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This study explores the use of the autoregressive integrated moving average 
(ARIMA) data-driven modeling approach for forecasting peanut yields in 
Sudan. Two tests were conducted: one using the original dataset and another 
using accumulated data. The main objective was to improve forecasting 
accuracy by applying a method that incorporates accumulated data for future 
predictions. The results, based on a comparison of the two tests, indicate that 
the proposed approach enhances prediction clarity. Model identification 
showed an increase in the coefficient of determination, a decrease in the 
Bayesian information criterion (BIC), and a reduction in the mean absolute 
error. These outcomes suggest that the proposed method may provide more 
accurate forecasts and could be useful for forecasting in various fields. 
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1. Introduction 

*Solving forecasting problems is essential for 
successful agricultural planning and development. 
Therefore, it has become important to develop 
methods that enable decision-makers to understand 
underlying phenomena in the future (Pankratz, 
2009). Many types of time series analyses are 
available, for example, the classical method, the Box-
Jenkins method, and artificial neural networks. Over 
the years, several research studies examining 
predictions about economic phenomena have been 
conducted with a variety of solutions proposed 
(Shumway and Stoffer, 2017). Statistical models 
have been used to make predictions based on 
historical data. The time series model is the most 
important model for forecasting the future of 
economic phenomena (Shumway and Stoffer, 2017). 
They are popular in practice because their 
computation is simple. In addition, a variety of other 
intelligent methods have been used for forecasting 
time series data, namely artificial neural networks 
(ANN) (Wang et al., 2018), as well as the fuzzy logic 
method, the hybrid method, the support vector 
machine, and others. Because of their superior 
forecasting performance and ability to detect and 
extract non-linear relationships from a given set of 
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information, a wide variety of ANNs are commonly 
used to model time series in various applications. 

The Sudanese economy’s dependence on the 
expansion of its resources for the growth of 
agricultural production makes it vulnerable to the 
fluctuations that characterize agricultural 
production due to its dependence on rainfall. In its 
effect on the Sudanese economy’s rate of growth, it is 
clear that the most important constraint and 
limitation of production in the agricultural sector is 
the absence of a clear agricultural policy regulating 
this sector, establishing sustainable structuring, or 
increasing productivity. Oilseed crops are important 
plant-based foods in most developing countries 
because they are cheap sources of protein and 
alternatives to costly animal proteins. One of the 
most important oilseed plants cultivated in Sudan is 
the peanut, which is one of the country’s principal 
cash crops (Elshafie et al., 2011). In the early 1970s, 
the peanut ranked second after cotton among 
Sudan’s top exports, but it dropped to fifth place 
after cotton, sorghum, sesame, and gum Arabic in the 
early 1980s, when the quantity exported fluctuated 
relative to fluctuations in production, productivity, 
and cultivated area (Zhuo et al., 2016). With the 
secession of South Sudan in 2011, the country 
retreated from the leading African countries in terms 
of area cultivated and peanut production; 
consequently, Sudan ranked second after Nigeria and 
seventh globally. However, over the last 30 years, 
Sudan’s production of peanut seeds has substantially 
decreased for two reasons. The first is that the 
government neglected agriculture to focus more on 
increasing oil production, which greatly decreased 
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with the secession of South Sudan in 2011. The 
second reason is that the country has been caught up 
in a vicious cycle of insecurity and conflict in the area 
of agriculture. 

The peanut is one of the most important oilseed 
crops since it is a main source of concentrated 
calories necessary for human and animal nutrition, 
while oilseed, cake, and haulms are traditionally 
used as animal feed. There are two types of this 
sandy summer crop grown in Sudan. In the western 
part of the county, in Darfur, it comprises 
approximately 60% to 70% of the total production 
and is known to be of better quality, while in Gazeria, 
the central part of Sudan, and in East Sudan, the 
other type is grown. The crop yields a quick cash 
return for farms because the lands are characterized 
by double or triple agricultural cycles. This results in 
better economic yields than other summer crops. 
Furthermore, the country consumes about 65% to 
70% of the product locally and exports about 30% to 
35% to European and Arab countries, although the 
quantity exported has declined in recent years due to 
reductions in Sudanese production. 

Forecasting plays a pivotal role in decision-
making. It is an important and necessary tool 
for governments to develop future production 
policies, identify problems, and devise solutions. 
Good crop yield estimates affect seasonal crop 
management decisions. Many studies in Sudan have 
sought to find models that might accurately predict 
the future value of the peanut crop due to its 
importance as a cooking oil and its significant 
contribution to the gross national product (GNP). An 
important aspect of the modeling process is finding 
the best model to describe a phenomenon. In this 
work, we aspire to use a new method of modeling, 
using data transformation to determine a better 
model to estimate the production function for 
peanuts in Sudan. The rest of this paper is organized 
as follows. Section 2 summarizes the literature 
review of the study, and Section 3 describes the 
forecasting techniques, including the autoregressive 
integrated moving average (ARIMA) model. Section 4 
describes the procedure for using ARIMA to 
construct the proposed method. Section 5 provides 
the results and discussion, while Section 6 serves as 
the conclusion. 

2. literature review  

Improving the accuracy of time-series forecasting 
models is a matter of constant attention from 
researchers. A large body of literature has 
demonstrated that basic strategies for combining 
frequently yield significantly higher accuracy than 
more complicated and sophisticated procedures 
(Jose and Winkler, 2008). The constrained ordinary 
least squares approach was an early tool for 
combining linear forecasts. It computes the 
combining weights by solving a quadratic 
programming problem that minimizes the sum of 
squared errors between the original and forecasted 
datasets, with the condition that the weights be 

nonnegative and unbiased, and hence predict 
dependent variables more accurately (Wang et al., 
2023; Granger and Newbold, 2014). Several research 
studies in the literature have revealed that the naive 
simple average produced substantially better 
forecasting outcomes on several occasions than 
various additional complicated combination 
techniques (Jose and Winkler, 2008). In a recent 
comprehensive study, Jose and Winkler (2008) and 
Granger and Newbold (2014) found that trimmed 
means are marginally more accurate than simple 
averages and lower the probability of high errors. 
Moreover, a study suggests using the median as a 
remedial measure. It is far less sensitive to extreme 
values than the simple average. But there are varied 
results regarding the superiority of the simple 
average and median. The former produced better 
accuracy in Stock and Watson's work (Stock and 
Watson, 2004). Wu and Huang came up with the 
ensemble empirical mode decomposition, which 
fixes the problem of mode mixing in the original 
empirical mode decomposition (Huang and Wu, 
2008). They made a noise-assisted data analysis 
method. A lot of different areas, like the solar cycle, 
seismic waves, figuring out the price of crude oil, and 
speaker identification systems, have used empirical 
mode decomposition to get signals out of noisy data 
that comes from nonlinear and stationary processes. 
Empirical mode decomposition is better than other 
methods because it can change on its own and is 
very local in both physical and frequency space (Wu 
and Tsai, 2011).  

To test the accuracy of the developed model, 
Fattah et al. (2018) conducted comparative studies 
between experimental sales and simulations that 
were adopted in the Same period. It was reached that 
the selected model has high accuracy and the ability 
to simulate the dynamic behavior of sales (Fattah et 
al., 2018).  

Adopted ANN Application Studies in pattern 
recognition, classification, and prediction, more than 
one algorithm has been used to obtain the results 
and then compare these algorithms and determine 
the best method through predictive accuracy 
(Allende et al., 2002). 

3. Forecasting techniques 

Solving forecasting problems is an essential task 
for successful planning and development. Many 
statistical techniques for time series forecasting have 
been developed. Of the conventional statistical 
methods, the ARIMA model is widely used in 
developing forecasting models (Štulajter, 2002).  

3.1. Stationary time series 

A series is said to be stationary when there is no 
systematic change in the mean (i.e., no trend), there 
is no systematic change in variance, and strictly 
periodic variations have been removed. In other 
words, one part of the data has properties exactly 
like those of every other part (Chatfield and Xing, 
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2019). Suppose that 𝑋𝑡  represents the value of 
phenomena at time 𝑡. Stationarity can be defined 
with respect to the moments of the stochastic 
process {𝑋𝑡} (Kirchgässner et al., 2012). 

Mean stationarity: A process is mean stationary if 
𝐸[𝑋𝑡] = 𝜇𝑡 = 𝜇 for all t. Variance stationarity: A 
process is  variance stationary if 𝑉[𝑋𝑡] =
𝐸[(𝑋𝑡 − 𝜇𝑡)2] = 𝜎𝑥

2 = 𝛾(0) for all t. Covariance 
stationarity: A process is covariance stationary if 
𝐶𝑜𝑣[𝑋𝑡 , 𝑋𝑠] = 𝐸[(𝑋𝑡 − 𝜇𝑡)(𝑋𝑠 − 𝜇𝑠)] = 𝛾(|𝑡 − 𝑠|). 
Weak stationarity: A stochastic process is said to be 
weakly stationary when it is both mean and 
covariance stationary. The correlation coefficient 
between the values of 𝑟𝑡  and 𝛾𝑡−ℓ is called the lag-ℓ 
autocorrelation of 𝑟𝑡  and is commonly denoted by 𝜌ℎ , 
which, under the weak stationarity assumption, is a 
function of ℎ only. Specifically, we define (Tsay, 
2005). 
 

𝝆𝓵 =
𝑪𝒐𝒗(𝜸𝒕,𝜸𝒕−𝓵)

√ 𝑽𝒂𝒓(𝜸𝒕) Var(𝜸𝒕−𝓵)
=

𝑪𝒐𝒗(𝜸𝒕,𝜸𝒕−𝓵)

𝑽𝒂𝒓(𝜸𝒕)
=

𝜸(𝓵)

𝜸(𝟎)
                              (1) 

 

Eq. 1 is achieved under the assumption 
𝑉𝑎𝑟(𝛾𝑡) = Var(𝛾𝑡−ℓ) this assumption is used for weak 
stationarity. 

The value of the autocorrelation is −1 ≤ 𝜌ℓ ≤ 1, 
where 𝜌ℓ is the value of the autocorrelation. 

3.2. Stationarity tests 

To test the stationarity of a time series, Box and 
Pierce (1970) proposed the Portmanteau statistics: 
 
𝑄∗(𝑚) = 𝑇 ∑ 𝜌̑ℓ

2𝑚
ℓ=1                               (2) 

 

under the following hypotheses: 
 
𝐻0 : 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑚 = 0  
𝐻𝑎 : 𝜌𝑖 ≠ 0 for some i ∈ [1, ⋯ , 𝑚]   
 

where, 𝑄𝑚
∗  is a chi-squared random variable with m 

degrees of freedom.  
Ljung and Box (1978) modified the 𝑄𝑚

∗  statistic, 
as shown below, to increase the power of the test in 
finite samples. 
 

𝑄(𝑚) = 𝑇(𝑇 + 2) ∑
𝜌̂ℓ

2

𝑇−ℓ

𝑚
ℓ=1                                       (3) 

 

Simulated studies suggest that 𝑚 = 𝑙𝑛( 𝑇), where 
T is the total number of observations. 

Most of the time series probability theory 
concerns stationary time series, which is why time 
series analysis frequently enables one to transform a 
non-stationary series into a stationary one to use 
this theory (Wollstadt et al., 2014). 

Although the value of the stationarity test is easy 
to calculate, most statistical programs depend on 
finding a range for autocorrelations (Mizon, 1995).  

3.3. Autoregressive integrated moving average 
(ARIMA) model 

Autoregressive Moving Average (ARMA) models, 
also called Box–Jenkins models, were introduced by 

Box et al. (2015) and have since become widely used 
for time series forecasting. These models are applied 
in many prediction tasks because of their 
effectiveness in modeling time-dependent data. The 
ARIMA model consists of three components: (1) the 
autoregressive (AR) process, (2) the moving average 
(MA) process, and (3) differencing to achieve 
stationarity, which leads to the ARIMA form (ARMA 
with integration). The general non-seasonal ARIMA 
model is expressed as ARIMA(p, d, q), where p 
represents the order of the autoregressive part, d 
indicates the number of differences required to 
make the series stationary, and q represents the 
order of the moving average part. 

Model ARIMA(0, 0, 0) is classified as a white 
noise model in which there is no AR part, no MA part, 
and no difference involved. Similarly, model 
ARIMA(0, 1, 0) is known as a random walk model 
because it involves only one difference. The equation 
of the AR model is written as (Jonathan and Kung-
Sik, 2008): 
 
𝑋𝑡 = 𝐶 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝                    (4) 

 

where, 𝑋𝑡−1, 𝑋𝑡−2,…,𝑋𝑡−p are the values for previous 

years, 𝐶 is a constant, ∅1, … , ∅𝑃 are the AR 
parameters, p is the order of the AR, and 𝑒𝑡  is the 
white noise series. 

Likewise, the equation of the MA model can be 
written as: 
 
𝑋𝑡 = 𝜇 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞                  (5) 

 

where, 𝜇 is the expectation of 𝑋𝑡 , 𝜃1,…,𝜃𝑞 are the MA 

parameters, 𝑞 is the order of MA, and 𝑒𝑡 , 𝑒𝑡−1 + ⋯ +
𝑒𝑡−𝑞 are the white noise error terms. 

Integrating the two models yields the ARIMA 
model [ARIMA(p, q)] as follows:  
 
𝑋𝑡 = 𝐶 + 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 +

𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞                                                       (6) 

 

where, 𝑝 and 𝑞 are the AR and MA terms, 
respectively. 

The basic condition of the model is that the time 
series data properties are stationary, while statistical 
measures such as the mean, variance, and 
autocorrelation remain constant. However, if the 
time series data is non-stationary, the ARIMA model 
requires differenced data to be transformed to 
stationarity and is denoted as ARIMA(p, d, q) (Yuan 
et al., 2016).  

The process of constructing ARIMA models 
requires the identification of the order of ARIMA(p, 
d, q), the estimation of model parameters, the 
checking of model validity, the selection of the best 
model, and, finally, forecasting. After determining 
the model and estimating its diagnostic parameters, 
we must check the form to determine if the model is 
suitable for the data. There are key criteria that 
should be used to verify this step so that any 
necessary revisions can be made to the form (Kumar 
and Anand, 2014).  
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3.4. Choosing the appropriate value of p, d, and q 

Initially, possible temporary values are 
determined for p, d, and q (Table 1). The suitability 
of the proposed model is then verified (Fig. 1). If the 
proposed model is not suitable, the nature of 
inadequacy should be studied to arrive at another 
model (Cryer and Chan, 2008). 

 
Table 1: The behavior of the ACF and PACF for ARMA 

models 
 AR(p) MA(q) ARMA(p, q) 

ACF Tails off Cuts off after lag q Tails of 
PACF Cuts off after lag p Tails off Tails of 

 
Methodology of time series 

forecasting

Data collection

Model identification
 

Model parameter estimation

Diagnosis the fitness of model 

NO
YES

Time series forecasting models

Fitted apply proposed model

Validate the model on another data

 
Fig. 1: Time series methodology framework 

 

When we need to verify the independence of 
random error, a suitable model must be studied for 
autocorrelation patterns in the data that were not 
captured in the form during the estimation phase. 
Then, the remaining ACF should be examined to 
ensure that it was an insignificant statistical self-
correlation coefficient. This step is very useful in 
proving that the model cannot be further improved 
(Mateos et al., 2022).  

4. The proposed method 

The aim of this paper is to improve the accuracy 
of the Box-Jenkins model using a transformation of 
the data to achieve this aim. We will use the 
following transformation: 
 
Let 𝑋𝑡 ≡ 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑛𝑜 𝑡                                       (7) 
then     𝑌𝑡 = ∑ 𝑋𝑡

𝑡
𝑡=1                                                       (8) 

and      𝑧𝑡 = log 𝑌𝑡                                                                          (9) 

We propose applying the transformation of Eq. 9 
to the formula of the Box-Jenkins model (Eq. 6). 
 
𝑍𝑡 = 𝑐 + 𝜙1𝑍𝑡−1 + 𝜙2𝑍𝑡−2 + ⋯ + 𝜙𝑝𝑍𝑝 + 𝜃1𝑒𝑡−1 +

𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞                                                    (10) 

 

The basic idea in using this transformation with 
agricultural data is that the production of the crops 
in any specific year generally depends on the value 
from the previous year. We are using aggregation to 
assist in controlling for the effects of the random 
error limit and logarithms to help make the values 
closely related. 

By applying Eq. 10, we take into consideration 
the prediction values of the Z variable. To arrive at 
the real predictions, the concept of the inverse 
function must be used, that is; 
 
𝑌𝑡 = 10𝑍𝑡                                                                       (11) 
𝑋𝑡 = 𝑌𝑡+1 − 𝑌𝑡                                                                      (12) 

5. Results and discussion 

5.1. The dataset 

In this study, the data consist of time series data 
on peanut production in Sudan during the period 
between 1966 and 2018, which were obtained from 
the Central Bureau of Statistics. The Central Bureau 
of Statistics collects data annually from all 
agricultural projects (irrigated and rainy). The 
percentage of cultivated area of peanuts in the rainy 
sector is about 91% of the total area planted in 
Sudan, which produces about 67% of the total 
production in Sudan. 

Fig. 2 presents annual peanut crop production in 
Sudan during the period between 1966 and 2018. 
The trend demonstrates that the quantity produced 
fluctuated between increasing and decreasing during 
the study period. Generally, the quantity of peanuts 
produced during recent years has significantly 
decreased, which confirms the need for conducting 
such studies to identify problems and determine 
solutions. 

Table 2 presents the descriptive statistics 
regarding peanut crop production. The annual 
average production is 105,031.06 tons with a 
standard deviation of 80959.74 tons. The maximum 
value of production is 345546 tons, and the 
minimum production is 1835 tons in 1996. The 
range of production was 343711. 

5.2. Results 

In this study, we used the EViews statistical 
package to perform all ARIMA modeling. To 
determine if the proposed method increased the 
accuracy of prediction, we estimated the model first 
using the original data and then using the 
transformed data. We then checked the accuracy of 
the two methods. The results are provided in Tables 
2, 3, 4, and 5. To obtain the best model, we used four 
evaluation measures: namely, the number of 
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significant coefficients in the model, the estimator of 
the error variance of the residual (labeled as 
SIGMASQ), the coefficient of determination (R-
squared), Akaike’s Information Criterion (AIC), and 
Schwarz’s Information Criterion (SIC). The 
comparison between accuracy metrics is 
represented in Table 6. The model with a smaller 
value for AIC or SIC suggests a better fit. The 
following sections present the results of the two 
methods. 

Method 1: ARIMA model using original data: In 
this method, the peanut data without transformation 
were used, and followed the steps mentioned in the 
theoretical part of this paper. First, we checked the 
stationarity of the series by plotting the 
autocorrelation function (ACF) and the partial 
autocorrelation function (PACF). 

Using Eq. 2 to calculate the value of Q by 
substituting the values of ACF from Table 3, the 
value of 𝑄 = 97.5 and the critical value of 𝜒2

24,0.05 =

36.415 that means H0 is not accepted, and the series 
is not stationary. Fig. 3 shows the results of the ACF 
and PACF of the original series. It is evident that the 
series is not stationary, as seven ACF values lie 
outside the acceptable range. To achieve stationarity, 
a log transformation and first differencing were 
applied. 

 
Table 2: Descriptive statistics on the quantity of the 

peanut crop, 1966–2016 
Parameter Value 

Mean 105031.06 
Std. error of mean 11120.653 

Std. deviation 80959.574 
Skewness 1.099 

Std. error of skewness 0.327 
Kurtosis 0.919 

Std. error of kurtosis 0.644 
Range 343711 

Minimum 1835 
Maximum 345546 

 

 

 

Fig. 2: Time series plot of peanut production data 
 

Table 3: The ACF and the PACF of the original data 
 AC PAC Q-Stat Prob. 

1 0.627 0.627 22.062 0.000 
2 0.662 0.443 47.109 0.000 
3 0.454 -011 59.108 0.000 
4 0.379 -0.10 67.655 0.000 
5 0.318 0.089 73.803 0.000 
6 0.303 0.133 79.503 0.000 
7 0.312 0.098 85.682 0.000 
8 0.174 -0.27 87.634 0.000 
9 0.290 0.212 93.223 0.000 

10 0.145 0.003 94.656 0.000 
11 0.211 -0.01 97.733 0.000 
12 0.112 -0.11 98.618 0.000 
13 0.105 -0.04 99.414 0.000 
14 0.071 0.103 99.795 0.000 
15 0.047 -0.00 99.967 0.000 
16 0.130 0.090 101.30 0.000 
17 0.034 -0.09 101.40 0.000 
18 0.064 -0.14 101.73 0.000 
19 0.003 0.106 101.73 0.000 
20 -0.06 -0.17 102.15 0.000 
21 -0.17 -0.26 105.01 0.000 
22 -0.18 0.019 108.35 0.000 
23 -0.22 0.094 113.37 0.000 
24 -0.24 0.032 119.47 0.000 

 

Table 4 presents the ACF and PACF of the 
transformed series. After applying the log 
transformation and first differencing, the Ljung–Box 
Q statistic was calculated using Eq. 2. Substituting 
the ACF values from Table 4 gives 𝑄 = 17.96. Since 
the critical value is 𝜒2

24,0.05 = 36.415, the null 

hypothesis H0 is accepted. This result indicates that 
the residual series is stationary. Fig. 4 presents the 
results of the ACF and the PACF of the original series 
after using a log transformation. It reveals that the 
time series of the data becomes stationary because 
all the ACFs are within the range. 
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Fig. 3: The ACF and the PACF of the original data 

 

 
Fig. 4: The ACF and the PACF of the original series after 

using a log transformation 
 

Table 4: The ACF and the PACF of the original series after using log transformation and the first difference 
 AC PAC Q-stat Prob. 

1 -0.278 -0.278 4.2568 0.039 
2 -0.105 -0.198 4.8765 0.087 
3 0.051 -0.044 5.0266 0.170 
4 -0.110 -0.143 5.7330 0.220 
5 -0.089 -0.190 6.2074 0.287 
6 0.030 -0.119 6.2619 0.394 
7 0.064 -0.015 6.5179 0.481 
8 -0.127 -0.169 7.5548 0.478 
9 0.082 -0.056 7.9933 0.535 

10 -0.092 -0.191 8.5621 0.574 
11 0.273 0.226 13.666 0.252 
12 -0.142 0.056 15.072 0.238 
13 0.025 0.048 15.119 0.300 
14 -0.054 -0.113 15.336 0.356 
15 -0.135 -0.137 16.718 0.336 
16 0.115 0.018 17.749 0.339 
17 -0.086 -0.126 18.345 0.367 
18 0.028 -0.117 18.704 0.429 
19 0.059 0.011 18.703 0.476 
20 0.109 0.076 19.738 0.474 
21 -0.170 -0.072 22.348 0.380 
22 0.095 -0.088 23.198 0.391 
23 -0.065 -0.111 23.605 0.426 
24 -0.060 -0.087 23.971 0.463 

 

To choose a suitable model, we estimated the 
parameters of the model and compared them. The 
correlogram clearly illustrates that the proposed 
model of log transformation for the data is ARIMA(1, 
0, 0). For comparison, the estimated number of 
models is presented in Table 4 to determine the best 

one according to the specified criteria. To estimate 
the ARIMA model of the time series unit using the 
EVIEWS program, the model rank (p, d, q) should be 
determined.  

The model parameters are calculated by using the 
maximum likelihood estimation algorithm. 

 
Table5: Comparison metrics of different ARIMA models for peanut data 

Metrics 
ARIMA(p, d, q) 

(1, 0, 0) (0, 0, 1) (1, 0,1) (0, 0, 2) (2, 0, 0) 
Significant coefficient 1 1 1 1 1 

SIGMASQ 0.576 0.689 0.568 0.641 0.569 

R-squared  0.402 0.285 0.399 0.320 0.397 
Akaike info criterion 2.411 2.585 2.434 2.552 2.585 

Schwarz criterion 2.523 2.697 2.584 2.701 2.494 

 

Date: 12/08/18   Time: 13:21

Sample: 1960 2012

Included observations: 53

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.627 0.627 22.062 0.000

2 0.662 0.443 47.109 0.000

3 0.454 -0.11... 59.108 0.000

4 0.379 -0.10... 67.655 0.000

5 0.318 0.089 73.803 0.000

6 0.303 0.133 79.503 0.000

7 0.312 0.098 85.682 0.000

8 0.174 -0.27... 87.634 0.000

9 0.290 0.212 93.223 0.000

1... 0.145 0.003 94.656 0.000

1... 0.211 -0.01... 97.733 0.000

1... 0.112 -0.11... 98.618 0.000

1... 0.105 -0.04... 99.414 0.000

1... 0.071 0.103 99.795 0.000

1... 0.047 -0.00... 99.967 0.000

1... 0.130 0.090 101.30 0.000

1... 0.034 -0.09... 101.40 0.000

1... 0.064 -0.14... 101.73 0.000

1... 0.003 0.106 101.73 0.000

2... -0.06... -0.17... 102.15 0.000

2... -0.17... -0.26... 105.01 0.000

2... -0.18... 0.019 108.35 0.000

2... -0.22... 0.094 113.37 0.000

2... -0.24... 0.032 119.47 0.000

Autocorrelation Partial Correlation
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Table 5 compares the metrics of various ARIMA 
models for peanut data. The comparison shows that 
the ARIMA(1, 0, 0) model is the best fit. This is 
because it has the most significant coefficients (1), 
the highest coefficient of determination R-squared 
(0.402), the lowest values for AIC (2.411), and the 
Schwarz criterion (2.523). ARIMA(1,0,0) will be 
estimated. 

Table 6 shows the coefficients of the best model. 
Thus, the best equation in estimating the future 
production of peanuts becomes as follows: 
 
𝑋𝑡 = 11.15033 + 0.663762 𝑋𝑡−1  

 

To ensure the suitability of the model, the 
residuals are tested (whether the residuals 
distribution follows the normal distribution or not). 

From Table 6, it is noted that the residuals are 
relatively normally distributed around zero because 
all the probability values are greater than 0.05, 
which means no one is significant. 

Table 7 presents the ACF and PACF of the 
residuals from the AR(1,0,0) model, along with the 
Ljung-Box test results. The residuals show no strong 
autocorrelation, indicating that the model effectively 
captures the data structure. The Ljung-Box test 
confirms the independence of residuals, with p-
values above 0.05 for most lags, supporting the 
model's adequacy. Using Eq. 2 to calculate the value 
of Q by substituting the values of ACF from Table 7 
(the ACF of the residuals), the value of 𝑄 = 11.168 
and the critical value of 𝜒2

24,0.05
= 36.415 that 

means H0 is accepted and the residuals is stationary. 

 
Table 6: Output of the plausible model AR(1, 0, 0) 

Variable Coefficient Std. error t-statistic Prob. 
C 11.15033 0.385690 28.91013 0.0000 

AR(1) 0.663762 0.092659 7.163523 0.0000 
SIGMASQ 0.576391 0.088327 6.525633 0.0000 
R-squared 0.424584 Mean dependent var 11.19131 

Adjusted R-squared 0.401568 S.D. dependent var 1.010425 
S.E. of regression 0.781649 Akaike info criterion 2.411076 

Sum squared resid 30.54874 Schwarz criterion 2.522602 
Log likelihood -60.89351 Hannan-Quinn criterion 2.453963 

F-statistic 18.44684 Durbin-Watson stat 2.103321 
Prob(F-statistic) 0.000001    

Inverted AR roots .66   

 
Table 7: The ACF and the PACF of residuals of the model AR(1) 

 AC PAC Q-stat Prob. 
1 -0.06 -0.06 0.2223  
2 0.022 0.018 0.2491 0.618 
3 0.129 0.132 1.2263 0.542 
4 -0.05 -0.04 1.4090 0.703 
5 -0.02 -0.03 1.4487 0.836 
6 0.054 0.037 1.6299 0.898 
7 0.096 0.119 2.2161 0.899 
8 -0.06 -0.05 2.5158 0.926 
9 0.115 0.089 3.3973 0.907 

10 -0.02 -0.03 3.4297 0.945 
11 0.268 0.304 8.4015 0.590 
12 -0.07 -0.08 8.7613 0.644 
13 0.018 0.014 8.7860 0.721 
14 -0.02 -0.12 8.8503 0.784 
15 -0.11 -0.05 9.8613 0.772 
16 0.100 0.078 10.648 0.777 
17 -0.06 -0.05 11.003 0.809 
18 0.033 -0.02 11.094 0.852 
19 0.077 0.114 11.601 0.867 
20 0.101 0.082 12.510 0.863 
21 -0.11 -0.07 13.638 0.848 
22 0.111 -0.01 14.786 0.834 
23 -0.07 -0.06 15.304 0.849 
24 -0.11 -0.04 16.564 0.830 

 

Fig. 5 presents a residual diagnostics correlogram 
for residuals of Model AR(1). Based on the 
correlogram, which is flat, we conclude that there is 
no serial correlation and that all information has 
been captured. Therefore, the predictions will be 
based on the Model ARIMA(1, 0, 0) for the log 
transformation of the peanut data. 

Method 2: ARIMA model using transformed data: 
In the previous analysis, the main objective was to 
perform the time series analysis in the usual manner 
to compare the results with the method proposed by 
the study.  The accumulated method is used for the 

peanut series by using Eq. 8 to calculate the 
accumulated series. Firstly, the stationarity of the 
new series was tested. 

Using Eq. 2 to calculate the value of Q by 
substituting the values of ACF from Table 8, the 
value of 𝑄 = 257.0885 and the critical value of 
𝜒2

24,0.05
= 36.415 that means H0 is accepted, and 

the series is not stationary. 
Fig. 6 illustrates the ACF and PACF of the 

accumulated data. It is clear that the series is not 
stationary because there are 12 ACF out of range. 
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To achieve stationary, the method of log 
transformation and differences is used. After using 
the log transformation and the first difference and 
calculating the value of Q using Eq. 2 by substituting 
the values of ACF from Table 9, the value of 𝑄 =
26.68 and the critical value of 𝜒2

24,0.05 = 36.415 that 

means H0 is accepted and the series is stationary. 
Fig. 7 illustrates the ACF and the PACF of the 

accumulated data after using a log transformation. It 
reveals that the time series of data becomes 
stationary because only one ACF is out of range. 
Through Fig. 7, the best model for the accumulated 
data can be determined as ARIMA(2,1,2). Some of the 
models are estimated for comparison. Based on 
model accuracy, as shown in Table 10, the best-
fitting model is ARIMA(2,1,2) because it satisfied the 

standard requirements, included three significant 
parameters, achieved the highest adjusted R-squared 
(0.796), and recorded the lowest values of the 
Akaike information criterion (-2.095) and Schwarz 
criterion (-1.982). Table 11 illustrates the 
parameters and model diagnoses of ARIMA(2, 1, 2). 
From Table 11, the best model can be written as 
follows: 
 
𝑍𝑡 = 0.280703 + 0.074490𝑍𝑡−1 + 0.885160𝑍𝑡−2

+ 0.797396 𝜃𝑡−1 + 0.535891𝜃𝑡−2 
 

Based on Fig. 8, the residuals are flat, which 
indicates that all relevant information has been 
captured. Therefore, the prediction will be based on 
the Model ARIMA(2, 1, 2). 

 
Table 8: The ACF and the PACF of the accumulated data 

 AC PAC Q-stat Prob. 
1 0.939 0.939 49.478 0.000 
2 0.878 -0.03 93.546 0.000 
3 0.815 -0.04 132.27 0.000 
4 0.752 -0.03 165.94 0.000 
5 0.686 -0.06 194.55 0.000 
6 0.620 -0.04 218.41 0.000 
7 0.553 -0.04 237.82 0.000 
8 0.489 -0.02 253.32 0.000 
9 0.427 -0.02 265.39 0.000 

10 0.370 0.004 274.69 0.000 
11 0.318 -0.00 281.70 0.000 
12 0.268 -0.02 286.81 0.000 
13 0.225 0.012 290.49 0.000 
14 0.181 -0.04 292.95 0.000 
15 0.141 -0.01 294.48 0.000 
16 0.104 -0.02 295.33 0.000 
17 0.069 -0.01 295.71 0.000 
18 0.035 -0.02 295.81 0.000 
19 0.002 -0.02 295.81 0.000 
20 -0.03 -0.03 295.89 0.000 
21 -0.06 -0.04 296.26 0.000 
22 -0.09 -0.02 297.12 0.000 
23 -0.12 -0.03 298.69 0.000 
24 -0.15 -0.03 301.22 0.000 

 
Table 9: The ACF and the PACF of the accumulated data after log transformation and the first difference 

 AC PAC Q-Stat Prob. 
1 0.527 0.527 15.284 0.000 
2 0.452 0.241 26.735 0.000 
3 0.220 -0.12 29.509 0.000 
4 0.300 0.211 34.789 0.000 
5 0.236 0.056 38.119 0.000 
6 0.283 0.066 42.996 0.000 
7 0.230 0.050 46.296 0.000 
8 0.224 0.013 49.506 0.000 
9 0.168 -0.00 51.343 0.000 

10 0.104 -0.08 52.063 0.000 
11 0.111 0.047 52.913 0.000 
12 0.022 -0.11 52.946 0.000 
13 0.042 -0.00 53.073 0.000 
14 0.011 0.017 53.082 0.000 
15 0.003 -0.07 53.082 0.000 
16 -0.02 0.005 53.124 0.000 
17 -0.03 -0.02 53.216 0.000 
18 -0.04 -0.01 53.408 0.000 
19 -0.04 0.002 53.598 0.000 
20 -0.04 0.001 53.806 0.000 
21 -0.06 -0.01 54.199 0.000 
22 -0.06. -0.02 54.632 0.000 
23 -0.07 0.017 55.145 0.000 
24 -0.06 -0.01 55.602 0.000 
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Fig. 5: The ACF and the PACF of residuals of the model 

AR(1) 

 

 
Fig. 6: The ACF and the PACF of the accumulated data 

 
Fig. 7: The ACF and the PACF of the accumulated data after 

log transformation and the first difference 
 

 
Fig. 8: The ACF and the PACF of residuals of the model 

AR(2, 1, 2) 

 
Table 10: The best ARIMA models for transformed data 

ARIMA model 
ARIMA(p, d, q) 

(1, 1, 0) (2, 1, 0) (0, 1, 1) (0, 1, 2) (1, 1, 1) (2, 1, 2) 
Significant coefficient 1 2 1 2 1 3 

SIGMASQ 0.006 0.006 0.013 0.006 0.006 0.003 
Adjusted R-squared 0.634 0.648 0.232 0.625 0.633 0.796 
Akaike info criterion -2.095 -2.115 -1.402 -2.050 -2.076 -2.574 

Schwarz criterion -1.982 -1.964 -1.289 -1.810 -1.925 -2.349 

Sample: 1960 2012

Included observations: 53

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.06... -0.06... 0.2223

2 0.022 0.018 0.2491 0.618

3 0.129 0.132 1.2263 0.542

4 -0.05... -0.04... 1.4090 0.703

5 -0.02... -0.03... 1.4487 0.836

6 0.054 0.037 1.6299 0.898

7 0.096 0.119 2.2161 0.899

8 -0.06... -0.05... 2.5158 0.926

9 0.115 0.089 3.3973 0.907

1... -0.02... -0.03... 3.4297 0.945

1... 0.268 0.304 8.4015 0.590

1... -0.07... -0.08... 8.7613 0.644

1... 0.018 0.014 8.7860 0.721

1... -0.02... -0.12... 8.8503 0.784

1... -0.11... -0.05... 9.8613 0.772

1... 0.100 0.078 10.648 0.777

1... -0.06... -0.05... 11.003 0.809

1... 0.033 -0.02... 11.094 0.852

1... 0.077 0.114 11.601 0.867

2... 0.101 0.082 12.510 0.863

2... -0.11... -0.07... 13.638 0.848

2... 0.111 -0.01... 14.786 0.834

2... -0.07... -0.06... 15.304 0.849

2... -0.11... -0.04... 16.564 0.830

Sample: 1960 2012

Included observations: 53

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.939 0.939 49.478 0.000

2 0.878 -0.03... 93.546 0.000

3 0.815 -0.04... 132.27 0.000

4 0.752 -0.03... 165.94 0.000

5 0.686 -0.06... 194.55 0.000

6 0.620 -0.04... 218.41 0.000

7 0.553 -0.04... 237.82 0.000

8 0.489 -0.02... 253.32 0.000

9 0.427 -0.02... 265.39 0.000

1... 0.370 0.004 274.69 0.000

1... 0.318 -0.00... 281.70 0.000

1... 0.268 -0.02... 286.81 0.000

1... 0.225 0.012 290.49 0.000

1... 0.181 -0.04... 292.95 0.000

1... 0.141 -0.01... 294.48 0.000

1... 0.104 -0.02... 295.33 0.000

1... 0.069 -0.01... 295.71 0.000

1... 0.035 -0.02... 295.81 0.000

1... 0.002 -0.02... 295.81 0.000

2... -0.03... -0.03... 295.89 0.000

2... -0.06... -0.04... 296.26 0.000

2... -0.09... -0.02... 297.12 0.000

2... -0.12... -0.03... 298.69 0.000

2... -0.15... -0.03... 301.22 0.000

Autocorrelation Partial Correlation

Autocorrelation Partial Correlation
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Table 11: The Output of the plausible model AR(2, 1, 2), coefficient covariance computed using outer product of gradients 
Variable Coefficient Std. error t-statistic Prob. 

C 0.280703 0.391285 0.717386 0.4768 
AR(1) 0.074490 0.051522 1.445781 0.1550 
AR(2) 0.885160 0.089126 9.931501 0.0000 
MA(1) 0.797396 0.128571 6.202006 0.0000 
MA(2) 0.535891 0.169563 3.160428 0.0028 

SIGMASQ 0.003182 0.000568 5.606080 0.0000 
R-squared 0.816161 Mean dependent var 0.070255 

Adjusted R-squared 0.796178 S.D. dependent var 0.132840 
S.E. of regression 0.059973 Akaike info criterion -2.574128 

Sum squared resid 0.165449 Schwarz criterion -2.348985 
Log likelihood 72.92733 Hannan-Quinn criterion -2.487814 

F-statistic 40.84371 Durbin-Watson stat 1.737754 
Prob(F-statistic) 0.000000    

Inverted AR roots .98 -.90  
Inverted MA roots -.40-.61i -.40+.61i  

 

Table 12 shows the ACF and PACF of the 
residuals from the AR(2, 1, 2) model, together with 
the Ljung–Box test results. The residuals do not 
show strong autocorrelation, which means the 
model explains the main structure of the data. The 
Ljung–Box test also supports this, because most p-
values are greater than 0.05, so we fail to reject the 
null hypothesis of no residual autocorrelation. Small 
autocorrelations appear at lags 2 and 4, but the Q-
statistics remain within acceptable limits. Using Eq. 2 
and the residual ACF values from Table 6, the Q value 
is 11.168. This is less than the critical value 
𝜒2

24,0.05 = 36.415, so H0 is accepted and the 

residuals can be treated as uncorrelated (white 
noise). Overall, the AR(2, 1, 2) model appears well 

specified, with no major unexplained patterns, 
although additional validation could still be 
considered. 

Table 13 compares two best-fit models from 
different approaches: ARIMA(1, 0, 0) fitted to the 
original data and ARIMA(2, 1, 2) fitted to the 
cumulative data. According to the reported criteria, 
the proposed approach (ARIMA(2, 1, 2) on the 
cumulative data) provides better performance than 
ARIMA(1, 0, 0) on the original data, as indicated by 
improved goodness-of-fit measures (e.g., lower error 
metrics and information criteria). This comparison 
shows that modeling the cumulative series yields a 
more accurate and reliable fit. 

 
Table 12: The ACF and the PACF of residuals for the AR(2, 1, 2) model 

 AC PAC Q-stat Prob. 
1 0.044 0.044 0.1083  
2 -0.182 -0.184 1.9618  
3 0.109 0.131 2.6421  
4 -0.196 -0.258 4.8795  
5 -0.024 0.071 4.9137 0.027 
6 0.103 -0.014 5.5653 0.062 
7 -0.083 -0.029 5.9922 0.112 
8 0.114 0.109 6.8236 0.146 
9 0.068 0.006 7.1237 0.212 

10 -0.120 -0.040 8.0897 0.232 
11 0.204 0.208 8.4015 0.141 
12 -0.115 -0.201 10.393 0.158 
13 -0.050 0.164 11.860 0.211 
14 0.130 -0.079 12.037 0.208 
15 -0.075 0.078 13.291 0.249 
16 0.041 0.003 13.717 0.310 
17 0.018 -0.058 13.877 0.383 
18 -0.092 -0.022 14.575 0.408 
19 0.048 -0.024 14.767 0.468 
20 0.029 0.011 14.843 0.536 
21 -0.087 -0.012 15.532 0.557 
22 0.019 -0.114 15.567 0.623 
23 -0.047 -0.057 15.781 0.672 
24 -0.058 -0.132 16.115 0.709 

 
Table 13: The compression of the best models using the two methods 

Metrics 
The original data The cumulative data 

ARIMA(1, 0, 0) ARIMA(2, 1, 2) 
Significant coefficient 1 3 

SIGMASQ 0.576 0.003 
Adjusted R-squared 0.402 0.796 
Akaike info criterion 2.411 -2.57 

Schwarz criterion 2.523 -2.349 

 

The comparison between ARIMA(1, 0, 0) and 
ARIMA(2, 1, 2) models highlights significant 

improvements in model performance. The ARIMA(2, 
1, 2) model, with three significant coefficients 
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compared to just one in ARIMA(1, 0, 0), 
demonstrates greater flexibility and a better fit to 
the data. Additionally, the variance of residuals 
(SIGMASQ) is drastically reduced from 0.576 to 
0.003, indicating that ARIMA(2, 1, 2) more effectively 
captures the underlying data structure and 
minimizes prediction errors. The adjusted R-squared 
value, a key measure of model fit, increases from 
0.402 to 0.796, reinforcing the stronger explanatory 
power of ARIMA(2, 1, 2). Furthermore, the Akaike 
Information Criterion (AIC) and Schwarz Criterion 
(SC) show substantial reductions, decreasing from 
2.411 to -2.57 and 2.523 to -2.349, respectively. 
These lower values suggest that ARIMA(2, 1, 2) 
provides a superior balance between model 
complexity and goodness of fit. Overall, these 
improvements confirm that ARIMA(2, 1, 2) is a more 
effective model for forecasting, offering greater 
accuracy and efficiency. 

The results indicate that the ARIMA(2, 1, 2) 
model applied to cumulative data outperforms the 
ARIMA(1, 0, 0) model based on multiple evaluation 
metrics. The increased adjusted R-squared value 
demonstrates improved explanatory power, while 
the reduced AIC and SC confirm a more efficient 
model fit. Additionally, the drastic reduction in 
SIGMASQ suggests that the new approach effectively 
minimizes prediction errors. These findings support 
the conclusion that the proposed method 
significantly enhances predictive accuracy, making it 
a more suitable choice for forecasting in this context. 

5.3. Discussion 

Accurate forecasting of the productivity of any 
agricultural crop is critical for economic growth, 
food security, and poverty reduction to avoid the 
risks associated with poor diets leading to disease 
and health crises. It is important to develop methods 
that assist decision-makers in understanding 
underlying future phenomena. There are many types 
of time series forecasting methods, for example, the 
classical method, the Box-Jenkins method, and 
artificial neural networks. Accuracy needs to be the 
key factor considered whenever one is deciding 
between various methods of forecasting. Over the 
past few decades, several techniques for increasing 
the accuracy of forecasting models have been 
created (Cerqueira et al., 2020; Bergmeir et al., 
2018). However, there isn't a method that everyone 
agrees on. In this paper, we contribute to the existing 
body of research by carrying out an empirical study 
that compares two time series methods to determine 
which one will increase the model’s accuracy. In the 
first method, we used original time series data and 
performed our analysis to find the best-fit mode. 
This method showed that the data were 
nonstationary since autocorrelation values were out 
of the stationary range (Table 2). In the second 
method, we used accumulated data from the same 
time series and conducted the analysis using a 
logarithmic transformation. According to the 
illustration in Table 8, the time series data is 

stationary and contributes significantly to the 
autocorrelations being confined within the range. 

Model comparisons (Table 12) in AIC and 
parameter estimates showed that Model ARIMA(2, 1, 
2) of the second method (the cumulative method) 
contributed significantly. According to the metric 
comparison, the proposed model (ARIMA(2, 1, 2)) 
performed significantly and managed to produce 
better forecasts than the first methods with an 
adjusted R-squared of 0.796 versus 0.40, an AIC of -
2.57 versus 2.41, and a SIC of -2.35 versus 2.52. 
Based on this result, Model ARIMA(2, 1, 2) of the 
second method (i.e., the cumulative data method) is 
superior. Therefore, one can say that the proposed 
technique leads to more clarity in the identification 
of the model, increases the value of the coefficients 
of determination, decreases the value of BIC, and 
produces more accurate forecasting. 

Through Table 12, it is clear that the proposed 
method showed an improvement in predictive 
accuracy by 39%. comparing our study with the 
study of Wang et al. (2015), which used the method 
of ensemble empirical mode decomposition and 

showed a development in predictive accuracy by 

12%, our study has proved better results. 

6. Conclusion 

In this study, the time series method was used to 
analyze peanut yields in Sudan using conventional 
time series data. ARIMA model with the original data 
of crops over successive years, as well as the 
proposed ARIMA model with the original cumulative 
data after transformation. The results of the two 
methods were compared. The precision of the 
proposed method, which makes use of the 
transformation data, led to its selection as the best 
option for forecasting. The method uses the 
logarithm of cumulative values of peanut yield, 
resulting in significantly better results than the 
traditional method. This is especially important for 
studying how crops have been affected by 
production values from previous years. Therefore, 
the proposed methods should be used when 
studying the crop time series in order to obtain more 
accurate results, leading to more accurate planning 
to achieve more productivity and a greater 
abundance of these crops. This study added a new 
method to increase the predictive accuracy of these 
models. 

This paper makes a valuable contribution on both 
the scientific and practical sides. The study 
demonstrates that the new method, the cumulative 
method, enhances the predictive power of the Box-
Jenkins models from a scientific perspective. On the 
practical side, we find that this paper made a great 
contribution to Sudan's government agencies and 
decision-makers. The model's significant predictive 
power enables the creation of highly accurate future 
forecasts for the peanut crop, a crucial national 
product that boosts the state's income by exporting 
its raw form or processing it into oil or peanut 
butter. 
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