithm-support vector
machine
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LS-SVM Least-squares support vector machine

MLP Multilayer perceptron
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