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This study explores the use of the autoregressive integrated moving average
(ARIMA) data-driven modeling approach for forecasting peanut yields in
Sudan. Two tests were conducted: one using the original dataset and another
using accumulated data. The main objective was to improve forecasting
accuracy by applying a method that incorporates accumulated data for future
predictions. The results, based on a comparison of the two tests, indicate that
the proposed approach enhances prediction clarity. Model identification
showed an increase in the coefficient of determination, a decrease in the
Bayesian information criterion (BIC), and a reduction in the mean absolute
error. These outcomes suggest that the proposed method may provide more
accurate forecasts and could be useful for forecasting in various fields.

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Solving forecasting problems is essential for
successful agricultural planning and development.
Therefore, it has become important to develop
methods that enable decision-makers to understand
underlying phenomena in the future (Pankratz,
2009). Many types of time series analyses are
available, for example, the classical method, the Box-
Jenkins method, and artificial neural networks. Over
the years, several research studies examining
predictions about economic phenomena have been
conducted with a variety of solutions proposed
(Shumway and Stoffer, 2017). Statistical models
have been used to make predictions based on
historical data. The time series model is the most
important model for forecasting the future of
economic phenomena (Shumway and Stoffer, 2017).
They are popular in practice because their
computation is simple. In addition, a variety of other
intelligent methods have been used for forecasting
time series data, namely artificial neural networks
(ANN) (Wang et al.,, 2018), as well as the fuzzy logic
method, the hybrid method, the support vector
machine, and others. Because of their superior
forecasting performance and ability to detect and
extract non-linear relationships from a given set of
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information, a wide variety of ANNs are commonly
used to model time series in various applications.
The Sudanese economy’s dependence on the
expansion of its resources for the growth of
agricultural production makes it vulnerable to the
fluctuations that characterize agricultural
production due to its dependence on rainfall. In its
effect on the Sudanese economy’s rate of growth, it is
clear that the most important constraint and
limitation of production in the agricultural sector is
the absence of a clear agricultural policy regulating
this sector, establishing sustainable structuring, or
increasing productivity. Oilseed crops are important
plant-based foods in most developing countries
because they are cheap sources of protein and
alternatives to costly animal proteins. One of the
most important oilseed plants cultivated in Sudan is
the peanut, which is one of the country’s principal
cash crops (Elshafie et al., 2011). In the early 1970s,
the peanut ranked second after cotton among
Sudan’s top exports, but it dropped to fifth place
after cotton, sorghum, sesame, and gum Arabic in the
early 1980s, when the quantity exported fluctuated
relative to fluctuations in production, productivity,
and cultivated area (Zhuo et al, 2016). With the
secession of South Sudan in 2011, the country
retreated from the leading African countries in terms
of area cultivated and peanut production;
consequently, Sudan ranked second after Nigeria and
seventh globally. However, over the last 30 years,
Sudan’s production of peanut seeds has substantially
decreased for two reasons. The first is that the
government neglected agriculture to focus more on
increasing oil production, which greatly decreased
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with the secession of South Sudan in 2011. The
second reason is that the country has been caught up
in a vicious cycle of insecurity and conflict in the area
of agriculture.

The peanut is one of the most important oilseed
crops since it is a main source of concentrated
calories necessary for human and animal nutrition,
while oilseed, cake, and haulms are traditionally
used as animal feed. There are two types of this
sandy summer crop grown in Sudan. In the western
part of the county, in Darfur, it comprises
approximately 60% to 70% of the total production
and is known to be of better quality, while in Gazeria,
the central part of Sudan, and in East Sudan, the
other type is grown. The crop yields a quick cash
return for farms because the lands are characterized
by double or triple agricultural cycles. This results in
better economic yields than other summer crops.
Furthermore, the country consumes about 65% to
70% of the product locally and exports about 30% to
35% to European and Arab countries, although the
quantity exported has declined in recent years due to
reductions in Sudanese production.

Forecasting plays a pivotal role in decision-
making. It is an important and necessary tool
for governments to develop future production
policies, identify problems, and devise solutions.
Good crop yield estimates affect seasonal crop
management decisions. Many studies in Sudan have
sought to find models that might accurately predict
the future value of the peanut crop due to its
importance as a cooking oil and its significant
contribution to the gross national product (GNP). An
important aspect of the modeling process is finding
the best model to describe a phenomenon. In this
work, we aspire to use a new method of modeling,
using data transformation to determine a better
model to estimate the production function for
peanuts in Sudan. The rest of this paper is organized
as follows. Section 2 summarizes the literature
review of the study, and Section 3 describes the
forecasting techniques, including the autoregressive
integrated moving average (ARIMA) model. Section 4
describes the procedure for using ARIMA to
construct the proposed method. Section 5 provides
the results and discussion, while Section 6 serves as
the conclusion.

2. literature review

Improving the accuracy of time-series forecasting
models is a matter of constant attention from
researchers. A large body of literature has
demonstrated that basic strategies for combining
frequently yield significantly higher accuracy than
more complicated and sophisticated procedures
(Jose and Winkler, 2008). The constrained ordinary
least squares approach was an early tool for
combining linear forecasts. It computes the
combining weights by solving a quadratic
programming problem that minimizes the sum of
squared errors between the original and forecasted
datasets, with the condition that the weights be
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nonnegative and unbiased, and hence predict
dependent variables more accurately (Wang et al,
2023; Granger and Newbold, 2014). Several research
studies in the literature have revealed that the naive
simple average produced substantially better
forecasting outcomes on several occasions than
various additional complicated combination
techniques (Jose and Winkler, 2008). In a recent
comprehensive study, Jose and Winkler (2008) and
Granger and Newbold (2014) found that trimmed
means are marginally more accurate than simple
averages and lower the probability of high errors.
Moreover, a study suggests using the median as a
remedial measure. It is far less sensitive to extreme
values than the simple average. But there are varied
results regarding the superiority of the simple
average and median. The former produced better
accuracy in Stock and Watson's work (Stock and
Watson, 2004). Wu and Huang came up with the
ensemble empirical mode decomposition, which
fixes the problem of mode mixing in the original
empirical mode decomposition (Huang and Wu,
2008). They made a noise-assisted data analysis
method. A lot of different areas, like the solar cycle,
seismic waves, figuring out the price of crude oil, and
speaker identification systems, have used empirical
mode decomposition to get signals out of noisy data
that comes from nonlinear and stationary processes.
Empirical mode decomposition is better than other
methods because it can change on its own and is
very local in both physical and frequency space (Wu
and Tsai, 2011).

To test the accuracy of the developed model,
Fattah et al. (2018) conducted comparative studies
between experimental sales and simulations that
were adopted inthe Same period. It was reached that
the selected model has high accuracy and the ability
to simulate the dynamic behavior of sales (Fattah et
al,, 2018).

Adopted ANN Application Studies in pattern
recognition, classification, and prediction, more than
one algorithm has been used to obtain the results
and then compare these algorithms and determine
the best method through predictive accuracy
(Allende et al., 2002).

3. Forecasting techniques

Solving forecasting problems is an essential task
for successful planning and development. Many
statistical techniques for time series forecasting have
been developed. Of the conventional statistical
methods, the ARIMA model is widely used in
developing forecasting models (Stulajter, 2002).

3.1. Stationary time series

A series is said to be stationary when there is no
systematic change in the mean (i.e,, no trend), there
is no systematic change in variance, and strictly
periodic variations have been removed. In other
words, one part of the data has properties exactly
like those of every other part (Chatfield and Xing,
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2019). Suppose that X; represents the value of
phenomena at time t. Stationarity can be defined
with respect to the moments of the stochastic
process {X;} (Kirchgassner et al., 2012).

Mean stationarity: A process is mean stationary if

E[X.] = u, = uforallt. Variance stationarity: A
process is variance stationary if V[X,] =
E[(X, — u)?] = 62 = y(0) forall t. Covariance

stationarity: A process is covariance stationary if
Cov[Xe, Xs] = E[(Xe — ) (Xs — ps)] = v (It = sD.
Weak stationarity: A stochastic process is said to be
weakly stationary when it is both mean and
covariance stationary. The correlation coefficient
between the values of r;, and y;_, is called the lag-¢
autocorrelation of r; and is commonly denoted by pj,
which, under the weak stationarity assumption, is a
function of h only. Specifically, we define (Tsay,
2005).

— Cov(ye.ve—e) — 14C2}
Var(y:) ¥(0)

pPe = Cov(Yy,Yi—e)
T [Varro Varreo)

(1)
Eq. 1 is achieved under the assumption
Var(y:) = Var(y,_,) this assumption is used for weak
stationarity.
The value of the autocorrelation is —1 < p, <1,
where p, is the value of the autocorrelation.

3.2. Stationarity tests

To test the stationarity of a time series, Box and
Pierce (1970) proposed the Portmanteau statistics:

Q*(m) = T 7L, b7 (2)

under the following hypotheses:

Hy:py=p; = =pn=0
H,:p; #0 for somei € [1,---,m]

where, Qp, is a chi-squared random variable with m
degrees of freedom.

Ljung and Box (1978) modified the Q,, statistic,
as shown below, to increase the power of the test in
finite samples.

~2
Q(m) =T(T +2) X315 (3)

Simulated studies suggest that m = In(T), where
T is the total number of observations.

Most of the time series probability theory
concerns stationary time series, which is why time
series analysis frequently enables one to transform a
non-stationary series into a stationary one to use
this theory (Wollstadt et al., 2014).

Although the value of the stationarity test is easy
to calculate, most statistical programs depend on
finding a range for autocorrelations (Mizon, 1995).

3.3. Autoregressive integrated moving average
(ARIMA) model

Autoregressive Moving Average (ARMA) models,
also called Box-Jenkins models, were introduced by

205

Box et al. (2015) and have since become widely used
for time series forecasting. These models are applied
in many prediction tasks because of their
effectiveness in modeling time-dependent data. The
ARIMA model consists of three components: (1) the
autoregressive (AR) process, (2) the moving average
(MA) process, and (3) differencing to achieve
stationarity, which leads to the ARIMA form (ARMA
with integration). The general non-seasonal ARIMA
model is expressed as ARIMA(p, d, q), where p
represents the order of the autoregressive part, d
indicates the number of differences required to
make the series stationary, and q represents the
order of the moving average part.

Model ARIMA(O, 0, 0) is classified as a white

noise model in which there is no AR part, no MA part,
and no difference involved. Similarly, model
ARIMA(O, 1, 0) is known as a random walk model
because it involves only one difference. The equation
of the AR model is written as (Jonathan and Kung-
Sik, 2008):
Xe=CH P Xeg +PoXp o+ + PpXeyp 4)
where, X;_, X;_5,...X;_p are the values for previous
years, C is a constant, @,,..,0p are the AR
parameters, p is the order of the AR, and e, is the
white noise series.

Likewise, the equation of the MA model can be

written as:
Xe=p+e +01e 1+ 06 5+ +05e_4 (5)
where, u is the expectation of X;, 6,,..,0, are the MA
parameters, q is the order of MA, and e;, e;_; + -+
e;_q are the white noise error terms.

Integrating the two models yields the ARIMA
model [ARIMA(p, q)] as follows:

Xt =C+ ¢1xt_1 + ¢2xt_2 + -+ d)pxt_p + e + 91@1;_1 +
Gzet_z + -+ Qqet_q (6)

where, p and q are the AR and MA terms,
respectively.

The basic condition of the model is that the time
series data properties are stationary, while statistical
measures such as the mean, variance, and
autocorrelation remain constant. However, if the
time series data is non-stationary, the ARIMA model
requires differenced data to be transformed to
stationarity and is denoted as ARIMA(p, d, q) (Yuan
etal, 2016).

The process of constructing ARIMA models
requires the identification of the order of ARIMA(p,
d, q), the estimation of model parameters, the
checking of model validity, the selection of the best
model, and, finally, forecasting. After determining
the model and estimating its diagnostic parameters,
we must check the form to determine if the model is
suitable for the data. There are key criteria that
should be used to verify this step so that any
necessary revisions can be made to the form (Kumar
and Anand, 2014).
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3.4. Choosing the appropriate value of p, d, and q

Initially, possible temporary values are
determined for p, d, and q (Table 1). The suitability
of the proposed model is then verified (Fig. 1). If the
proposed model is not suitable, the nature of
inadequacy should be studied to arrive at another
model (Cryer and Chan, 2008).

Table 1: The behavior of the ACF and PACF for ARMA

models
AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off after lag q Tails of
PACF  Cuts off after lag p Tails off Tails of

Methodology of time series
forecasting

Data collection

Time series forecasting models

|

Model identification

Model parameter estimation

Diagnosis the fitness of model

l

Fitted apply proposed model

Validate the model on another data

Fig. 1: Time series methodology framework

When we need to verify the independence of
random error, a suitable model must be studied for
autocorrelation patterns in the data that were not
captured in the form during the estimation phase.
Then, the remaining ACF should be examined to
ensure that it was an insignificant statistical self-
correlation coefficient. This step is very useful in
proving that the model cannot be further improved
(Mateos et al., 2022).

4. The proposed method

The aim of this paper is to improve the accuracy
of the Box-Jenkins model using a transformation of
the data to achieve this aim. We will use the
following transformation:

Let X; = the series valuesnot (7)
then Y, =X{_ X, (8)
and z, =logV; 9)
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We propose applying the transformation of Eq. 9
to the formula of the Box-Jenkins model (Eq. 6).

Zy=c+¢1Zi g+ GoZi g+ -+ GpZy + 1 g +
0265+ -+ 04e_4 (10)

The basic idea in using this transformation with
agricultural data is that the production of the crops
in any specific year generally depends on the value
from the previous year. We are using aggregation to
assist in controlling for the effects of the random
error limit and logarithms to help make the values
closely related.

By applying Eq. 10, we take into consideration
the prediction values of the Z variable. To arrive at
the real predictions, the concept of the inverse
function must be used, that is;

Y, = 10%
Xe=Ye1— Y

(11)
(12)

5. Results and discussion
5.1. The dataset

In this study, the data consist of time series data
on peanut production in Sudan during the period
between 1966 and 2018, which were obtained from
the Central Bureau of Statistics. The Central Bureau
of Statistics collects data annually from all
agricultural projects (irrigated and rainy). The
percentage of cultivated area of peanuts in the rainy
sector is about 91% of the total area planted in
Sudan, which produces about 67% of the total
production in Sudan.

Fig. 2 presents annual peanut crop production in
Sudan during the period between 1966 and 2018.
The trend demonstrates that the quantity produced
fluctuated between increasing and decreasing during
the study period. Generally, the quantity of peanuts
produced during recent years has significantly
decreased, which confirms the need for conducting
such studies to identify problems and determine
solutions.

Table 2 presents the descriptive statistics
regarding peanut crop production. The annual
average production is 105,031.06 tons with a
standard deviation of 80959.74 tons. The maximum
value of production is 345546 tons, and the
minimum production is 1835 tons in 1996. The
range of production was 343711.

5.2. Results

In this study, we used the EViews statistical
package to perform all ARIMA modeling. To
determine if the proposed method increased the
accuracy of prediction, we estimated the model first
using the original data and then using the
transformed data. We then checked the accuracy of
the two methods. The results are provided in Tables
2, 3, 4, and 5. To obtain the best model, we used four
evaluation measures: namely, the number of



Elhafian et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 203-215

significant coefficients in the model, the estimator of
the error variance of the residual (labeled as
SIGMASQ), the coefficient of determination (R-
squared), Akaike’s Information Criterion (AIC), and
Schwarz’s  Information Criterion (SIC). The
comparison  between accuracy metrics is
represented in Table 6. The model with a smaller
value for AIC or SIC suggests a better fit. The
following sections present the results of the two
methods.

36.415 that means HO is not accepted, and the series
is not stationary. Fig. 3 shows the results of the ACF
and PACF of the original series. It is evident that the
series is not stationary, as seven ACF values lie
outside the acceptable range. To achieve stationarity,
a log transformation and first differencing were
applied.

Table 2: Descriptive statistics on the quantity of the
peanut crop, 1966-2016

Method 1: ARIMA model using original data: In Parameter 0;’313“190
this method, the peanut data without transformation Std. erﬂia;lf mean 11120_6'52
were used, and followed the steps mentioned in the Std. deviation 80959.574
theoretical part of this paper. First, we checked the Skewness 1.099
stationarity of the series by plotting the Std. error of skewness 0.327

. . . Kurtosis 0.919
autocorrelat}on fun(?tlon (ACF) and the partial Std. error of kurtosis 0.644
autocorrelation function (PACF). Range 343711

Using Eq. 2 to calculate the value of Q by Minimum 1835
substituting the values of ACF from Table 3, the Maximum 345546
value of Q = 97.5 and the critical value of ¥?,, ; ;. =

1800000
1600000
1400000
1200000
1000000 =
800000 = =
600000 [ ] —
400000 A~ B —
200000 A —_a
0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
year = Peanuts
Fig. 2: Time series plot of peanut production data
Table 3: The ACF and the PACF of the original data
AC PAC Q-Stat Prob.
1 0.627 0.627 22.062 0.000
2 0.662 0.443 47.109 0.000
3 0.454 -011 59.108 0.000
4 0.379 -0.10 67.655 0.000
5 0.318 0.089 73.803 0.000
6 0.303 0.133 79.503 0.000
7 0.312 0.098 85.682 0.000
8 0.174 -0.27 87.634 0.000
9 0.290 0.212 93.223 0.000
10 0.145 0.003 94.656 0.000
11 0.211 -0.01 97.733 0.000
12 0.112 -0.11 98.618 0.000
13 0.105 -0.04 99.414 0.000
14 0.071 0.103 99.795 0.000
15 0.047 -0.00 99.967 0.000
16 0.130 0.090 101.30 0.000
17 0.034 -0.09 101.40 0.000
18 0.064 -0.14 101.73 0.000
19 0.003 0.106 101.73 0.000
20 -0.06 -0.17 102.15 0.000
21 -0.17 -0.26 105.01 0.000
22 -0.18 0.019 108.35 0.000
23 -0.22 0.094 113.37 0.000
24 -0.24 0.032 119.47 0.000

Table 4 presents the ACF and PACF of the
transformed series. After applying the log
transformation and first differencing, the Ljung-Box
Q statistic was calculated using Eq. 2. Substituting
the ACF values from Table 4 gives Q = 17.96. Since
the critical value is )(224_0_05 = 36.415, the null
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hypothesis HO is accepted. This result indicates that
the residual series is stationary. Fig. 4 presents the
results of the ACF and the PACF of the original series
after using a log transformation. It reveals that the
time series of the data becomes stationary because
all the ACFs are within the range.
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Fig. 3: The ACF and the PACF of the original data Fig. 4: The ACF and the PACF of the original series after

using a log transformation

Table 4: The ACF and the PACF of the original series after using log transformation and the first difference

AC PAC Q-stat Prob.
1 -0.278 -0.278 4.2568 0.039
2 -0.105 -0.198 4.8765 0.087
3 0.051 -0.044 5.0266 0.170
4 -0.110 -0.143 5.7330 0.220
5 -0.089 -0.190 6.2074 0.287
6 0.030 -0.119 6.2619 0.394
7 0.064 -0.015 6.5179 0.481
8 -0.127 -0.169 7.5548 0.478
9 0.082 -0.056 7.9933 0.535
10 -0.092 -0.191 8.5621 0.574
11 0.273 0.226 13.666 0.252
12 -0.142 0.056 15.072 0.238
13 0.025 0.048 15.119 0.300
14 -0.054 -0.113 15.336 0.356
15 -0.135 -0.137 16.718 0.336
16 0.115 0.018 17.749 0.339
17 -0.086 -0.126 18.345 0.367
18 0.028 -0.117 18.704 0.429
19 0.059 0.011 18.703 0.476
20 0.109 0.076 19.738 0.474
21 -0.170 -0.072 22.348 0.380
22 0.095 -0.088 23.198 0.391
23 -0.065 -0.111 23.605 0.426
24 -0.060 -0.087 23971 0.463
To choose a suitable model, we estimated the one according to the specified criteria. To estimate
parameters of the model and compared them. The the ARIMA model of the time series unit using the
correlogram clearly illustrates that the proposed EVIEWS program, the model rank (p, d, q) should be
model of log transformation for the data is ARIMA(1, determined.
0, 0). For comparison, the estimated number of The model parameters are calculated by using the
models is presented in Table 4 to determine the best maximum likelihood estimation algorithm.
Table5: Comparison metrics of different ARIMA models for peanut data
. ARIMA(p, d, q)
Metrics (1,0,0) (0,0,1) (1,0,1) (0,0,2) (2,0,0)
Significant coefficient 1 1 1 1 1
SIGMASQ 0.576 0.689 0.568 0.641 0.569
R-squared 0.402 0.285 0.399 0.320 0.397
Akaike info criterion 2.411 2.585 2.434 2.552 2.585
Schwarz criterion 2.523 2.697 2.584 2.701 2.494
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Table 5 compares the metrics of various ARIMA
models for peanut data. The comparison shows that
the ARIMA(1, 0, 0) model is the best fit. This is
because it has the most significant coefficients (1),
the highest coefficient of determination R-squared
(0.402), the lowest values for AIC (2.411), and the
Schwarz criterion (2.523). ARIMA(1,0,0) will be
estimated.

Table 6 shows the coefficients of the best model.
Thus, the best equation in estimating the future
production of peanuts becomes as follows:

X; = 11.15033 + 0.663762 X;_,

To ensure the suitability of the model, the
residuals are tested (whether the residuals
distribution follows the normal distribution or not).

From Table 6, it is noted that the residuals are
relatively normally distributed around zero because
all the probability values are greater than 0.05,
which means no one is significant.

Table 7 presents the ACF and PACF of the
residuals from the AR(1,0,0) model, along with the
Ljung-Box test results. The residuals show no strong
autocorrelation, indicating that the model effectively
captures the data structure. The Ljung-Box test
confirms the independence of residuals, with p-
values above 0.05 for most lags, supporting the
model's adequacy. Using Eq. 2 to calculate the value
of Q by substituting the values of ACF from Table 7
(the ACF of the residuals), the value of Q = 11.168
and the critical value of x?,, .. =36415 that

means HO is accepted and the residuals is stationary.

Table 6: Output of the plausible model AR(1, 0, 0)

Variable Coefficient Std. error t-statistic Prob.
C 11.15033 0.385690 28.91013 0.0000
AR(1) 0.663762 0.092659 7.163523 0.0000
SIGMASQ 0.576391 0.088327 6.525633 0.0000
R-squared 0.424584 Mean dependent var 11.19131
Adjusted R-squared 0.401568 S.D. dependent var 1.010425
S.E. of regression 0.781649 Akaike info criterion 2.411076
Sum squared resid 30.54874 Schwarz criterion 2.522602
Log likelihood -60.89351 Hannan-Quinn criterion 2.453963
F-statistic 18.44684 Durbin-Watson stat 2.103321
Prob(F-statistic) 0.000001
Inverted AR roots .66
Table 7: The ACF and the PACF of residuals of the model AR(1)
AC PAC Q-stat Prob.
1 -0.06 -0.06 0.2223
2 0.022 0.018 0.2491 0.618
3 0.129 0.132 1.2263 0.542
4 -0.05 -0.04 1.4090 0.703
5 -0.02 -0.03 1.4487 0.836
6 0.054 0.037 1.6299 0.898
7 0.096 0.119 2.2161 0.899
8 -0.06 -0.05 2.5158 0.926
9 0.115 0.089 3.3973 0.907
10 -0.02 -0.03 3.4297 0.945
11 0.268 0.304 8.4015 0.590
12 -0.07 -0.08 8.7613 0.644
13 0.018 0.014 8.7860 0.721
14 -0.02 -0.12 8.8503 0.784
15 -0.11 -0.05 9.8613 0.772
16 0.100 0.078 10.648 0.777
17 -0.06 -0.05 11.003 0.809
18 0.033 -0.02 11.094 0.852
19 0.077 0.114 11.601 0.867
20 0.101 0.082 12.510 0.863
21 -0.11 -0.07 13.638 0.848
22 0.111 -0.01 14.786 0.834
23 -0.07 -0.06 15.304 0.849
24 -0.11 -0.04 16.564 0.830

Fig. 5 presents a residual diagnostics correlogram
for residuals of Model AR(1). Based on the
correlogram, which is flat, we conclude that there is
no serial correlation and that all information has
been captured. Therefore, the predictions will be
based on the Model ARIMA(1, 0, 0) for the log
transformation of the peanut data.

Method 2: ARIMA model using transformed data:
In the previous analysis, the main objective was to
perform the time series analysis in the usual manner
to compare the results with the method proposed by
the study. The accumulated method is used for the

209

peanut series by using Eq. 8 to calculate the
accumulated series. Firstly, the stationarity of the
new series was tested.

Using Eq. 2 to calculate the value of Q by
substituting the values of ACF from Table 8, the
value of Q = 257.0885 and the critical value of
)(22410_05 = 36.415 that means HO is accepted, and
the series is not stationary.

Fig. 6 illustrates the ACF and PACF of the
accumulated data. It is clear that the series is not
stationary because there are 12 ACF out of range.
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To achieve stationary, the method of log
transformation and differences is used. After using
the log transformation and the first difference and
calculating the value of Q using Eq. 2 by substituting
the values of ACF from Table 9, the value of Q =
26.68 and the critical value of x?,, | .. = 36.415 that

means HO is accepted and the series is stationary.
Fig. 7 illustrates the ACF and the PACF of the
accumulated data after using a log transformation. It
reveals that the time series of data becomes
stationary because only one ACF is out of range.
Through Fig. 7, the best model for the accumulated
data can be determined as ARIMA(2,1,2). Some of the
models are estimated for comparison. Based on
model accuracy, as shown in Table 10, the best-
fitting model is ARIMA(2,1,2) because it satisfied the

standard requirements, included three significant
parameters, achieved the highest adjusted R-squared
(0.796), and recorded the lowest values of the
Akaike information criterion (-2.095) and Schwarz
criterion (-1.982). Table 11 illustrates the
parameters and model diagnoses of ARIMA(Z2, 1, 2).
From Table 11, the best model can be written as
follows:

Z, = 0.280703 + 0.074490Z,_, + 0.885160Z,_,
+0.797396 6,_, + 0.5358916,_,

Based on Fig. 8, the residuals are flat, which
indicates that all relevant information has been
captured. Therefore, the prediction will be based on
the Model ARIMA(2, 1, 2).

Table 8: The ACF and the PACF of the accumulated data

AC PAC Q-stat Prob.
1 0.939 0.939 49.478 0.000
2 0.878 -0.03 93.546 0.000
3 0.815 -0.04 132.27 0.000
4 0.752 -0.03 165.94 0.000
5 0.686 -0.06 194.55 0.000
6 0.620 -0.04 218.41 0.000
7 0.553 -0.04 237.82 0.000
8 0.489 -0.02 253.32 0.000
9 0.427 -0.02 265.39 0.000
10 0.370 0.004 274.69 0.000
11 0.318 -0.00 281.70 0.000
12 0.268 -0.02 286.81 0.000
13 0.225 0.012 290.49 0.000
14 0.181 -0.04 292.95 0.000
15 0.141 -0.01 294.48 0.000
16 0.104 -0.02 295.33 0.000
17 0.069 -0.01 295.71 0.000
18 0.035 -0.02 295.81 0.000
19 0.002 -0.02 295.81 0.000
20 -0.03 -0.03 295.89 0.000
21 -0.06 -0.04 296.26 0.000
22 -0.09 -0.02 297.12 0.000
23 -0.12 -0.03 298.69 0.000
24 -0.15 -0.03 301.22 0.000

Table 9: The ACF and the PACF of the accumulated data after log transformation and the first difference

AC PAC Q-Stat Prob.
1 0.527 0.527 15.284 0.000
2 0.452 0.241 26.735 0.000
3 0.220 -0.12 29.509 0.000
4 0.300 0.211 34.789 0.000
5 0.236 0.056 38.119 0.000
6 0.283 0.066 42.996 0.000
7 0.230 0.050 46.296 0.000
8 0.224 0.013 49.506 0.000
9 0.168 -0.00 51.343 0.000
10 0.104 -0.08 52.063 0.000
11 0.111 0.047 52913 0.000
12 0.022 -0.11 52.946 0.000
13 0.042 -0.00 53.073 0.000
14 0.011 0.017 53.082 0.000
15 0.003 -0.07 53.082 0.000
16 -0.02 0.005 53.124 0.000
17 -0.03 -0.02 53.216 0.000
18 -0.04 -0.01 53.408 0.000
19 -0.04 0.002 53.598 0.000
20 -0.04 0.001 53.806 0.000
21 -0.06 -0.01 54.199 0.000
22 -0.06. -0.02 54.632 0.000
23 -0.07 0.017 55.145 0.000
24 -0.06 -0.01 55.602 0.000
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AR(2,1,2)

Table 10: The best ARIMA models for transformed data
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Fig. 6: The ACF and the PACF of the accumulated data Fig. 8: The ACF and the PACF of residuals of the model

ARIMA model ARIMA(p, d, q)

(1,1,0) (2,1,0) (0,1, 1) (0,1,2) (1,1,1) (2,1,2)
Significant coefficient 1 2 1 2 1 3
SIGMASQ 0.006 0.006 0.013 0.006 0.006 0.003
Adjusted R-squared 0.634 0.648 0.232 0.625 0.633 0.796
Akaike info criterion -2.095 -2.115 -1.402 -2.050 -2.076 -2.574
Schwarz criterion -1.982 -1.964 -1.289 -1.810 -1.925 -2.349

211



Elhafian et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 203-215

Table 11: The Output of the plausible model AR(2, 1, 2), coefficient covariance computed using outer product of gradients

Variable Coefficient Std. error t-statistic Prob.
C 0.280703 0.391285 0.717386 0.4768
AR(1) 0.074490 0.051522 1.445781 0.1550
AR(2) 0.885160 0.089126 9.931501 0.0000
MA(1) 0.797396 0.128571 6.202006 0.0000
MA(2) 0.535891 0.169563 3.160428 0.0028
SIGMASQ 0.003182 0.000568 5.606080 0.0000
R-squared 0.816161 Mean dependent var 0.070255
Adjusted R-squared 0.796178 S.D. dependent var 0.132840
S.E. of regression 0.059973 Akaike info criterion -2.574128
Sum squared resid 0.165449 Schwarz criterion -2.348985
Log likelihood 72.92733 Hannan-Quinn criterion -2.487814
F-statistic 40.84371 Durbin-Watson stat 1.737754
Prob(F-statistic) 0.000000
Inverted AR roots .98 -90
Inverted MA roots -40-.61i -40+.61i

Table 12 shows the ACF and PACF of the
residuals from the AR(2, 1, 2) model, together with
the Ljung-Box test results. The residuals do not
show strong autocorrelation, which means the
model explains the main structure of the data. The
Ljung-Box test also supports this, because most p-
values are greater than 0.05, so we fail to reject the
null hypothesis of no residual autocorrelation. Small
autocorrelations appear at lags 2 and 4, but the Q-
statistics remain within acceptable limits. Using Eq. 2
and the residual ACF values from Table 6, the Q value
is 11.168. This is less than the critical value
)(22410_05 = 36.415, so HO is accepted and the

residuals can be treated as uncorrelated (white
noise). Overall, the AR(2, 1, 2) model appears well

specified, with no major unexplained patterns,
although additional validation could still be
considered.

Table 13 compares two best-fit models from
different approaches: ARIMA(1, 0, 0) fitted to the
original data and ARIMA(2, 1, 2) fitted to the
cumulative data. According to the reported criteria,
the proposed approach (ARIMA(2, 1, 2) on the
cumulative data) provides better performance than
ARIMA(1, 0, 0) on the original data, as indicated by
improved goodness-of-fit measures (e.g., lower error
metrics and information criteria). This comparison
shows that modeling the cumulative series yields a
more accurate and reliable fit.

Table 12: The ACF and the PACF of residuals for the AR(2, 1, 2) model

AC PAC Q-stat Prob.
1 0.044 0.044 0.1083
2 -0.182 -0.184 1.9618
3 0.109 0.131 2.6421
4 -0.196 -0.258 4.8795
5 -0.024 0.071 49137 0.027
6 0.103 -0.014 5.5653 0.062
7 -0.083 -0.029 5.9922 0.112
8 0.114 0.109 6.8236 0.146
9 0.068 0.006 7.1237 0.212
10 -0.120 -0.040 8.0897 0.232
11 0.204 0.208 8.4015 0.141
12 -0.115 -0.201 10.393 0.158
13 -0.050 0.164 11.860 0.211
14 0.130 -0.079 12.037 0.208
15 -0.075 0.078 13.291 0.249
16 0.041 0.003 13.717 0.310
17 0.018 -0.058 13.877 0.383
18 -0.092 -0.022 14.575 0.408
19 0.048 -0.024 14.767 0.468
20 0.029 0.011 14.843 0.536
21 -0.087 -0.012 15.532 0.557
22 0.019 -0.114 15.567 0.623
23 -0.047 -0.057 15.781 0.672
24 -0.058 -0.132 16.115 0.709

Table 13: The compression of the best models using the two methods

Metrics

The original data
ARIMA(1, 0,0)

The cumulative data
ARIMA(2,1,2)

Significant coefficient
SIGMASQ
Adjusted R-squared
Akaike info criterion
Schwarz criterion

3
0.576 0.003
0.402 0.796
2411 -2.57
2.523 -2.349

The comparison between ARIMA(1, 0, 0) and
ARIMA(2, 1, 2) models highlights significant
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improvements in model performance. The ARIMA(2,
1, 2) model, with three significant coefficients
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compared to just one in ARIMA(1, 0, 0),
demonstrates greater flexibility and a better fit to
the data. Additionally, the variance of residuals
(SIGMASQ) is drastically reduced from 0.576 to
0.003, indicating that ARIMA(2, 1, 2) more effectively
captures the underlying data structure and
minimizes prediction errors. The adjusted R-squared
value, a key measure of model fit, increases from
0.402 to 0.796, reinforcing the stronger explanatory
power of ARIMA(2, 1, 2). Furthermore, the Akaike
Information Criterion (AIC) and Schwarz Criterion
(SC) show substantial reductions, decreasing from
2.411 to -2.57 and 2.523 to -2.349, respectively.
These lower values suggest that ARIMA(2, 1, 2)
provides a superior balance between model
complexity and goodness of fit. Overall, these
improvements confirm that ARIMA(Z2, 1, 2) is a more
effective model for forecasting, offering greater
accuracy and efficiency.

The results indicate that the ARIMA(Z, 1, 2)
model applied to cumulative data outperforms the
ARIMA(1, 0, 0) model based on multiple evaluation
metrics. The increased adjusted R-squared value
demonstrates improved explanatory power, while
the reduced AIC and SC confirm a more efficient
model fit. Additionally, the drastic reduction in
SIGMASQ suggests that the new approach effectively
minimizes prediction errors. These findings support
the conclusion that the proposed method
significantly enhances predictive accuracy, making it
a more suitable choice for forecasting in this context.

5.3. Discussion

Accurate forecasting of the productivity of any
agricultural crop is critical for economic growth,
food security, and poverty reduction to avoid the
risks associated with poor diets leading to disease
and health crises. It is important to develop methods
that assist decision-makers in understanding
underlying future phenomena. There are many types
of time series forecasting methods, for example, the
classical method, the Box-Jenkins method, and
artificial neural networks. Accuracy needs to be the
key factor considered whenever one is deciding
between various methods of forecasting. Over the
past few decades, several techniques for increasing
the accuracy of forecasting models have been
created (Cerqueira et al, 2020; Bergmeir et al,
2018). However, there isn't a method that everyone
agrees on. In this paper, we contribute to the existing
body of research by carrying out an empirical study
that compares two time series methods to determine
which one will increase the model’s accuracy. In the
first method, we used original time series data and
performed our analysis to find the best-fit mode.
This method showed that the data were
nonstationary since autocorrelation values were out
of the stationary range (Table 2). In the second
method, we used accumulated data from the same
time series and conducted the analysis using a
logarithmic transformation. According to the
illustration in Table 8, the time series data is
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stationary and contributes significantly to the
autocorrelations being confined within the range.

Model comparisons (Table 12) in AIC and
parameter estimates showed that Model ARIMA(Z2, 1,
2) of the second method (the cumulative method)
contributed significantly. According to the metric
comparison, the proposed model (ARIMA(2, 1, 2))
performed significantly and managed to produce
better forecasts than the first methods with an
adjusted R-squared of 0.796 versus 0.40, an AIC of -
2.57 versus 2.41, and a SIC of -2.35 versus 2.52.
Based on this result, Model ARIMA(Z2, 1, 2) of the
second method (i.e., the cumulative data method) is
superior. Therefore, one can say that the proposed
technique leads to more clarity in the identification
of the model, increases the value of the coefficients
of determination, decreases the value of BIC, and
produces more accurate forecasting.

Through Table 12, it is clear that the proposed
method showed an improvement in predictive
accuracy by 39%. comparing our study with the
study of Wang et al. (2015), which used the method
ofensemble empiricalmode decomposition and
showed a development in predictive accuracy by
12%, our study has proved better results.

6. Conclusion

In this study, the time series method was used to
analyze peanut yields in Sudan using conventional
time series data. ARIMA model with the original data
of crops over successive years, as well as the
proposed ARIMA model with the original cumulative
data after transformation. The results of the two
methods were compared. The precision of the
proposed method, which makes use of the
transformation data, led to its selection as the best
option for forecasting. The method wuses the
logarithm of cumulative values of peanut yield,
resulting in significantly better results than the
traditional method. This is especially important for
studying how crops have been affected by
production values from previous years. Therefore,
the proposed methods should be used when
studying the crop time series in order to obtain more
accurate results, leading to more accurate planning
to achieve more productivity and a greater
abundance of these crops. This study added a new
method to increase the predictive accuracy of these
models.

This paper makes a valuable contribution on both
the scientific and practical sides. The study
demonstrates that the new method, the cumulative
method, enhances the predictive power of the Box-
Jenkins models from a scientific perspective. On the
practical side, we find that this paper made a great
contribution to Sudan's government agencies and
decision-makers. The model's significant predictive
power enables the creation of highly accurate future
forecasts for the peanut crop, a crucial national
product that boosts the state's income by exporting
its raw form or processing it into oil or peanut
butter.
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List of abbreviations

AC Autocorrelation

ACF Autocorrelation function

AIC Akaike's information criterion

ANN Artificial neural networks

AR Autoregressive process

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

BIC Bayesian information criterion

GNP Gross national product

MA Moving average process

PAC Partial autocorrelation

PACF Partial autocorrelation function

Prob. Probability

Q-Stat Q-Statistics

S.E. Standard error

SC Schwarz's criterion

SIC Schwarz's information criterion

SIGMASQ TheT estimator of the error variance of the
residual

Std. Standard

Var Variable
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