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Early detection of garlic diseases is essential for improving agricultural 
quality and productivity. This study presents a novel garlic disease 
identification model based on near-infrared (NIR) spectroscopy and a 
convolutional neural network, named ST-1DResNet (One-dimensional 
Residual Networks with Squeeze-and-Excitation and tanh activation). The 
model overcomes the vanishing gradient problem, adaptively adjusts channel 
weights, and efficiently extracts spectral features without requiring 
preprocessing or manual feature extraction. Experimental results show that 
ST-1DResNet achieves a classification accuracy of 97.75%, outperforming the 
original ResNet and four classical deep learning models by an average of 
6.40%. Compared with traditional machine learning methods and optimized 
SVM models, it improves accuracy by 11.63% and 2.67%, respectively. The 
model is compact, computationally efficient, and supports fast training, 
making it suitable for deployment in resource-limited environments. Its 
strong generalization performance, validated using an external mango 
dataset, highlights its scalability. Overall, ST-1DResNet provides a practical, 
accurate, and non-destructive approach for crop disease detection, 
contributing to quality control and intelligent diagnosis in modern 
agriculture. 
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1. Introduction 

*Garlic is not only a common seasoning that 
imparts a distinctive flavor to food but also 
possesses various pharmacological effects, including 
antibacterial, antiviral, antitumor, and hypoglycemic 
properties (Tudu et al., 2022). However, during its 
growth cycle, garlic is highly susceptible to diseases 
that severely impact both yield and quality, resulting 
in significant economic losses for farmers (Anum et 
al., 2024). Garlic cultivation was frequently affected 
by several pathogenic diseases, including root rot, 
leaf blight, gray leaf spot, purple spot, and 
phytophthora (Dedecan et al., 2022). These 
phytopathogens primarily infected and damaged the 
foliage, pseudo stems, and bulbs of garlic, ultimately 
compromising plant growth and significantly 
reducing crop yield. Specifically, root rot manifested 
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as characteristic symptoms initially appearing at the 
pseudo stem base and bulb. The infection process 
began with water-soaked lesions that progressively 
darkened, developed necrotic ulcerations, and 
eventually led to tissue maceration (Gálvez and 
Palmero, 2021). Disease progression typically 
resulted in complete bulb rot under favorable 
environmental conditions. Leaf blight primarily 
infected the foliar tissues and floral stalks of garlic 
plants. Initial symptoms appeared as small, white 
necrotic lesions that subsequently expanded into 
elongated, stripe-like patterns or developed 
characteristic purple-hued spots (Sharifi et al., 
2021). Similarly, purple spot disease predominantly 
affected leaves and floral stalks. Early-stage 
infections presented as slightly depressed, whitish 
lesions with distinct purple pigmentation at the 
center. As the disease progressed, these lesions 
enlarged into fusiform (spindle-shaped) necrotic 
areas with defined margins. Phytophthora primarily 
affected garlic foliar tissues, with initial infection 
typically manifesting as chlorotic (yellow-white) 
water-soaked lesions at either leaf tips or mid-leaf 
regions (Anum et al., 2024). These symptomatic 
areas progressively expanded, leading to extensive 
necrotic foliar damage. The pathological impact of 
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these garlic diseases was economically significant, 
causing substantial reductions in both crop yield. 
Such losses directly compromised grower 
profitability, particularly in intensive cultivation 
systems where disease pressure was high (Workneh 
et al., 2024). 

Surveys have shown that disease-related losses 
typically account for 10%–20% of garlic production, 
with losses exceeding 30% or even higher in 
particularly severe years and regions. Garlic leaf 
blight represented the most destructive foliar 
disease in garlic cultivation (Zewde et al., 2007). 
Epidemiological studies demonstrated that severe 
outbreaks typically resulted in 20-30% yield 
reduction when control measures were delayed (Cui 
et al., 2024). In cases of acute infection, the pathogen 
frequently induced premature plant senescence and 
garlic scape rot, leading to significant production 
losses that directly impacted grower profitability. 
Garlic root rot in mildly affected areas generally 
reduced yields by 20% to 30%, whereas in regions 
with approximately 10 years of continuous garlic 
cultivation, yield losses exceeded 30%. These 
pathological effects brought serious economic losses 
to garlic farmers (Shagun et al., 2024). Therefore, the 
ability to rapidly and accurately identify garlic 
diseases at an early stage is crucial for implementing 
timely control measures, minimizing damage, and 
ensuring the sustainable development of the garlic 
industry (Vijaykumar et al., 2023). 

In the early stages of infection, symptomatic 
manifestations in garlic plants are often subtle, 
making it difficult for traditional machine vision 
systems to achieve effective recognition. Moreover, 
manual disease identification by non-specialists 
tends to suffer from low accuracy and is constrained 
by high labor intensity and low efficiency. 
Accordingly, it becomes crucial to develop a 
straightforward, non-damaging, and efficient 
technique for detecting garlic diseases in their initial 
stages. 

In recent years, NIRS has been widely applied in 
crop variety identification (Feng et al., 2021). For 
instance, Sen et al. (2024) employed a characteristic 
wavelength selection method based on adaptive 
sliding window permutation entropy (ASW-PE) 
combined with various classification models to 
classify rice samples, achieving an accuracy rate of 
95%. Similarly, Shao et al. (2017) utilized NIR 
spectroscopy in combination with Linear 
Discriminant Analysis (LDA), Quadratic Discriminant 
Analysis (QDA), and Support Vector Machine (SVM) 
to classify papaya samples, reaching classification 
accuracies of 94%, 96%, and 98%, respectively. Zhai 
et al. (2024) used the Competitive Adaptive 
Reweighted Sampling (CARS) algorithm to select 
characteristic wavelengths and applied Least-
Squares Support Vector Machine (LS-SVM) modeling 
to classify rice samples from different growth stages, 
achieving a correct classification rate of 91.67%. 

To enhance the predictive capability of models 
when dealing with uncertain samples, current 
research primarily focuses on reducing data 

dimensions, feature extraction, and data modeling 
techniques (Liu et al., 2024). While conventional 
chemometric techniques have been widely applied in 
NIRS analysis, they continue to encounter significant 
obstacles and constraints (Zou et al., 2025). These 
include complex operational procedures, insufficient 
model robustness, and an inability to fully meet the 
growing demand for high-accuracy and intelligent 
early disease detection. 

Deep learning technologies, by contrast, 
eliminate the need for complex data preprocessing 
and feature extraction, allowing models to be trained 
directly on raw data (Chen et al., 2024). Deep 
learning approaches have been successfully applied 
across a wide range of fields, including natural 
language processing (Yeboah and Baz Musah, 2022), 
image processing (Archana and Jeevaraj, 2024), 
intelligent manufacturing (Neupane et al., 2021), and 
signal identification (Tian et al., 2022). Researchers 
have also explored the integration of deep learning 
techniques with NIRS analysis for rapid plant disease 
identification. For example, Feng et al. (2024) 
proposed a model combining deformable 
convolution and dilated convolution neural 
networks to detect Asian soybean rust, achieving an 
overall accuracy of 96.73%. Ong et al. (2025) 
integrated convolutional neural networks with 
continuous wavelet transform (CWT) spectrograms 
and demonstrated that the Random Forest (RF) 
model incorporating spectral derivative features 
achieved the best performance in sugarcane disease 
identification, with an accuracy of 94.87%. 
Therefore, the combination of convolutional neural 
networks (CNN) with spectral analysis techniques 
has proven effective in improving the accuracy and 
efficiency of plant disease recognition while reducing 
manual intervention and associated costs. 

At present, there are very few studies on the use 
of NIRS combined with CNN for the identification of 
garlic diseases. NIR spectral data are rich in chemical 
and physical information, and compared with two-
dimensional image data, NIR datasets are more 
lightweight and require less computational 
resources (Shen et al., 2025). Hyperspectral image 
data demonstrated superior capability for substance 
characterization compared to conventional two-
dimensional RGB images, as the acquired spectral 
signatures contained significantly more biochemical 
information. This enhanced data dimensionality 
enabled more accurate substance identification and 
classification, since different materials exhibited 
unique spectral fingerprints across the measured 
wavelength range. Hence, employing an improved 
one-dimensional CNN model to classify and detect 
garlic based on NIR spectral data is both feasible and 
advantageous. 

2. Materials and methods 

2.1. Data collection 

Garlic samples were collected from the garlic 
planting base in Da’an Town, Lufeng City, Guangdong 
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Province, including 12 healthy plants, and plants 
infected with root rot (5 plants), leaf blight (10 
plants), phytophthora (10 plants), gray leaf spot (8 

plants), and purple spot (9 plants), totaling 54 garlic 
samples. Fig. 1 shows the RGB images of various 
early-stage garlic diseases taken at the planting base. 

 

     
Root rot Leaf blight Phytophthora Purple spot Gray leaf spot 

Fig. 1: Images of different garlic diseases 
 

To collect the infrared spectral data of garlic, we 
employed a hyperspectral image acquisition system 
consisting of a near-infrared hyperspectral camera 
(GaiaSky mini, Dualix, Sichuan, China) and a specially 
designed dark chamber, as illustrated in Fig. 2. The 
hyperspectral camera was fixed at the top of the 
dark chamber, covering a spectral range from 386.7 
nm to 1,016.7 nm, with an image resolution of 696 × 
700 pixels. Inside the dark chamber, a customized 
scanning platform and a lighting system composed of 
four 50W tungsten-halogen lamps were installed, 
with the light sources positioned at a 45-degree 
angle relative to the sample. During the spectral 
acquisition process, garlic samples were placed flat 
on the lifting platform, and data were collected using 
diffuse reflectance. The exposure time was set to 
9.98 ms, and the scanning speed was set to 0.8 

mm/s. Fig. 3 presents the hyperspectral images of 
garlic samples affected by different diseases. 

A total of 591 near-infrared spectral data points 
were collected from different positions of leaves 
from the 54 garlic samples. The original spectral data 
are shown in Fig. 4. Table 1 summarizes the 
distribution of sample numbers and spectral data 
across different garlic disease categories. 

 
Table 1: Distribution of sample numbers and spectral data 

by garlic disease category 

Garlic category 
Number of 

samples 
Number of spectral 

variables 
Healthy 97 256 
Root rot 84 256 

Gray leaf spot 102 256 
Leaf blight 102 256 

Phytophthora 102 256 
Purple spot 104 256 

 

 
①: Hyperspectral camera; ②: Light source; ③: Computer; ④: Scanning platform 

Fig. 2: Hyperspectral image acquisition system 
 

     

Root rot Leaf blight Phytophthora Purple spot Gray leaf spot 

Fig. 3: Hyperspectral images of different garlic diseases 
 

2.2. Garlic disease identification model based on 
improved ResNet 

The objective of this research is to accomplish 
swift and precise detection of garlic diseases through 

the establishment of six deep learning models: VGG, 
ResNet, Xception, MobileNet, DenseNet, and a model 
named ST-1DResNet, which incorporates a channel 
attention mechanism. The structure of the ST-
1DResNet model is shown in Fig. 5. 
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(a) Raw spectra of garlic samples (b) Average spectra of garlic samples 

Fig. 4: Raw NIR spectra of different garlic disease categories 
 

 
Fig. 5: Structure of the ST-1DResNet model 

 

2.2.1. Deep learning models 

CNN is a common type of deep learning model, 
mainly employed for tasks in computer vision like 
object recognition, image recognition, and 
classification (Zhang et al., 2024). The essence of 
CNN lies in utilizing convolutional layers to extract 
features, employing pooling layers to decrease data 
dimensions and condense information, and 
ultimately accomplishing image classification or 
regression via fully connected layers (Muhammad et 
al., 2022). 

One-dimensional convolution, or 1D convolution, 
primarily handles one-dimensional data streams or 
sequences, with both the input and the convolutional 
kernel being one-dimensional. By sliding the 
convolution kernel along the input data and 
performing element-wise multiplication and 
summation operations, 1D convolution computes a 
single output value, thus capturing local features in 
the sequential data (Ma et al., 2023). 

In contrast, two-dimensional convolution is 
mostly utilized for handling two-dimensional data 
like images. In this case, the convolution kernel is a 
two-dimensional matrix that slides over each local 
region of the input data, performing element-wise 
multiplication and summation operations to 

generate a single output value (Promboonruang and 
Boonrod, 2023). 2D convolution effectively captures 
spatial features in images, such as edges and 
textures. 

The VGG network, proposed by the Visual 
Geometry Group at the University of Oxford in 2014 
(Simonyan and Zisserman, 2014), is a deep 
convolutional neural network architecture 
characterized by the use of small-sized convolution 
kernels and a deeper network structure. This design 
significantly enhances the model’s ability to extract 
image features and improves its capability to fit 
complex patterns by increasing network depth. 

ResNet, proposed by He et al. (2016) at Microsoft 
Research in 2015, is a deep convolutional neural 
network architecture. In traditional CNN, as network 
depth increases, the training process often becomes 
complex and difficult to optimize due to vanishing or 
exploding gradients. However, ResNet effectively 
addresses this problem by introducing skip 
connections (also called shortcut connections) 
within residual blocks. This design allows gradients 
to bypass multiple layers, significantly improving the 
training efficiency and stability of deep networks, 
thereby enabling more efficient learning and 
optimization. Xception, inspired by the Inception 
architecture, is a deep convolutional neural network 
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proposed by Google in 2017, Deep Learning with 
Depthwise Separable Convolutions (Chollet, 2017). 
Its core innovation lies in replacing Inception 
modules with depthwise separable convolutions, 
thereby improving model performance without 
significantly increasing computational complexity. 

MobileNet, proposed by Google in 2017, is a 
lightweight convolutional neural network 
architecture (Howard et al., 2017) designed for 
mobile and embedded devices. Its key innovation is 
the introduction of depthwise separable 
convolutions, which break down traditional 
convolution operations into two steps: Depthwise 
convolution and pointwise convolution. This design 
significantly reduces the number of parameters and 
computational complexity while maintaining high 
accuracy. 

DenseNet, introduced by the Google Brain team 
in 2016 (Huang et al., 2017), is a deep learning 
architecture aimed at addressing the information 
flow and vanishing gradient problem in traditional 
CNN. DenseNet’s core idea is dense connectivity, 
where each layer is connected to every other 
preceding layer. This approach maximizes the use of 
features extracted by earlier layers, enhances feature 
propagation, mitigates vanishing gradient problems, 
and promotes feature reuse. 

2.2.2. Squeeze-and-excitation module 

In deep learning, CNN typically extract features 
through convolution operations, but this process 
often mixes spatial and channel information, leading 
to insufficient modeling of inter-channel 
relationships. To address this, the Squeeze-and-
Excitation (SE) module was proposed (Hu et al., 
2018), aiming to explicitly model the 
interdependencies among feature channels. 

The core idea of the SE module is to dynamically 
recalibrate channel-wise feature responses by 
learning the importance of each channel. Specifically, 
the SE module comprises three main steps: Squeeze, 
Excitation, and Scale. 
 

• Squeeze: Global average pooling compresses the 
spatial information of each channel into a single 
scalar, capturing global context. 

• Excitation: Two fully connected layers and non-
linear activation functions (ReLU and Sigmoid) are 
used to generate channel-wise weights that reflect 
each channel’s importance. 

• Scale: The generated weights are applied to the 
original feature maps to emphasize important 
features and suppress less useful ones. 

 
Essentially, the SE module implements an 

attention mechanism along the channel dimension, 
enabling the model to focus more effectively on 
significant feature channels. The structure of the SE 
attention mechanism is illustrated in Fig. 6. 

2.2.3. Tanh activation function 

Tanh (Hyperbolic Tangent Function) is a 
commonly used activation function (Li and Ni, 2024), 
with a domain of R and an output range of (-1, 1). Its 
output is centered around zero, which helps 
accelerate neural network training by ensuring more 
balanced gradient updates, thereby alleviating the 
vanishing gradient problem. As a non-linear 
function, Tanh enables neural networks to learn 
complex features and patterns. Its mathematical 
expression is shown in Eq. 1: 
 

𝑇𝑎𝑛ℎ⁡(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
                                                                         (1) 

2.3. Model evaluation metrics 

In machine learning and deep learning, model 
recognition accuracy is typically evaluated using 
metrics such as accuracy, precision, recall, F1 score, 
and the kappa coefficient. By analyzing changes in 
these metrics, corresponding model optimization 
strategies can be adjusted. These standards help 
assess model performance, identify problems, and 
facilitate performance improvement. 

 
Fig. 6: Structure of the SE attention mechanism 

 

Accuracy (Ninh et al., 2024) is a metric used to 
measure model performance, which is calculated by 
dividing the number of correct predictions by the 
total number of samples. The calculation equation 
for Accuracy is as follows: 

 

Accuracy =
TP+TN

TP+TN+FP+FN
⁡⁡⁡⁡                                                        (2) 

 

Precision (Liu et al., 2025) measures the 
proportion of true positive predictions among all 
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positive predictions, reflecting the model’s accuracy 
in positive predictions.  

Recall (Chouhan et al., 2024) refers to the 
proportion of all actual positives that were classified 
correctly as positives, reflecting the model’s ability 
to identify positive samples.  

F1 score (Chouhan et al., 2024) is the harmonic 
mean of Precision and Recall, providing a balance 
between the two metrics.  

The kappa coefficient (Martín Andrés and Álvarez 
Hernández, 2025) is used to evaluate the 
performance of a classification model by considering 
the effect of random chance, reflecting the difference 
between the model’s classification results and 
results expected by random chance. 

The calculation formulas for Precision, Recall, F1 
score, and kappa are shown in Eqs. 3, 4, 5, and 6: 
 

Precision =
TP

TP+FP
⁡                                                                        (3) 

Recall =
TP

TP+FN
                                                                               (4) 

F1⁡score =
2×recall×precision

recall+precision
                                                       (5) 

Kappa =
po−pe

1−pe
                                                                                (6) 

 

In the aforementioned formulas: 
 
• TP (True Positive) refers to the number of actual 

positive samples correctly predicted as positive; 
• FN (False Negative) refers to the number of actual 

positive samples incorrectly predicted as negative; 
• TN (True Negative) refers to the number of actual 

negative samples correctly predicted as negative; 
• FP (False Positive) refers to the number of actual 

negative samples incorrectly predicted as positive; 
 

Here, 𝑝𝑜 corresponds to the proportion of 
observed agreement, while 𝑝𝑒  indicates the expected 
chance of agreement. 

3. Results 

All experimental results presented below were 
obtained under the Windows 11 operating system, 
using a CPU of i5-12600KF and a GPU of NVIDIA 
GeForce 4060Ti 16G. The code for constructing and 
optimizing all models was run in the PyTorch 1.13.1 
environment, with Python version 3.8. 

3.1. Analysis of machine learning optimization 
models 

In this section, three optimization algorithms 
were implemented: GA-SVM, PSO-SVM, and CFOA-
SVM. To accurately compare the classification 
performance of each optimization algorithm, widely-
applied machine learning classification models were 
chosen for performance comparison. These models 
include Support Vector Machine (SVM), Random 
Forest (RF), K-Nearest Neighbors (KNN), Decision 
Tree (DT), and Multilayer Perceptron (MLP). The 
classification performance was evaluated using 
metrics such as accuracy, precision, recall, F1 score, 
kappa, and the confusion matrix. The confusion 
matrix was primarily used to compare the objective 
results against the actual categories. The validation 
methods all use ten-fold cross-validation. The 
performance metrics and confusion matrices for 
SVM, RF, KNN, DT, GA-SVM, PSO-SVM, and CFOA-
SVM were calculated and are presented in Table 2 
and Fig. 7. 

From the result statistics in Table 2, it could be 
observed that during the establishment of the SVM 
model for garlic disease classification, the CFOA-SVM 
model achieved the highest classification accuracy of 
95.63%. Under identical test samples and search 
conditions, the CFOA algorithm demonstrated faster 
and more optimized performance in identifying 
SVM's two key parameters. Consequently, the CFOA-
SVM model significantly outperformed both GA-SVM 
and PSO-SVM in garlic disease identification. 
According to the confusion matrix results, the CFOA-
SVM model achieved a 100% correct recognition rate 
for root rot and purple spot, while the accuracy for 
all other categories exceeded 87%. Specifically, 
3.23% of gray leaf spot samples were misclassified 
as leaf blight, 9.68% and 3.23% of leaf blight samples 
were misclassified as Phytophthora and purple spot, 
respectively, 3.12% of purple spot samples were 
misclassified as leaf blight, and 3.85% of root rot 
samples were not correctly identified. The primary 
reason for this misclassification lies in the highly 
similar near-infrared spectral data, where 
differences in the chemical composition and physical 
characteristics of garlic samples are not sufficiently 
distinct. 

 
Table 2: Comparison of prediction results for machine learning models 

Methods Accuracy (%) Precision (%) Recall (%) F1 score (%) Kappa (%) 
SVM 86.41 84.34 82.80 82.49 78.86 
RF 89.51 90.44 89.79 89.63 87.39 

KNN 87.84 88.88 88.22 87.95 85.39 
DT 71.90 73.42 72.59 72.34 66.26 

MLP 94.96 95.00 94.96 94.95 93.94 
GA-SVM 95.03 95.15 95.04 95.03 94.03 

PSO-SVM 94.59 94.76 94.70 94.70 93.51 
CFOA-SVM 95.63 95.75 95.63 95.63 94.53 

 
To further improve the precision and stability of 

garlic disease classification, we proposed a deep 
learning model, ST-1DResNet, which leverages the 
powerful feature extraction capabilities of CNN to 
capture subtler features within the near-infrared 
spectral data of garlic samples. 

3.2. Analysis of deep learning optimization 
models 

To avoid potential category imbalance problems, 
the synthetic minority oversampling technique 
(SMOTE) method was employed to balance the 
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category distributions before training, preventing 
model bias from imbalanced classes. This research 
utilized the widely adopted categorical cross-
entropy (CCE) loss function to assess the 
discrepancy between predicted and actual outcomes. 

The formula for the cross-entropy loss function is 
given in Eq. 7: 
 

Loss =
1

N
∑ILi = −

1

N
∑i
M∑c=1

M yiclog(pic)                                (7) 

 

  
SVM RF 

  
KNN DT 

  
MLP GA-SVM 

  
PSO-SVM CFOA-SVM 

Fig. 7: Confusion matrices for machine learning models 
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During training, the Adam optimizer is utilized 
for model optimization, with a learning rate of 0.001, 
a batch size of 16, and 100 iterations. Fig. 8 
illustrates the changes in loss and accuracy for both 
the ResNet model and its enhanced ST-1DResNet 
model on the validation set throughout the training 
process. With the increase in iterations, the loss of 
the ST-1DResNet model gradually decreases. 
Notably, the loss exhibits a rapid decline within the 
first 40 iterations, after which it stabilizes and 
approaches zero. Compared to the ResNet model, the 
ST-1DResNet model demonstrates lower loss, 
reduced volatility, and more stable convergence. 

To assess the performance of the garlic disease 
identification model on the test set, the results of the 
original and enhanced models were compared 
during testing. Fig. 9 presents the confusion matrices 
of the models, which assess classification 
performance and illustrate the relationship between 
predicted and actual results for each category in 
matrix form. In these matrices, the blue diagonal 
represents correctly classified results, while all other 
cells indicate misclassifications. The deeper the 
color, the better the classification performance of the 
model. In the ResNet model, the classification of root 
rot was completely accurate, but the other five 

categories exhibited varying degrees of confusion. 
Specifically, 3.7% of healthy samples were 
misclassified as root rot; 10.34% of leaf blight 
samples were misclassified as phytophthora; and 
6.06%, 3.03%, and 6.06% of phytophthora samples 
were misclassified as leaf blight, purple spot, and 
gray leaf spot, respectively. Additionally, 2.7% of 
purple spot samples were misclassified as gray leaf 
spot, and 5.88% of gray leaf spot samples were 
misclassified as phytophthora. 

In contrast, in the ST-1DResNet model, the 
classifications of root rot, leaf blight, and purple spot 
achieved 100% accuracy. However, 3.7% of healthy 
samples were still misclassified as root rot, and 
3.03% of Phytophthora samples were misclassified 
as leaf blight. Furthermore, 2.94% and another 
2.94% of gray leaf spot samples were misclassified 
as leaf blight and phytophthora, respectively. The 
primary reason for these misclassifications is that 
leaf blight, phytophthora, and gray leaf spot share 
highly similar spectral characteristics, making them 
harder to distinguish. 

Compared to the original model, the ST-1DResNet 
model captures the spectral features of garlic 
diseases in greater detail, thus improving 
classification accuracy. 

 

  

(a) Accuracy curve (b) Loss curve 

Fig. 8: Accuracy and loss curves of ResNet and ST-1DResNet 
 

  
(a) ResNet (b) ST-1DResNet 

Fig. 9: Comparison of confusion matrices between ResNet and ST-1DResNet 
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4. Discussion 

4.1. Analysis of model testing results 

To further evaluate the performance of the 
proposed ST-1DResNet model, a comparison was 
made with the aforementioned machine learning 
models and their optimized versions. The 
comparison results are shown in Table 3. As can be 
seen from Table 3, the ST-1DResNet model achieved 
an accuracy of 97.75%, which outperformed all other 
machine learning models. In addition to accuracy, 
ST-1DResNet also achieved the highest values in 
precision, recall, f1 score, and kappa coefficient 
among all models.  

These experimental results demonstrate that the 
ST-1DResNet model not only delivers higher 
prediction accuracy for garlic disease identification 
compared to traditional machine learning models 
but also exhibits superior robustness and reliability. 

To test the performance of the attention 
mechanism and activation function within our 
proposed ST-1DResNet model, we performed 
comparative studies against various other deep 
learning models. The models used for comparison 
include VGG, ResNet, Xception, MobileNet, DenseNet, 

and ST-1DResNet. The classification results are 
shown in Table 4. Table 4 presents the classification 
prediction results and model complexity evaluations 
for various deep learning models. It can be seen that 
the attention mechanism-based ST-1DResNet model 
achieves an accuracy of 97.75%, which markedly 
surpasses the outcomes achieved with conventional 
machine learning and deep learning approaches 
discussed previously. This improvement is 
attributed to the Tanh activation function used in the 
residual connections, which enhances the model’s 
stability and progressively amplifies feature effects 
during training. Additionally, the channel attention 
module concentrates on significant feature details, 
thereby improving the model’s prediction accuracy. 
Compared to other deep learning models, the ST-
1DResNet model has fewer parameters, with only 
3.88M parameters, a model size of 14.79M, and 
38.27M FLOPs. Although its FLOPs increase by just 
6.77M compared to MobileNet, its accuracy improves 
by 5.05%. Moreover, the ST-1DResNet model’s 
training time is significantly shorter than that of 
other deep learning models, requiring only 68.71 
seconds. Its testing time is just 0.08 seconds, which is 
lower than that of other deep learning models. 

 
Table 3: Comparison of prediction results between ST-1DResNet and machine learning models 

Methods Accuracy (%) Precision (%) Recall (%) F1 score (%) Kappa (%) 
SVM 86.41 84.34 82.80 82.49 78.86 
RF 89.51 90.44 89.79 89.63 87.39 

KNN 87.84 88.88 88.22 87.95 85.39 
DT 71.90 73.42 72.59 72.34 66.26 

MLP 94.96 95.00 94.96 94.95 93.94 
GA-SVM 95.03 95.15 95.04 95.03 94.03 

PSO-SVM 94.59 94.76 94.70 94.70 93.51 
CFOA-SVM 95.63 95.75 95.63 95.63 94.53 

ST-1DResNet 97.75 97.85 97.75 97.76 97.28 

 
Table 4: Comparison of deep learning models’ prediction results 

Methods 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1 score 

(%) 
Kappa 

(%) 
Parameters 

(M) 
Size 
(M) 

FLOPs 
(M) 

Train 
time (s) 

Test time 
(s) 

DenseNet 85.39 85.69 85.39 85.44 82.34 7.44 28.37 112.5 423.27 0.31 
VGG 93.26 93.58 93.26 93.30 91.84 11.93 45.54 176.84 79.00 0.09 

Xception 92.13 92.77 92.13 92.26 90.50 21.10 80.50 142.21 119.16 0.09 
MobileNet 92.70 92.72 92.70 92.64 91.16 8.68 33.10 31.50 179.91 0.12 

ResNet 93.26 93.30 93.26 93.26 91.84 3.85 14.67 38.35 101.99 0.08 
ST-1DResNet 97.75 97.85 97.75 97.76 97.28 3.88 14.79 38.27 68.71 0.08 

 

To verify the effectiveness of the ST-1DResNet 
model we constructed and to assess the contribution 
and impact of each module on the overall 
performance, we conducted ablation experiments. 
The results of these experiments are shown in Table 
5, where “SE” and “Tanh” refer to the SE attention 
mechanism and Tanh activation function, 
respectively. 

According to the analysis in Table 5, the ST-
1DResNet model achieves the highest classification 
accuracy. The ablation experiment results indicate 
that, with a slight increase in model size, both 
modules contribute to improving the model’s 
generalization performance. Adding only the SE 
attention mechanism increases accuracy, precision, 
recall, f1 score, and kappa by 1.68%, 1.77%, 1.68%, 
1.67%, and 2.04%, respectively, while reducing 
training time by 9.3 seconds. After adding only the 

Tanh activation function, accuracy, precision, recall, 
f1 score, and kappa increase by 3.37%, 3.41%, 
3.37%, 3.37%, and 4.08%, respectively. Meanwhile, 
the parameters, size, and FLOPs decrease by 0.01M, 
0.01M, and 0.02M, respectively, and the training time 
is reduced by 32.22 seconds. 

Compared to the original ResNet model, the 
combination of both modules in the ST-1DResNet 
model leads to a slight increase in model size, with 
parameters and size increasing by 0.03M and 0.12M, 
respectively. The computational cost slightly 
decreases, with FLOPs reduced by 0.08M. In terms of 
time, the training time decreases by 33.28 seconds. 
However, the model achieves higher accuracy, with 
accuracy, precision, recall, f1 score, and kappa 
improving by 4.49%, 4.55%, 4.49%, 4.50%, and 
5.44%, respectively. In terms of testing time, testing 
the 178 sets of data took only 0.08 seconds, 
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averaging 0.45 milliseconds per set, which is faster 
than other deep learning models. 

After optimizing the model, accuracy was 
improved without an increase in testing time, 
indicating that the ST-1DResNet model is suitable for 
application scenarios requiring rapid and accurate 
identification. Therefore, by integrating the attention 
mechanism and Tanh activation function into the 

ResNet model, the ST-1DResNet model achieves 
higher accuracy in garlic disease identification. 

In the ablation experiments, the AUC-ROC curves 
before and after the model improvement are shown 
in Fig. 10. In the ST-1DResNet model, the AUC score 
for phytophthora is 0.9996, while the AUC scores for 
healthy samples, root rot, leaf blight, purple spot, 
and gray leaf spot all reach 1.0, indicating the 
excellent performance of the model. 

 
Table 5: Ablation experiment results 

SE Tanh 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1 score 

(%) 
Kappa 

(%) 
Parameters 

(M) 
Size 
(M) 

FLOPs 
(M) 

Train 
time (s) 

Test 
time (s) 

  93.26 93.30 93.26 93.26 91.84 3.85 14.67 38.35 101.99 0.08 
√  94.94 95.07 94.94 94.93 93.88 3.88 14.80 38.39 92.69 0.08 
 √ 96.63 96.71 96.63 96.63 95.92 3.84 14.66 38.23 69.77 0.08 

√ √ 97.75 97.85 97.75 97.76 97.28 3.88 14.79 38.27 68.71 0.08 

 

  
(a) ResNet (b) ST-1DResNet 

Fig. 10: AUC-ROC curves for ResNet and ST-1DResNet 
 

4.2. SHAP interpretability for visualizing feature 
contributions 

SHAP (SHapley Additive exPlanations) values 
serve as a powerful model interpretation tool, 
providing new perspectives for understanding and 
trusting machine learning models (Lundberg and 
Lee, 2017). The SHAP value is a cooperative game 
theory-based method for interpreting feature 
contributions to model outputs. By revealing the 
decision logic within models, it enhances their 
transparency and credibility. In this study, we 
employed the SHAP method to analyze and visualize 
spectral regions critical for model predictions. The 
SHAP summary plot (global importance), feature 
importance ranking, and waterfall plot were 
generated using the top 20 most significant features 
selected from 256 spectral bands, ordered by SHAP 
value importance. These results highlighted the key 
spectral regions prioritized by the model, as 
illustrated in Fig. 11 and Fig. 12. 

With Fig. 11, it could be observed that the 
features located at the top of the graph exerted a 
greater influence on the model predictions, 
indicating that these features played a key role in 
predicting garlic disease categories. Taking the 892.9 
nm band in Fig. 11a as an example, the red dots were 
predominantly distributed in the region of positive 
SHAP values, which suggested that higher 

reflectance values at 892.9 nm tended to classify 
garlic samples as healthy, while lower values tended 
to associate them with diseased categories. Among 
the remaining 19 feature bands, blue (low values) 
and red (high values) regions differentially affected 
positive and negative SHAP values, implying that 
these features also significantly contributed to the 
classification behavior. Fig. 11 revealed that 36 
features primarily influenced the model predictions, 
with seven co-occurring key features: 892.9 nm, 
890.3 nm, 895.5 nm, 859.2 nm, 924.1 nm, 903.3 nm, 
and 854.1 nm. Fig. 12 displayed the top 20 important 
bands ranked by SHAP value importance. SHAP 
values served as a powerful interpretative tool, 
quantifying feature contributions to enhance the 
transparency of the ST-1DResNet model predictions. 

4.3. Generalization experiment 

To verify the generalization ability of the model 
proposed in this paper, we used the mango dataset 
for validation. This dataset comes from the paper by 
Anderson et al. (2020). The dataset includes ten 
different mango varieties, such as Calypso, HG, and 
Keitt, with a total of 12,011 data points. The original 
spectral data of the mango dataset are shown in Fig. 
13. The validation experiment results are shown in 
Table 6. 
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(a) Healthy SHAP (b) Root rot SHAP 

  
(c) Leaf blight SHAP (d) Phytophthora SHAP 

  
(e) Purple spot SHAP (f) Gray leaf spot SHAP 

Fig. 11: Summary plot of SHAP for the ST-1DResNet model for individual categories 
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Fig. 12: Importance plot of SHAP features for the ST-1DResNet model 

 

  
(a) Original mango spectrum (b) Average mango spectrum 

Fig. 13: Original NIR spectra of mango varieties 
 

Table 6: Mango dataset validation experiment results 
SE Tanh Accuracy (%) Precision (%) Recall (%) F1 score (%) Kappa (%) 

  93.73 94.51 93.73 93.63 92.34 
√  94.03 94.23 94.03 93.68 92.69 
 √ 95.17 95.60 95.17 95.25 94.11 

√ √ 97.84 97.87 97.84 97.83 97.35 

 

As shown in Table 6, the accuracy of the ST-
1DResNet model is 97.84%, which is a 4.11% 
improvement over the ResNet model before 
optimization, thus validating the generalization 
ability of the model. 

In summary, the ST-1DResNet model, based on 
the attention mechanism and infrared spectroscopy 
technology, yields better experimental results. The 
model achieves an accuracy of 97.75%, precision of 
97.85%, recall of 97.75%, f1 score of 97.76%, and 
kappa coefficient of 97.28%, outperforming the 
results obtained by traditional machine learning and 
deep learning models. In contrast to traditional deep 
learning models, the model constructed in this paper 
allows the attention mechanism to focus on relevant 
feature information while suppressing unrelated 
features by calculating attention parameters. This 
enhances the extraction of spectral features from 
garlic, while the Tanh function improves the 
efficiency of weight updates, solving the vanishing 

gradient problem, and achieving more accurate 
experimental results in prediction and classification. 

In conclusion, the model proposed in this paper 
demonstrates better performance in feature 
extraction and application, leading to significant 
improvements across all performance evaluation 
metrics. This model can be applied in fields such as 
garlic disease identification and variety 
classification, providing an effective reference value 
for research in these areas. 

5. Conclusion 

This paper proposes a garlic disease 
identification model based on the attention 
mechanism and NIRS. The combination of NIRS and 
deep learning methods provides a rapid and efficient 
approach for the non-destructive detection of garlic 
diseases, demonstrating its feasibility for the quick 
identification of garlic diseases. To validate the 
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effectiveness of the algorithm, we used garlic 
samples affected by different diseases as the 
research objects and conducted comparative 
experiments with several classic deep learning 
models.  

The experimental results show that the model 
proposed in this paper outperforms the others in 
terms of performance. This method provides a new, 
effective, accurate, and non-destructive approach for 
the identification of plant diseases in agriculture. The 
model demonstrates good generalization ability and 
is applicable in many fields. It is not only suitable for 
garlic disease recognition but also applicable to 
disease detection in other crops. This contributes to 
improving the quality control and production 
efficiency of agricultural products and has a positive 
impact on the promotion of rapid, non-destructive 
disease detection technology for crops. 

List of abbreviations 

1D One-dimensional 
1DResNet One-dimensional residual networks 
AUC Area under the curve 

AUC-ROC 
Area under the receiver operating 
characteristic curve 

CARS 
Competitive adaptive reweighted 
sampling 

CCE Categorical cross-entropy 
CFOA Chaotic fruit fly optimization algorithm 
CNN Convolutional neural network 
CPU Central processing unit 
CWT Continuous wavelet transform 
DT Decision tree 
FLOPs Floating point operations 
FN False negative 
FP False positive 

GA-SVM 
Genetic algorithm-support vector 
machine 

GPU Graphics processing unit 
KNN K-nearest neighbors 
LDA Linear discriminant analysis 
LS-SVM Least-squares support vector machine 
MLP Multilayer perceptron 
NIR Near-infrared 
NIRS Near-infrared spectroscopy 

PSO-SVM 
Particle swarm optimization-support 
vector machine 

QDA Quadratic discriminant analysis 
RF Random forest 
RGB Red, green, blue 
SE Squeeze-and-excitation 
SHAP Shapley additive explanations 

SMOTE 
Synthetic minority oversampling 
technique 

ST-1DResNet 
One-dimensional residual networks with 
squeeze-and-excitation and tanh 
activation 

SVM Support vector machine 
TN True negative 
TP True positive 
VGG Visual geometry group 
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