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With the increasing use of deep learning in medical imaging, particularly in
analyzing lung cancer pathology images, this technology shows great
promise for building models for pathological grading and prognosis. This
study highlights the growing importance of deep learning in this area, but
also notes that accurately classifying lung cancer pathology images remains a
difficult task, especially when high precision is needed for grading and
prognosis. The aim of this research is to improve the classification of lung
cancer pathology images by developing and optimizing a deep learning
model. The study focuses on comparing different models, with special
attention given to improving the performance of the SCA-ResNet model. The
results show that SCA-ResNet performs better than the commonly used
ResNet-50 model. It achieves higher scores in several evaluation measures,
including precision, recall, specificity, F1 score, and the Kappa coefficient.
ROC curve analysis also supports the superior performance of SCA-ResNet,
showing better diagnostic accuracy across different cancer grades. These
findings suggest that the SCA-ResNet model can offer more accurate and
reliable classification of lung cancer pathology images, which may help
doctors make better decisions about treatment and prognosis. Its use in
clinical practice could lead to improved diagnostic accuracy and better
outcomes for patients.

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

15% are small cell lung cancers with neuroendocrine
features.

Lung cancer is one of the most common cancers
worldwide, with a high mortality rate, accounting for
18% of all cancer-related deaths. Smoking is the
main cause of lung cancer (Klupczynska-Gabryszak
et al,, 2024). Lung cancer is a heterogeneous disease,
mainly divided into non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC) (Wen et
al,, 2024). Non-small cell lung cancer, which accounts
for 85% of lung cancer cases, includes
adenocarcinoma (ADC), squamous cell carcinoma
(SCC), and large cell carcinoma (LCC); The remaining
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In the era of personalized medicine, the diagnosis
and precise classification of lung cancer rely heavily
on cytological and histological typing, which is
usually evaluated microscopically by standard
histochemical staining and auxiliary
immunohistochemical staining. Molecular assays are
also essential for the targeting of personalized
therapies and for monitoring stratification of patient
response to targeted and immunotherapy (Anand et
al,, 2020).

According to guidelines from the College of
American Pathologists, the International Association
for the Study of Lung Cancer, and the Association for
Molecular Pathology (Rodriguez-Canales et al., 2016;
Malapelle et al,, 2021), patients with advanced lung
adenocarcinoma should be tested for EGFR
mutations, ALK and ROS1 rearrangements,
BRAFV600E, RET rearrangements, MET exon 14
hops, KRAS mutations, and NTRK1-3 fusions (Wen et
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al., 2024; Lindeman et al., 2018). For advanced non-
neuroendocrine carcinoma, detection of PD-L1
expression status is important because patients with
PD-L1 tumor proportion score (TPS) = 50% are
eligible for first-line treatment with the anti-PD-L1
therapy pembrolizumab. The expression status of
PD-L1 and ALK can be detected by
immunohistochemistry. Currently, progress is being
made in the detection of reflex order in lung cancer,
which underscores the importance of collaboration
among pathologists (Osmani et al., 2018; Udall et al,,
2018; Kim et al,, 2017; Wynes et al., 2014). Although
reflection detection is not yet feasible in many
laboratories, it can provide additional valuable
information, detect rare molecular changes, and
shorten the detection cycle (Anand et al, 2020;
Zacharias et al., 2021).

Over the past decade, deep learning (DL)
methods, particularly convolutional neural networks
(CNNS), have shown increasing value in pathology.
The DL model can overcome limitations such as a
global shortage of pathologists, diagnostic
subjectivity, and inter-observer and intra-observer
variability. Recent advances in lung cancer pathology
utilize the image analysis potential of H&E whole-
film imaging (WSIs) to diagnose cancer (Wang et al.,
2019; Baxi et al,, 2022). Considering that material for
70% of patients with advanced, unresectable lung
cancer is limited to small biopsies and cytological
specimens, the DL approach can guide diagnosis
with high precision, reduce the additional special
staining required for differential diagnosis, and
preserve limited material for molecular testing and
oncology studies (Bubendorf et al., 2017).

Traditional methods of pathology image analysis
rely on hand-crafted features and traditional
machine learning methods such as support vector
machines and random forests. Although these
techniques have had some success, they are often
inadequate in dealing with complex patterns and
textures in pathological images (Bubendorf et al,
2017). The emergence of deep learning, particularly
convolutional neural networks, has revolutionized
the field of medical imaging by enabling high-
precision automatic feature extraction and
classification (Igbal et al., 2024).

In recent years, Transformers models originally
developed for natural language processing tasks
have shown great potential in image analysis
because of their ability to capture remote
dependencies and contextual information through
self-attention mechanisms (Ouzzani et al, 2016).
Combining Transformers with CNN can further
enhance feature extraction capabilities by focusing
on relevant regions in pathological images, thereby
improving the accuracy of diagnostic and prognostic
models (Jain et al,, 2022).

Digital pathology uses full-section scanning
technology to convert cell and histopathological
slides into high-resolution images known as Whole
Slide images (WSI). This technology was originally
developed for research, but is now widely used in
clinical practice. Through imaging and processing of
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high-magnification images, it not only simplifies the
daily work of pathologists, enhances diagnostic
accuracy, reduces misdiagnosis due to technical
differences, saves diagnostic time, supports remote
consultation and information sharing, and
accelerates the process of obtaining external expert
opinions (Kanavati et al.,, 2020; Moranguinho et al.,
2021; Tsuneki and Kanavati, 2022). The digital
management of pathological sections was realized.
Still, the number of cases is growing far faster than
specialists can be trained, and it is uneconomical to
devote valuable human resources to repetitive image
recognition and diagnostic work. In recent years,
with the development of artificial intelligence
technology and the popularization of digitized
pathological sections, digital pathology can gradually
meet the needs of doctors for accurate detection,
classification, and prediction of pathological images
(Civit-Masot et al., 2022; Kanavati et al., 2021).

The purpose of this study is to explore and
optimize the classification model of lung cancer
pathological images, in order to improve the
efficiency and accuracy of the construction of
pathological classification and prognosis models. By
introducing the spatial-channel attention (SCA)
mechanism, to enhance the application of deep
learning technology in the analysis of lung cancer
pathological images. In the comparison of model
performance, the SCA-ResNet model is superior to
the traditional ResNet-50 model in accuracy, recall
rate, specificity, F1 score, and Kappa coefficient. ROC
curve analysis also showed that the SCA-ResNet
model performed better in the task of classifying
lung cancer pathological images, especially in the
diagnostic efficiency of different cancer grades.
Through these studies, this paper aims to provide a
more accurate and efficient model for the
classification of pathological images and help the
diagnosis and treatment of lung cancer.

By achieving these goals, this study aims to
promote innovation in lung cancer pathological
image analysis technology and provide more
powerful technical support for precision medicine
and personalized treatment.

2. Methodology

The methodology part of this study elaborates on
the overall process of using deep learning and
Transformer technology to extract features and build
a pathological grade and prognosis model of lung
cancer. The key steps include data acquisition, pre-
processing, model design and training, evaluation,
and verification.

2.1. Feature extraction based on pathological
diagnostic criteria

Deep learning networks rely on learning cell
features in pathological images to determine the
benign and malignant grade of lung cancer nodules.
The pathological diagnostic criteria of lung cancer
can be divided into 4 levels, and the pathological
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images of lung cancer are professionally diagnosed
and graded by the pathologists of the Affiliated
Cancer Hospital of Fudan University in Shanghai. The
pathological images and deep learning features of
lung cancer are shown in Tables 1 and 2.

Pathologists grade  pathological samples
according to the pathological diagnostic criteria of
lung cancer. However, the computer cannot directly
extract the cellular features of pathological images
according to the grading criteria. The abstract
features of the images need to be transformed into
natural features such as brightness, edge, texture,
and color that can be recognized by the computer.
Therefore, it is necessary to simplify the pathological
diagnosis criteria of lung cancer into the feature
classification criteria that can be learned by the
computer, as shown in Table 1. A lot of information
is difficult to quantify numerically, so part of the
information is displayed graphically, and part of the
descriptive information is shown in Fig. 1.

2.2. Improving the ResNet-50 network

In 2015, Microsoft proposed the basic Network
architecture of the ResNet (Residual Network)
model, of which RESNET-50 is the most commonly
used one. The ResNet model solves the problem of
gradient disappearing and gradient explosion in
deep neural network training through residual
connection, which enables the network to learn
image features at a deeper level.

Some of the attention mechanisms in the ResNet-
50 network have certain limitations in processing
lung cancer pathological images. The spatial
distribution of cancer cells in lung cancer
pathological images and the relationship between
cancer cells and surrounding tissues are of great

significance to the pathological diagnosis results, but
the original attention mechanism may pay too much
attention to the channel information and ignore the
accuracy of cancer cell location information. To solve
this problem, this study introduces the Spatial-
Channel Attention (SCA) mechanism.

The SCA attention mechanism considers both
spatial and channel information. In the spatial
dimension, it highlights the features of cancer cells
and their surrounding key tissue regions by
weighting the features of different regions. In terms
of channel dimension, the importance of different
characteristic channels is re-evaluated. Specifically,
the SCA attention mechanism first partitions the
input feature graph in spatial dimensions, computes
feature statistics for each partition, and then
generates spatial attention weights based on this
information.

At the same time, in the channel dimension, a
similar method is used to generate channel attention
weight. Finally, a comprehensive attention weight is
obtained by combining the spatial attention weight
and the channel attention weight and applied to the
input feature map.

The transfer learning strategy is used to replace
the original attention mechanism on the basis of the
original ResNet-50 model network. This new model
is called the improved ResNet-50, namely the SCA-
ResNet model. The SCA attention mechanism
structure is shown in Fig. 2. Among them, r is used to
control the size of the space partition and other
related attributes. The SCA attention mechanism
encodes location information and channel
relationships, including  spatial information
embedding, channel information embedding and
synthetic attention generation.

Table 1: Classification criteria of lung cancer

Cgizgir Pathologist Diagnostic Criteria Computer Feature Classification Standard
Small tumor confined to lung; no lymph node or distant Brightness: Uniform, minimal difference from. normal tissue.
. . . Edges: Clear and regular boundaries.
I metastasis. Well-differentiated cells; morphology close to e
normal: rare mitosis Texture: Simple, regular.
’ ' Color: Similar to normal cells, evenly distributed.
Tumor shows local growth, may invade nearby tissue; no Brightness: Slightly l.ower than ngrmal tlssue.; some darker regions.
. . . T Edges: Begin to appear irregular, mildly blurred.
11 metastasis. Moderately differentiated cells; mitosis more .
Texture: More complex, locally disturbed.
frequent than grade 1. -
Color: Increased variation from normal cells.
Brightness: Significantly lower, uneven with interleaved dark and bright
. . . areas.
111 Large tumor: p0551b_le 1_*eg10na1 l_ymph_nm_ie metastasis; poor Edges: Irregular, blurred, with protrusions or dents.
cell differentiation; atypical mitosis observed. X
Texture: Very complex and chaotic.
Color: Strongly different from normal cells, uneven distribution.
Brightness: Extremely uneven with large dark areas.
v Distant metastasis (e.g. brain, bone). Very poor differentiation; Edges: Highly irregular and invasive; boundary unclear.

severe cell deformation; many atypical mitoses.

Texture: Disorganized, loss of normal structure.
Color: Highly heterogeneous, complex variations.
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1. Spatial information embedding: In order to
effectively capture the spatial information in lung
cancer pathological images, the input feature map
was divided into n partitions, where the size of
each partition is (g’\:]_v) (assume that the height of
the input feature map is H and the width is W). For
each partition, its characteristic statistics are
calculated using an average pooling operation. For
the KTH partition, its average pooled
characteristics are expressed as:

kH kw
1 n n
Zs,k - E N w X(lr])
n n i=(k_nl)Hj=(k_;)W

where, x(i, j) represents the eigenvalue of the input
feature map at position (i, j).

Through the above operation, the feature
representation of n partitions is obtained
{Z:,1,Z,2,...,Z,n}.

These features are then transformed using a fully
connected layer (FC) to generate spatial attention
weights. The input dimension of the fully connected
layer is n, and the output dimension is n, and its
transformation formula is as follows:

Ws = 9(FC(Z,))

where, Z;, = [Z,,1,Z,,2,...,Z,,n], & is the activation
function. The sigmoid function is used here.

2. Channel information embedding: Similar to spatial
information embedding, in terms of channel
dimension, the input feature graph is firstly
globally average-pooled to obtain a C-dimensional
feature vector (assuming that the input feature
graph has C channels), expressed as:

w

1 H
Ze=Hox WZZXCG'D

i=1j=1

where, X.(i,j) represents the eigenvalue of the c
channel in the input feature map at position (i, j).

This feature vector is then transformed using a
fully connected layer to generate channel attention
weights. The input dimension of the fully connected
layer is C, and the output dimension is C, and its
transformation formula is as follows:

We = 0(FC(Zc))

3. Comprehensive attention generation: A
comprehensive attention weight w is obtained by
combining the generated spatial attention weight
W; with the channel attention weight WW_. Here, the
combination is performed by simple element
multiplication, that is:

W = W, W,

where, ! indicates

operation.

the element multiplication
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Finally, the comprehensive attention weight w is
applied to the input feature graph x, and the feature
graph y after the SCA attention mechanism
processing is obtained. The formula is:

y = W.X

SCA attention mechanism structure:

e Input layer: Input feature graph x, whose
dimensions are (C, H, W).

e Spatial information embedding layer: the input
feature map is divided into spatial partitions, the
feature statistics of each partition are calculated,
and the spatial attention weight W, is obtained
after the transformation of the fully connected
layer.

e Channel information embedding layer: The input
feature map is globally average-pooled, and the
channel attention weight w is obtained after the
transformation of the full connection layer W..

o Comprehensive attention generation layer: The
comprehensive attention weight w is obtained by
multiplying the spatial attention weight and the
channel attention weight.

e Output layer: The comprehensive attention weight
is applied to the input feature graph to obtain the
output feature graph y.

The parameter n (number of partitions) is used
to control the size of the space partition and other
related attributes. For example, when n is larger, the
spatial partition is smaller, and the spatial
information can be captured more finely, but the
computation amount will increase accordingly.
When n is small, the space partition is large and the
computation is small, but some spatial details may
be lost.

2.3. Experimental indicators

All the experiments in this research have used
Windows 10 to operate the system, a GeForce RTX
1650 graphics card, CUDA 11.0, Anaconda3 family
Learn computing environment, and PyCharm IDE
development environment. A neural network is built
on the Pytorch framework to analyze the
pathological images of thyroid cancer, conduct
training, validation, and testing.

The performance of deep learning models in
different tasks needs to be quantified. Horizontal
comparison can only be made by conducting
experiments on indicators. This study was conducted
by precision, recall rate, specificity, F1-score, ROC
curve, and Kappa coefficient to evaluate and test
performance.

2.4 Data source

The data used in this paper are from the TCGA-
LUAD lung cancer image dataset. (TCGA-LUAD is the
pathological cohort of TCGA, which contains
sequencing data and pathological image information.
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LUAD RNA-seq data from patients with cancer
genome atlas (https://portal.gdc.cancer.gov/), the

dataset included 541 patients with 476 images. Basic
information of the case is shown in Fig. 3.

Spatial-Channel
Attention(SCA) Mechanism

Attention Mechanism
Branch

Input Layer Branch

N /T

Input Feature Map(C,H,W) Comprehensive Attention

Fig. 2: Structure of the SCA mechanism
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Fig. 3: Clinical and pathological characteristics: (A) age; (B) smoking years; (C) sample type; (D) pathologic stage; (E)
histological type

3. Experimental results and analysis
3.1. Parameter optimization

The proper selection of hyperparameters is
crucial for deep learning models, whose goal is to
enable the models to learn data structures quickly
while avoiding overfitting and underfitting. The
optimized parameters usually include batch sample
size, learning rate, parameters of different
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optimizers, etc. These parameters help the neural
network convergence, thus improving the model
performance. Limited by the number of lung cancer
data sets, this study only divided some lung cancer
pathological images for auxiliary diagnostic system
testing. The remaining data sets are randomly
divided into the training set, verification set, and test
set of the neural network according to the ratio of
7:2:1, and the training set will be augmented and
expanded. Next, optimization experiments will be
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carried out for parameters such as learning rate,
convolution kernel, batch sample size, and training
set/verification set.

1. Learning rate optimization: First compares
different initial learning rates (Ir) and learning
decay rate (Irf). In view of the large number of lung
cancer grades, the average values of all grades
were also calculated here, and the comparison
results are shown in Table 2.

As can be seen from Table 3, the precision rate,
recall rate, specificity, and F1 values of group 5 are

significantly higher than those of the other 8 groups.
Therefore, setting the initial Ir to 0.01 and the Irf to
0.01 can obtain a network model with better effect,
which is consistent with the conclusion of some
existing studies that setting the initial learning rate
to 0.01 has a better effect.

2. Batch sample size optimization: The number of
batch samples will affect the optimization degree
and speed of the model. Due to the limitation of
computer performance in this study, the batch size
cannot be greater than 32. The impact of batch size
on the network is shown in Table 3.

Table 2: Comparison among different learning rates and learning decay rates

Learning rate and learning decay

rate Lost value Precision rate Recall rate specificity F1 score
Ir=0.001; Irf = 0.1 0.235 0.920 0.917 0.980 0.918
Ir = 0.001; Irf = 0.01 0.235 0.919 0.918 0.981 0.917
Ir =0.001; Irf = 0.001 0.243 0911 0.910 0.979 0.910
Ir=0.01; Irf=0.1 0.071 0.940 0.930 0.985 0.935
Ir=0.01; Irf=0.01 0.073 0.942 0.932 0.986 0.936
Ir=0.01; Irf= 0.001 0.079 0.940 0.930 0.985 0.935
Ir=0.1; Irf= 0.1 0.503 0.803 0.790 0.950 0.788
Ir=0.1;1rf= 0.01 0.380 0.893 0.889 0.970 0.888
Ir=0.1; Irf= 0.001 0.352 0.895 0.890 0.972 0.890

Table 3: Comparison among different batch sizes

Batch size Lost value Precision rate Recall rate specificity F1 score
4 0.320 0.900 0.898 0.980 0.899
8 0.237 0911 0.910 0.982 0.910
16 0.122 0.952 0.951 0.990 0.950
32 0.100 0.944 0.943 0.988 0.943

It can be seen from Table 4 that when the number parameters, there are also some common

of iterations is fixed, the larger batch size has the
lowest loss value, but the accuracy rate is not
optimal. When batch size = 16, the loss value is small,
and other indicators are at the highest value, so
when batch size = 16, the performance of the model
is the best.

. Other optimization: Some parameters are modified
when it is not recommended to train the model,
such as beta 1 set to 0.9 and beta 2 set to 0.999 in
the Adam optimizer. In addition to the above

parameters that need to be optimized and adjusted
by researchers, such as the convolution kernel size
and training set/verification set ratio.

Convolution kernel size: Horizontal comparison
of convolution kernel sizes of 3x3, 5x5, and 7x7 is
carried out, and the comparison results are shown in
Table 4.

In the case of little difference in loss values, the
7x7 convolution kernel with a high accuracy rate is
preferred.

Table 4: Comparison among different convolutional kernels

Convolution kernel size Lost value Precision rate Recall rate specificity F1 score
3x3 0.150 0.930 0.932 0.981 0.943
5x5 0.145 0.935 0.935 0.982 0.946
7x7 0.140 0.940 0.952 0.982 0.948
Transfer learning: Transfer learning has a into the convolutional neural network to reduce the

significant gain effect on most networks, which can
improve the learning efficiency of the network. Table
5 shows the impact of transfer learning on deep
learning networks. In this experiment, the pre-
training weights trained on ImageNet were imported

training time of a large number of lung cancer
pathology data sets. The index values of the two
experiments are close, but the number of training
iterations with transfer learning is one-quarter of
that without transfer learning.

Table 5: Effect of transfer learning on the network

Whether to use transfer learning Lost value Precision rate Recall rate specificity F1 score
Yes 40 0.954 0.952 0.987 0.952
No 100 0.958 0.953 0.988 0.957

3.2. Experimental result

To evaluate the performance of the SCA-ResNet
model on a lung cancer pathology image dataset, we

24

conducted a series of experiments and compared it
with the ResNet-50 model (Table 6). In the
experiment, we recorded the changes of important
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indicators such as precision rate, recall rate, the lung cancer pathological image dataset in this
specificity, and F1 score during model training. study, the ROC curve comparison between the
In terms of accuracy rate, the accuracy data of the ResNet-50 and SCA-ResNet models showed that the
ResNet-50 model in the training process is 0.945, closer the ROC curve was to the upper left corner,
while the accuracy rate of the SCA-ResNet model the lower the false positive rate and the higher the
reaches 0.960. It can be seen that the SCA-ResNet true positive rate of the classifier. The ROC curve of
model has an improvement of 0.015 in accuracy. In the SCA-ResNet model is closer to the upper left
terms of recall rate, the recall rate of the ResNet-50 corner, and the area under the ROC curve of the SCA-
model is 0.938, and that of the SCA-ResNet model is ResNet model is larger than that of the ResNet-50
0.972, which indicates that the SCA-ResNet model model, which further proves the superiority of the
also shows an advantage of 0.034 in recall rate. In SCA-RESNET model in the lung cancer pathological
terms of the specificity index, the specificity of the image classification task.
ResNet-50 model was 0.964, and that of the SCA- In addition, the Kappa coefficient of the ResNet-
ResNet model was increased to 0.984, indicating that 50 model is 0.943, and that of the SCA-ResNet model
the SCA-ResNet model had a stronger ability to is 0.952. The Kappa coefficient of the two models is
correctly identify negative samples. The F1 score at a higher level, but the Kappa coefficient of the
combines the information of accuracy and recall rate. SCA-ResNet model is 0.008 higher than that of the
The F1 score of the ResNet-50 model is 0.951, and ResNet-50 model, which indicates that the predicted
the F1 score of the SCA-ResNet model is 0.971, which results of the SCA-ResNet model are more consistent
further proves that the SCA-ResNet model is better with the actual classification results.
than the ResNet-50 model in overall performance. In summary, the SCA-ResNet model demonstrates
The ROC curve is also a key way to measure superior performance across various metrics
model performance. In the training process based on compared to the ResNet-50 model.

Table 6: Comparison of diagnostic efficiency

Cancer erade ResNet-50 SCA-ResNet
8 Precision rate Recall rate specificity F1 score Precision rate Recall rate specificity F1 score
I 0.957 0.937 0.951 0.932 0.986 0.987 0.992 0.983
1l 0.932 0.912 0.933 0.932 0.975 0.982 0.994 0.961
1 0.947 0.961 0.987 0.977 0.957 0.977 0.977 0.977
v 0.943 0.943 0.983 0.963 0.923 0.943 0.973 0.963
Average 0.945 0.938 0.964 0.951 0.960 0.972 0.984 0.971
The ROC curve is also an important way to rate and the higher the true positive rate of the
measure the model. Figs. 4 and 5 show the ROC classifier. As can be seen from Figs. 4 and 5, both
curve comparison between the ResNet-50 model and models perform well, but the area under the total
the improved SCA-ResNet during training based on ROC curve of the improved SCA-ResNet is larger than
the data set of this study. The closer the ROC curve is that of the ResNet-50 model, which is why SCA-
to the upper left corner, the lower the false positive ResNet performs better.
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Fig. 4: ROC curves of ResNet-50: (A) first class; (B) second class; (C) third class; (D) fourth class
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4., Discussion

The optimization of hyperparameters in this
study significantly enhances the convergence speed
and overall performance of the neural networks.
However, the limited number of lung cancer datasets
constrains the ability to comprehensively cover all
potential data scenarios, which may result in some
limitations in the parameter optimization outcomes.
Furthermore, the parameter optimization process
only explored a limited range of values, suggesting
the possibility of even better parameter
combinations that were not identified in this study.

Compared to the ResNet-50 model, SCA-ResNet
introduces a spatial-channel attention mechanism,
enabling the model to focus more on critical
channels and spatial regions, thereby improving
feature utilization. By dynamically adjusting feature
weights, it enhances important features and
suppresses redundant information, which enhances
the model's feature representation capability and
generalization performance. This allows the model
to process complex pathological images more
effectively and distinguish various key features,
ultimately improving its ability to accurately classify
different cancer grades.

The SCA-ResNet model constructed in this study
shows significant potential for application in the
early diagnosis of lung cancer. Accurate classification
and analysis of pathological images can provide
doctors with precise diagnostic references, thereby
improving the efficiency and accuracy of lung cancer
diagnosis.

To further enhance the model's performance,
future research could focus on collecting a more
extensive dataset of lung cancer pathology images to
address the limitations imposed by the current
dataset size. Exploring other advanced model
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structures or optimization algorithms could also lead
to improved performance in lung cancer pathological
image analysis tasks. Additionally, integrating the
model with other clinical information, such as
patient genetic data and clinical symptoms, could
help build a more comprehensive lung cancer
diagnosis system.

The limited dataset size may not represent the
full diversity of lung cancer pathological images,
potentially affecting the generalizability of the
results. Assumptions made during parameter
optimization and model training, such as the fixed
range of hyperparameters, may also limit the scope
of the findings. Future research should consider
these threats and aim to validate the model's
performance across more diverse and extensive
datasets.

4.1. Future scope

Future research should focus on addressing the
limitations identified in this study by expanding the
dataset and exploring a broader range of
hyperparameters. Additionally, investigating the
integration of the SCA-ResNet model with other
advanced techniques, such as ensemble learning and
hybrid models, could further enhance its
performance. The potential application of the model
in other types of cancer or medical image analysis
tasks also warrants exploration. The development of
user-friendly software tools based on the SCA-
ResNet model could facilitate its adoption in clinical
settings, ultimately contributing to improved patient
outcomes. Pan et al. (2025) found that the use of a
new architecture, VcaNet, integrating the visual
converter (ViT) with the fusion channel and spatial
attention module (CBAM), aims to enhance 3D brain
tumor segmentation. In the future, attempts can be
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made to integrate SCA with Vision Transformers for
clinical 3D pathology to lay the foundation for the
future development of medical imaging.
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MET MET proto-oncogene
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