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With the increasing use of deep learning in medical imaging, particularly in 
analyzing lung cancer pathology images, this technology shows great 
promise for building models for pathological grading and prognosis. This 
study highlights the growing importance of deep learning in this area, but 
also notes that accurately classifying lung cancer pathology images remains a 
difficult task, especially when high precision is needed for grading and 
prognosis. The aim of this research is to improve the classification of lung 
cancer pathology images by developing and optimizing a deep learning 
model. The study focuses on comparing different models, with special 
attention given to improving the performance of the SCA-ResNet model. The 
results show that SCA-ResNet performs better than the commonly used 
ResNet-50 model. It achieves higher scores in several evaluation measures, 
including precision, recall, specificity, F1 score, and the Kappa coefficient. 
ROC curve analysis also supports the superior performance of SCA-ResNet, 
showing better diagnostic accuracy across different cancer grades. These 
findings suggest that the SCA-ResNet model can offer more accurate and 
reliable classification of lung cancer pathology images, which may help 
doctors make better decisions about treatment and prognosis. Its use in 
clinical practice could lead to improved diagnostic accuracy and better 
outcomes for patients. 
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1. Introduction 

*Lung cancer is one of the most common cancers 
worldwide, with a high mortality rate, accounting for 
18% of all cancer-related deaths. Smoking is the 
main cause of lung cancer (Klupczynska-Gabryszak 
et al., 2024). Lung cancer is a heterogeneous disease, 
mainly divided into non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC) (Wen et 
al., 2024). Non-small cell lung cancer, which accounts 
for 85% of lung cancer cases, includes 
adenocarcinoma (ADC), squamous cell carcinoma 
(SCC), and large cell carcinoma (LCC); The remaining 
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15% are small cell lung cancers with neuroendocrine 
features. 

In the era of personalized medicine, the diagnosis 
and precise classification of lung cancer rely heavily 
on cytological and histological typing, which is 
usually evaluated microscopically by standard 
histochemical staining and auxiliary 
immunohistochemical staining. Molecular assays are 
also essential for the targeting of personalized 
therapies and for monitoring stratification of patient 
response to targeted and immunotherapy (Anand et 
al., 2020).  

According to guidelines from the College of 
American Pathologists, the International Association 
for the Study of Lung Cancer, and the Association for 
Molecular Pathology (Rodriguez-Canales et al., 2016; 
Malapelle et al., 2021), patients with advanced lung 
adenocarcinoma should be tested for EGFR 
mutations, ALK and ROS1 rearrangements, 
BRAFV600E, RET rearrangements, MET exon 14 
hops, KRAS mutations, and NTRK1-3 fusions (Wen et 
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al., 2024; Lindeman et al., 2018). For advanced non-
neuroendocrine carcinoma, detection of PD-L1 
expression status is important because patients with 
PD-L1 tumor proportion score (TPS) ≥ 50% are 
eligible for first-line treatment with the anti-PD-L1 
therapy pembrolizumab. The expression status of 
PD-L1 and ALK can be detected by 
immunohistochemistry. Currently, progress is being 
made in the detection of reflex order in lung cancer, 
which underscores the importance of collaboration 
among pathologists (Osmani et al., 2018; Udall et al., 
2018; Kim et al., 2017; Wynes et al., 2014). Although 
reflection detection is not yet feasible in many 
laboratories, it can provide additional valuable 
information, detect rare molecular changes, and 
shorten the detection cycle (Anand et al., 2020; 
Zacharias et al., 2021). 

Over the past decade, deep learning (DL) 
methods, particularly convolutional neural networks 
(CNNS), have shown increasing value in pathology. 
The DL model can overcome limitations such as a 
global shortage of pathologists, diagnostic 
subjectivity, and inter-observer and intra-observer 
variability. Recent advances in lung cancer pathology 
utilize the image analysis potential of H&E whole-
film imaging (WSIs) to diagnose cancer (Wang et al., 
2019; Baxi et al., 2022). Considering that material for 
70% of patients with advanced, unresectable lung 
cancer is limited to small biopsies and cytological 
specimens, the DL approach can guide diagnosis 
with high precision, reduce the additional special 
staining required for differential diagnosis, and 
preserve limited material for molecular testing and 
oncology studies (Bubendorf et al., 2017). 

Traditional methods of pathology image analysis 
rely on hand-crafted features and traditional 
machine learning methods such as support vector 
machines and random forests. Although these 
techniques have had some success, they are often 
inadequate in dealing with complex patterns and 
textures in pathological images (Bubendorf et al., 
2017). The emergence of deep learning, particularly 
convolutional neural networks, has revolutionized 
the field of medical imaging by enabling high-
precision automatic feature extraction and 
classification (Iqbal et al., 2024). 

In recent years, Transformers models originally 
developed for natural language processing tasks 
have shown great potential in image analysis 
because of their ability to capture remote 
dependencies and contextual information through 
self-attention mechanisms (Ouzzani et al., 2016). 
Combining Transformers with CNN can further 
enhance feature extraction capabilities by focusing 
on relevant regions in pathological images, thereby 
improving the accuracy of diagnostic and prognostic 
models (Jain et al., 2022). 

Digital pathology uses full-section scanning 
technology to convert cell and histopathological 
slides into high-resolution images known as Whole 
Slide images (WSI). This technology was originally 
developed for research, but is now widely used in 
clinical practice. Through imaging and processing of 

high-magnification images, it not only simplifies the 
daily work of pathologists, enhances diagnostic 
accuracy, reduces misdiagnosis due to technical 
differences, saves diagnostic time, supports remote 
consultation and information sharing, and 
accelerates the process of obtaining external expert 
opinions (Kanavati et al., 2020; Moranguinho et al., 
2021; Tsuneki and Kanavati, 2022). The digital 
management of pathological sections was realized. 
Still, the number of cases is growing far faster than 
specialists can be trained, and it is uneconomical to 
devote valuable human resources to repetitive image 
recognition and diagnostic work. In recent years, 
with the development of artificial intelligence 
technology and the popularization of digitized 
pathological sections, digital pathology can gradually 
meet the needs of doctors for accurate detection, 
classification, and prediction of pathological images 
(Civit-Masot et al., 2022; Kanavati et al., 2021). 

The purpose of this study is to explore and 
optimize the classification model of lung cancer 
pathological images, in order to improve the 
efficiency and accuracy of the construction of 
pathological classification and prognosis models. By 
introducing the spatial-channel attention (SCA) 
mechanism, to enhance the application of deep 
learning technology in the analysis of lung cancer 
pathological images. In the comparison of model 
performance, the SCA-ResNet model is superior to 
the traditional ResNet-50 model in accuracy, recall 
rate, specificity, F1 score, and Kappa coefficient. ROC 
curve analysis also showed that the SCA-ResNet 
model performed better in the task of classifying 
lung cancer pathological images, especially in the 
diagnostic efficiency of different cancer grades. 
Through these studies, this paper aims to provide a 
more accurate and efficient model for the 
classification of pathological images and help the 
diagnosis and treatment of lung cancer. 

By achieving these goals, this study aims to 
promote innovation in lung cancer pathological 
image analysis technology and provide more 
powerful technical support for precision medicine 
and personalized treatment. 

2. Methodology 

The methodology part of this study elaborates on 
the overall process of using deep learning and 
Transformer technology to extract features and build 
a pathological grade and prognosis model of lung 
cancer. The key steps include data acquisition, pre-
processing, model design and training, evaluation, 
and verification. 

2.1. Feature extraction based on pathological 
diagnostic criteria 

Deep learning networks rely on learning cell 
features in pathological images to determine the 
benign and malignant grade of lung cancer nodules. 
The pathological diagnostic criteria of lung cancer 
can be divided into 4 levels, and the pathological 
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images of lung cancer are professionally diagnosed 
and graded by the pathologists of the Affiliated 
Cancer Hospital of Fudan University in Shanghai. The 
pathological images and deep learning features of 
lung cancer are shown in Tables 1 and 2. 

Pathologists grade pathological samples 
according to the pathological diagnostic criteria of 
lung cancer. However, the computer cannot directly 
extract the cellular features of pathological images 
according to the grading criteria. The abstract 
features of the images need to be transformed into 
natural features such as brightness, edge, texture, 
and color that can be recognized by the computer. 
Therefore, it is necessary to simplify the pathological 
diagnosis criteria of lung cancer into the feature 
classification criteria that can be learned by the 
computer, as shown in Table 1. A lot of information 
is difficult to quantify numerically, so part of the 
information is displayed graphically, and part of the 
descriptive information is shown in Fig. 1. 

2.2. Improving the ResNet-50 network 

In 2015, Microsoft proposed the basic Network 
architecture of the ResNet (Residual Network) 
model, of which RESNET-50 is the most commonly 
used one. The ResNet model solves the problem of 
gradient disappearing and gradient explosion in 
deep neural network training through residual 
connection, which enables the network to learn 
image features at a deeper level. 

Some of the attention mechanisms in the ResNet-
50 network have certain limitations in processing 
lung cancer pathological images. The spatial 
distribution of cancer cells in lung cancer 
pathological images and the relationship between 
cancer cells and surrounding tissues are of great 

significance to the pathological diagnosis results, but 
the original attention mechanism may pay too much 
attention to the channel information and ignore the 
accuracy of cancer cell location information. To solve 
this problem, this study introduces the Spatial-
Channel Attention (SCA) mechanism. 

The SCA attention mechanism considers both 
spatial and channel information. In the spatial 
dimension, it highlights the features of cancer cells 
and their surrounding key tissue regions by 
weighting the features of different regions. In terms 
of channel dimension, the importance of different 
characteristic channels is re-evaluated. Specifically, 
the SCA attention mechanism first partitions the 
input feature graph in spatial dimensions, computes 
feature statistics for each partition, and then 
generates spatial attention weights based on this 
information.  

At the same time, in the channel dimension, a 
similar method is used to generate channel attention 
weight. Finally, a comprehensive attention weight is 
obtained by combining the spatial attention weight 
and the channel attention weight and applied to the 
input feature map. 

The transfer learning strategy is used to replace 
the original attention mechanism on the basis of the 
original ResNet-50 model network. This new model 
is called the improved ResNet-50, namely the SCA-
ResNet model. The SCA attention mechanism 
structure is shown in Fig. 2. Among them, r is used to 
control the size of the space partition and other 
related attributes. The SCA attention mechanism 
encodes location information and channel 
relationships, including spatial information 
embedding, channel information embedding and 
synthetic attention generation. 

 

 
Fig. 1: Pathological images of lung cancer: (A) stage I, (B) stage II, (C) stage III, (D) stage IV 

 
Table 1: Classification criteria of lung cancer 

Cancer 
grade 

Pathologist Diagnostic Criteria Computer Feature Classification Standard 

I 
Small tumor confined to lung; no lymph node or distant 

metastasis. Well-differentiated cells; morphology close to 
normal; rare mitosis. 

Brightness: Uniform, minimal difference from normal tissue. 
Edges: Clear and regular boundaries. 

Texture: Simple, regular. 
Color: Similar to normal cells, evenly distributed. 

II 
Tumor shows local growth, may invade nearby tissue; no 
metastasis. Moderately differentiated cells; mitosis more 

frequent than grade I. 

Brightness: Slightly lower than normal tissue; some darker regions. 
Edges: Begin to appear irregular, mildly blurred. 

Texture: More complex, locally disturbed. 
Color: Increased variation from normal cells. 

III 
Large tumor, possible regional lymph node metastasis; poor 

cell differentiation; atypical mitosis observed. 

Brightness: Significantly lower, uneven with interleaved dark and bright 
areas. 

Edges: Irregular, blurred, with protrusions or dents. 
Texture: Very complex and chaotic. 

Color: Strongly different from normal cells, uneven distribution. 

IV 
Distant metastasis (e.g., brain, bone). Very poor differentiation; 

severe cell deformation; many atypical mitoses. 

Brightness: Extremely uneven with large dark areas. 
Edges: Highly irregular and invasive; boundary unclear. 

Texture: Disorganized, loss of normal structure. 
Color: Highly heterogeneous, complex variations. 
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1. Spatial information embedding: In order to 
effectively capture the spatial information in lung 
cancer pathological images, the input feature map 
was divided into n partitions, where the size of 

each partition is (
H

n
,

W

n
) (assume that the height of 

the input feature map is H and the width is W). For 
each partition, its characteristic statistics are 
calculated using an average pooling operation. For 
the KTH partition, its average pooled 
characteristics are expressed as: 

 

Zs,k =
1

H
n

×
W
n

∑ ∑ x(i, j)

kW
n

j=
(k−1)W

n

kH
n

i=
(k−1)H

n

 

 

where, 𝑥(𝑖, 𝑗) represents the eigenvalue of the input 
feature map at position (𝑖, 𝑗). 

Through the above operation, the feature 
representation of n partitions is obtained 
{𝑍𝑠, 1, 𝑍𝑠, 2, . . . , 𝑍𝑠, 𝑛}. 

These features are then transformed using a fully 
connected layer (FC) to generate spatial attention 
weights. The input dimension of the fully connected 
layer is n, and the output dimension is n, and its 
transformation formula is as follows: 
 
Ws = ∂(FC(Zs)) 
 

where, 𝑍𝑠  =  [𝑍𝑠, 1, 𝑍𝑠, 2, . . . , 𝑍𝑠, 𝑛], δ is the activation 
function. The sigmoid function is used here. 
 
2. Channel information embedding: Similar to spatial 

information embedding, in terms of channel 
dimension, the input feature graph is firstly 
globally average-pooled to obtain a C-dimensional 
feature vector (assuming that the input feature 
graph has C channels), expressed as: 

 

Zc =
1

H × W
∑ ∑ xc(i, j)

W

j=1

H

i=1

 

 

where, 𝑋𝑐(𝑖, 𝑗) represents the eigenvalue of the c 
channel in the input feature map at position (𝑖, 𝑗). 

This feature vector is then transformed using a 
fully connected layer to generate channel attention 
weights. The input dimension of the fully connected 
layer is C, and the output dimension is C, and its 
transformation formula is as follows: 
 
Wc = ∂(FC(Zc)) 
 

3. Comprehensive attention generation: A 
comprehensive attention weight w is obtained by 
combining the generated spatial attention weight 
𝑊𝑠 with the channel attention weight 𝑊𝑐 . Here, the 
combination is performed by simple element 
multiplication, that is: 

 
W = Ws! Wc 
 

where, ! indicates the element multiplication 
operation. 

Finally, the comprehensive attention weight w is 
applied to the input feature graph x, and the feature 
graph y after the SCA attention mechanism 
processing is obtained. The formula is: 
 
y = w. x 
 

SCA attention mechanism structure: 
 

• Input layer: Input feature graph x, whose 
dimensions are (C, H, W). 

• Spatial information embedding layer: the input 
feature map is divided into spatial partitions, the 
feature statistics of each partition are calculated, 
and the spatial attention weight 𝑊𝑠 is obtained 
after the transformation of the fully connected 
layer. 

• Channel information embedding layer: The input 
feature map is globally average-pooled, and the 
channel attention weight w is obtained after the 
transformation of the full connection layer 𝑊𝑐 . 

• Comprehensive attention generation layer: The 
comprehensive attention weight w is obtained by 
multiplying the spatial attention weight and the 
channel attention weight. 

• Output layer: The comprehensive attention weight 
is applied to the input feature graph to obtain the 
output feature graph y. 

 
The parameter n (number of partitions) is used 

to control the size of the space partition and other 
related attributes. For example, when n is larger, the 
spatial partition is smaller, and the spatial 
information can be captured more finely, but the 
computation amount will increase accordingly. 
When n is small, the space partition is large and the 
computation is small, but some spatial details may 
be lost. 

2.3. Experimental indicators 

All the experiments in this research have used 
Windows 10 to operate the system, a GeForce RTX 
1650 graphics card, CUDA 11.0, Anaconda3 family 
Learn computing environment, and PyCharm IDE 
development environment. A neural network is built 
on the Pytorch framework to analyze the 
pathological images of thyroid cancer, conduct 
training, validation, and testing. 

The performance of deep learning models in 
different tasks needs to be quantified. Horizontal 
comparison can only be made by conducting 
experiments on indicators. This study was conducted 
by precision, recall rate, specificity, F1-score, ROC 
curve, and Kappa coefficient to evaluate and test 
performance. 

2.4 Data source 

The data used in this paper are from the TCGA-
LUAD lung cancer image dataset. (TCGA-LUAD is the 
pathological cohort of TCGA, which contains 
sequencing data and pathological image information. 
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LUAD RNA-seq data from patients with cancer 
genome atlas (https://portal.gdc.cancer.gov/), the 

dataset included 541 patients with 476 images. Basic 
information of the case is shown in Fig. 3.  

 

Spatial-Channel 
Attention(SCA) Mechanism 

Attention Mechanism 
Branch

Input Layer Branch

Spatial Attention Channel Attention Input Feature Map(C,H,W) Comprehensive Attention

 
Fig. 2: Structure of the SCA mechanism 

 

  
A B 

 
 

C D 

 
E 

Fig. 3: Clinical and pathological characteristics: (A) age; (B) smoking years; (C) sample type; (D) pathologic stage; (E) 
histological type 

 

3. Experimental results and analysis 

3.1. Parameter optimization 

The proper selection of hyperparameters is 
crucial for deep learning models, whose goal is to 
enable the models to learn data structures quickly 
while avoiding overfitting and underfitting. The 
optimized parameters usually include batch sample 
size, learning rate, parameters of different 

optimizers, etc. These parameters help the neural 
network convergence, thus improving the model 
performance. Limited by the number of lung cancer 
data sets, this study only divided some lung cancer 
pathological images for auxiliary diagnostic system 
testing. The remaining data sets are randomly 
divided into the training set, verification set, and test 
set of the neural network according to the ratio of 
7:2:1, and the training set will be augmented and 
expanded. Next, optimization experiments will be 
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carried out for parameters such as learning rate, 
convolution kernel, batch sample size, and training 
set/verification set. 

 
1. Learning rate optimization: First compares 

different initial learning rates (lr) and learning 
decay rate (lrf). In view of the large number of lung 
cancer grades, the average values of all grades 
were also calculated here, and the comparison 
results are shown in Table 2. 

 
As can be seen from Table 3, the precision rate, 

recall rate, specificity, and F1 values of group 5 are 

significantly higher than those of the other 8 groups. 
Therefore, setting the initial lr to 0.01 and the lrf to 
0.01 can obtain a network model with better effect, 
which is consistent with the conclusion of some 
existing studies that setting the initial learning rate 
to 0.01 has a better effect. 

 
2. Batch sample size optimization: The number of 

batch samples will affect the optimization degree 
and speed of the model. Due to the limitation of 
computer performance in this study, the batch size 
cannot be greater than 32. The impact of batch size 
on the network is shown in Table 3. 

 
Table 2: Comparison among different learning rates and learning decay rates 

Learning rate and learning decay 
rate 

Lost value Precision rate Recall rate specificity F1 score 

lr = 0.001; lrf = 0.1 0.235 0.920 0.917 0.980 0.918 
lr = 0.001; lrf = 0.01 0.235 0.919 0.918 0.981 0.917 

lr = 0.001; lrf = 0.001 0.243 0.911 0.910 0.979 0.910 
lr = 0.01; lrf = 0.1 0.071 0.940 0.930 0.985 0.935 

lr = 0.01; lrf = 0.01 0.073 0.942 0.932 0.986 0.936 
lr = 0.01; lrf = 0.001 0.079 0.940 0.930 0.985 0.935 

lr = 0.1; lrf = 0.1 0.503 0.803 0.790 0.950 0.788 
lr = 0.1; lrf = 0.01 0.380 0.893 0.889 0.970 0.888 

lr = 0.1; lrf = 0.001 0.352 0.895 0.890 0.972 0.890 

 
Table 3: Comparison among different batch sizes 

Batch size Lost value Precision rate Recall rate specificity F1 score 
4 0.320 0.900 0.898 0.980 0.899 
8 0.237 0.911 0.910 0.982 0.910 

16 0.122 0.952 0.951 0.990 0.950 
32 0.100 0.944 0.943 0.988 0.943 

 

It can be seen from Table 4 that when the number 
of iterations is fixed, the larger batch size has the 
lowest loss value, but the accuracy rate is not 
optimal. When batch size = 16, the loss value is small, 
and other indicators are at the highest value, so 
when batch size = 16, the performance of the model 
is the best. 

 
3. Other optimization: Some parameters are modified 

when it is not recommended to train the model, 
such as beta 1 set to 0.9 and beta 2 set to 0.999 in 
the Adam optimizer. In addition to the above 

parameters, there are also some common 
parameters that need to be optimized and adjusted 
by researchers, such as the convolution kernel size 
and training set/verification set ratio. 

 
Convolution kernel size: Horizontal comparison 

of convolution kernel sizes of 3×3, 5×5, and 7×7 is 
carried out, and the comparison results are shown in 
Table 4. 

In the case of little difference in loss values, the 
7×7 convolution kernel with a high accuracy rate is 
preferred. 

 
Table 4: Comparison among different convolutional kernels 

Convolution kernel size Lost value Precision rate Recall rate specificity F1 score 
3×3 0.150 0.930 0.932 0.981 0.943 
5×5 0.145 0.935 0.935 0.982 0.946 
7×7 0.140 0.940 0.952 0.982 0.948 

 

Transfer learning: Transfer learning has a 
significant gain effect on most networks, which can 
improve the learning efficiency of the network. Table 
5 shows the impact of transfer learning on deep 
learning networks. In this experiment, the pre-
training weights trained on ImageNet were imported 

into the convolutional neural network to reduce the 
training time of a large number of lung cancer 
pathology data sets. The index values of the two 
experiments are close, but the number of training 
iterations with transfer learning is one-quarter of 
that without transfer learning. 

 
Table 5: Effect of transfer learning on the network 

Whether to use transfer learning Lost value Precision rate Recall rate specificity F1 score 
Yes 40 0.954 0.952 0.987 0.952 
No 100 0.958 0.953 0.988 0.957 

 

3.2. Experimental result 

To evaluate the performance of the SCA-ResNet 
model on a lung cancer pathology image dataset, we 

conducted a series of experiments and compared it 
with the ResNet-50 model (Table 6). In the 
experiment, we recorded the changes of important 
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indicators such as precision rate, recall rate, 
specificity, and F1 score during model training. 

In terms of accuracy rate, the accuracy data of the 
ResNet-50 model in the training process is 0.945, 
while the accuracy rate of the SCA-ResNet model 
reaches 0.960. It can be seen that the SCA-ResNet 
model has an improvement of 0.015 in accuracy. In 
terms of recall rate, the recall rate of the ResNet-50 
model is 0.938, and that of the SCA-ResNet model is 
0.972, which indicates that the SCA-ResNet model 
also shows an advantage of 0.034 in recall rate. In 
terms of the specificity index, the specificity of the 
ResNet-50 model was 0.964, and that of the SCA-
ResNet model was increased to 0.984, indicating that 
the SCA-ResNet model had a stronger ability to 
correctly identify negative samples. The F1 score 
combines the information of accuracy and recall rate. 
The F1 score of the ResNet-50 model is 0.951, and 
the F1 score of the SCA-ResNet model is 0.971, which 
further proves that the SCA-ResNet model is better 
than the ResNet-50 model in overall performance. 

The ROC curve is also a key way to measure 
model performance. In the training process based on 

the lung cancer pathological image dataset in this 
study, the ROC curve comparison between the 
ResNet-50 and SCA-ResNet models showed that the 
closer the ROC curve was to the upper left corner, 
the lower the false positive rate and the higher the 
true positive rate of the classifier. The ROC curve of 
the SCA-ResNet model is closer to the upper left 
corner, and the area under the ROC curve of the SCA-
ResNet model is larger than that of the ResNet-50 
model, which further proves the superiority of the 
SCA-RESNET model in the lung cancer pathological 
image classification task. 

In addition, the Kappa coefficient of the ResNet-
50 model is 0.943, and that of the SCA-ResNet model 
is 0.952. The Kappa coefficient of the two models is 
at a higher level, but the Kappa coefficient of the 
SCA-ResNet model is 0.008 higher than that of the 
ResNet-50 model, which indicates that the predicted 
results of the SCA-ResNet model are more consistent 
with the actual classification results. 

In summary, the SCA-ResNet model demonstrates 
superior performance across various metrics 
compared to the ResNet-50 model. 

 
Table 6: Comparison of diagnostic efficiency 

Cancer grade 
ResNet-50 SCA-ResNet 

Precision rate Recall rate specificity F1 score Precision rate Recall rate specificity F1 score 
I 0.957 0.937 0.951 0.932 0.986 0.987 0.992 0.983 
II 0.932 0.912 0.933 0.932 0.975 0.982 0.994 0.961 
III 0.947 0.961 0.987 0.977 0.957 0.977 0.977 0.977 
IV 0.943 0.943 0.983 0.963 0.923 0.943 0.973 0.963 

Average 0.945 0.938 0.964 0.951 0.960 0.972 0.984 0.971 

 

The ROC curve is also an important way to 
measure the model. Figs. 4 and 5 show the ROC 
curve comparison between the ResNet-50 model and 
the improved SCA-ResNet during training based on 
the data set of this study. The closer the ROC curve is 
to the upper left corner, the lower the false positive 

rate and the higher the true positive rate of the 
classifier. As can be seen from Figs. 4 and 5, both 
models perform well, but the area under the total 
ROC curve of the improved SCA-ResNet is larger than 
that of the ResNet-50 model, which is why SCA-
ResNet performs better. 

 

  
A B 

  
C D 

Fig. 4: ROC curves of ResNet-50: (A) first class; (B) second class; (C) third class; (D) fourth class 
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Fig. 5: ROC curves of SCA-ResNet: (A) first class; (B) second class; (C) third class; (D) fourth class 
 

4. Discussion 

The optimization of hyperparameters in this 
study significantly enhances the convergence speed 
and overall performance of the neural networks. 
However, the limited number of lung cancer datasets 
constrains the ability to comprehensively cover all 
potential data scenarios, which may result in some 
limitations in the parameter optimization outcomes. 
Furthermore, the parameter optimization process 
only explored a limited range of values, suggesting 
the possibility of even better parameter 
combinations that were not identified in this study. 

Compared to the ResNet-50 model, SCA-ResNet 
introduces a spatial-channel attention mechanism, 
enabling the model to focus more on critical 
channels and spatial regions, thereby improving 
feature utilization. By dynamically adjusting feature 
weights, it enhances important features and 
suppresses redundant information, which enhances 
the model's feature representation capability and 
generalization performance. This allows the model 
to process complex pathological images more 
effectively and distinguish various key features, 
ultimately improving its ability to accurately classify 
different cancer grades. 

The SCA-ResNet model constructed in this study 
shows significant potential for application in the 
early diagnosis of lung cancer. Accurate classification 
and analysis of pathological images can provide 
doctors with precise diagnostic references, thereby 
improving the efficiency and accuracy of lung cancer 
diagnosis. 

To further enhance the model's performance, 
future research could focus on collecting a more 
extensive dataset of lung cancer pathology images to 
address the limitations imposed by the current 
dataset size. Exploring other advanced model 

structures or optimization algorithms could also lead 
to improved performance in lung cancer pathological 
image analysis tasks. Additionally, integrating the 
model with other clinical information, such as 
patient genetic data and clinical symptoms, could 
help build a more comprehensive lung cancer 
diagnosis system. 

The limited dataset size may not represent the 
full diversity of lung cancer pathological images, 
potentially affecting the generalizability of the 
results. Assumptions made during parameter 
optimization and model training, such as the fixed 
range of hyperparameters, may also limit the scope 
of the findings. Future research should consider 
these threats and aim to validate the model's 
performance across more diverse and extensive 
datasets. 

4.1. Future scope 

Future research should focus on addressing the 
limitations identified in this study by expanding the 
dataset and exploring a broader range of 
hyperparameters. Additionally, investigating the 
integration of the SCA-ResNet model with other 
advanced techniques, such as ensemble learning and 
hybrid models, could further enhance its 
performance. The potential application of the model 
in other types of cancer or medical image analysis 
tasks also warrants exploration. The development of 
user-friendly software tools based on the SCA-
ResNet model could facilitate its adoption in clinical 
settings, ultimately contributing to improved patient 
outcomes. Pan et al. (2025) found that the use of a 
new architecture, VcaNet, integrating the visual 
converter (ViT) with the fusion channel and spatial 
attention module (CBAM), aims to enhance 3D brain 
tumor segmentation. In the future, attempts can be 
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made to integrate SCA with Vision Transformers for 
clinical 3D pathology to lay the foundation for the 
future development of medical imaging. 
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ALK Anaplastic lymphoma kinase 
BRAF B-Raf proto-oncogene 
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FC Fully connected layer 
FISH Fluorescence in situ hybridization 
H&E Hematoxylin and eosin 
IDE Integrated development environment 
KRAS Kirsten rat sarcoma virus 
LCC Large cell carcinoma 
lr Learning rate 
lrf Learning rate decay factor 
MET MET proto-oncogene 
NSCLC Non-small cell lung cancer 
NTRK Neurotrophic tyrosine receptor kinase 
PD-L1 Programmed death-ligand 1 
RESNET Residual Network 
RNA-seq Ribonucleic acid sequencing 
ROC Receiver operating characteristic 
ROS1 ROS proto-oncogene 1 
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Spatial-channel attention Residual Network 
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