
 International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

150

A novel approach to database selection using feedforward neural networks

Nidal A. Al-Dmour 1, *, Hani Al-Zoubi 1, Ghazi Al Naymat 2, Hanan Hussain 3

1Department of Computer Engineering, College of Engineering, Mutah University, Karak, Jordan
2Artificial Intelligence Research Center (AIRC), College of Engineering and IT, Ajman University, Ajman, United Arab Emirates
3College of Engineering and IT, University of Dubai, Dubai, United Arab Emirates

A R T I C L E I N F O A B S T R A C T

Article history:
Received 11 May 2024
Received in revised form
12 September 2025
Accepted 1 October 2025

Selecting an appropriate database is a common challenge for professionals,
including web developers and machine learning engineers. Choosing the
most suitable database for an application is important for maximizing its
performance. However, because many features of different databases
overlap, manually predicting the best database is difficult and prone to
errors. To address this issue, a new approach is proposed using a
Feedforward Neural Network (FFNN) for database selection. This method
involves four steps: feature selection, dataset generation, neural network
modeling, and database prediction. In the feature selection step, important
features of seven major relational databases—MySQL, MS SQL Server, Oracle,
IBM DB2, PostgreSQL, SQLite, and Microsoft Access—are gathered through
web searches. These features are used to create a ground truth table. During
dataset generation, 2,400 combinations of 75 features are generated, and
labels for each instance are calculated using a weighted average method. The
neural network modeling step involves selecting an optimal feedforward
neural network based on its parameters and performance. The network is
then trained using the Levenberg-Marquardt backpropagation algorithm. In
testing, user input is provided (a selected set of features is fed into the pre-
trained network), and the system predicts the best database with a mean
squared error (MSE) of 5.16E-14.

Keywords:
Database selection
Feature selection
Neural network
Dataset generation
Prediction accuracy

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Database types (or models) refer to the
structures used to organize and manage data within
a database management system (DBMS). Over the
past decades, various types of databases have been
developed, starting from early systems such as the
Information Management System to modern
platforms including Oracle, IBM DB2, PostgreSQL,
MySQL, SQLite, and Microsoft Access (Abbasi et al.,
2024). Based on their usage, databases can be
classified into several categories: centralized,
distributed, personal, end-user, commercial, NoSQL
(including graph, key-value, document, and column
databases), operational, relational, cloud-based, and
object-oriented databases (Mouhiha and Mabrouk,
2025). While each of these databases serves a
specific purpose, this paper focuses on relational

* Corresponding Author.
Email Address: nidal75@yahoo.com (N. A. Al-Dmour)
https://doi.org/10.21833/ijaas.2025.10.017

 Corresponding author's ORCID profile:
https://orcid.org/0000-0002-2898-3905
2313-626X/© 2025 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

databases and their prediction using selected
relevant features.

In a traditional row store, each entity is stored in
a separate row (Kanade and Gopal, 2013). In
contrast, a column store arranges data by storing the
attributes of tuples contiguously (Abadi et al., 2008;
El-Helw et al., 2011). Thus, row-oriented databases
organize information by records, keeping all the data
related to a record close together in memory.
Popular examples of relational databases include
MySQL, SQL Server, PostgreSQL, IBM DB2, Microsoft
Access, SQLite, MariaDB, Informix, and Azure SQL.

An example can demonstrate how read and write
operations are performed in a relational database.
Consider a table named Friends that includes three
records: Person A from City X aged 27, Person B
from City Y aged 30, and Person C from City Z aged
33. In a row-oriented database, these records are
stored on disk sequentially as: Person A, City X, 27;
Person B, City Y, 30; Person C, City Z, 33. When a new
record is inserted, such as Person D from City W,
aged 35, the entry is appended to the end of the
sequence.

Relational databases allow fast write operations
because new data can be easily appended at the end.

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nidal75@yahoo.com
https://doi.org/10.21833/ijaas.2025.10.017
https://orcid.org/0000-0002-2898-3905
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2025.10.017&domain=pdf&

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

151

However, read operations tend to be slower. For
instance, calculating a value such as the sum of ages
requires loading all records into memory. Thus, each
type of database has its own advantages and
limitations, along with distinct features.

This paper proposes an automated approach for
selecting a suitable database based on database
characteristics and user requirements. Section 2
reviews related studies on the selection of row-
oriented and column-oriented databases through
experimental comparisons, as well as approaches
based on feature selection. Section 3 describes the
proposed methodology, including feature selection,
dataset generation, neural network modeling, and
database prediction. Section 4 presents the
experimental results used to assess the performance
of the proposed approach. Finally, Section 5
summarizes the main findings and highlights
potential directions for future research.

2. Literature survey

Research on predicting suitable databases based
on user input using machine learning techniques
remains limited. However, several studies have
investigated the prediction or selection of row-
oriented and column-oriented databases through
experimental analysis under different conditions.

Bousalem et al. (2019) compared a relational
database (MySQL) with a NoSQL database (HBase) in
terms of runtime and latency using the YCSB
framework. They conducted three tests: (1) loading
data, (2) running workloads while increasing the
number of records with a fixed 10,000 operations,
and (3) running workloads while increasing the
number of operations with one million records.
Their results showed that MySQL had consistently
higher runtime during data loading, while HBase
outperformed MySQL in most cases. For latency,
MySQL was faster in read operations, whereas HBase
was more efficient in write operations. In workload
runtime, HBase performed better overall, except in
read-only workloads.

Yassien and Desouky (2016) carried out a similar
benchmark study using YCSB on MySQL, MongoDB,
and HBase. They varied the operation count and
thread count and applied the Pearson Correlation
Test to examine relationships between workload
parameters and performance metrics such as
throughput, latency, and runtime. Their findings
showed that HBase had the highest read latency but
performed well in updates, runtime, and throughput,
though it was negatively affected by large operation
counts. MySQL, by contrast, had the lowest read
latency under heavy read loads but exhibited the
highest update and write latency, as well as the
longest runtime during dataset loading and
generation.

Salunke and Ouda (2024) focused on selecting
suitable databases for machine learning projects,
considering factors such as data volume, scalability,
and support resources. They recommended using
traditional databases for datasets up to 1 TB and

shifting to solutions like Amazon Redshift or Google
Big Query for larger datasets.

Earlier, Jarke and Vassiliou (1985) proposed a
methodology for selecting database query languages
for different user classes. Their approach was based
on an interpretation model of database query
languages, considering two key aspects: (1)
programming language and database theory, and (2)
human factors engineering.

3. Methodology

The proposed method consists of the following
four main steps. Fig. 1 outlines the pictorial
representation of the methodology.

• Feature selection
• Dataset generation
• Neural network modeling
• Database prediction

3.1. Feature selection

Prominent features of the database are searched
from the web and literature (Kanade and Gopal,
2013; Kim, 2014; Okman et al., 2011; Kepner et al.,
2016). Thirteen categories of features consisting of
75 sub-features are selected based on the review.
Selected categories and their features are shown in
Table 1.

Thirteen main features were identified for
evaluation. These include the type of license,
whether open source (freeware) or closed source
(proprietary), the level of memory requirements
(high or low), operating system compatibility, and
fundamental functionalities such as ACID properties,
referential integrity, transaction management,
record-level locking (RLL), multi-version
concurrency control (MVCC), Unicode support, type
inference, compression, and scalability. Further
categories include interface and schema features
such as tables, views, indexing types, and supported
data types, as well as database capabilities including
union, intersect, except, inner joins, outer joins,
nested selects, and merge joins. Partitioning
methods such as range, hash, combined range-hash,
list, and expression-based techniques were also
considered. Access control features were included as
well, such as native network encryption, brute-force
protection, enterprise directory compatibility,
password complexity rules, patch management,
unprivileged execution, auditing, resource limits,
separation of duties (RBAC), security certifications,
and attribute-based access control (ABAC). In
addition, other features such as crash recovery, big
data handling, data warehousing, and cloud
compatibility were taken into account.

Let F represent an instance of a database defined
by a set of 75 selected features, expressed as:

𝐹 = (𝑓(1), 𝑓(2), 𝑓(3), … 𝑓(75))

where,

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

152

𝑓(𝑖) = {
 1 ; 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

For prediction purposes, seven commonly used
databases were selected, namely MySQL, MS SQL
Server, Oracle, IBM DB2, PostgreSQL, SQLite, and
Microsoft Access. Ground-truth values were

established for these databases based on their most
recent versions, without including add-ons,
extensions, or external routines. A complete list of
the ground-truth values corresponding to the 75
features of the seven databases is provided in
Appendix A.

Feature Selection Dataset Generation
Neural Network

Modeling
User Input and Database

Selection

Phase 1 Phase 2 Phase 3 Phase 4

.Searched web to find the

important 75 features of the
databases

.Generated ground truth

From the data collected

.Generated 2400 combination

of 75 features

.Calculated labls for each
instances using

The weighted average

.Selected a feedforward

network model having the best
parameters and preformance

. Trained the ANN using the

training dataset and calculated

the performance

.From the newly developed

GUI the user has to select the

required features

.input fed to pre-trained ANN

was tested and output

obtained

Labels
USER

Fig. 1: Proposed methodology stepwise

Table 1: Prominent features and sub-features of databases

Category Features
Type of the license Open source, closed source

Memory requirements High, low
OS support Windows, macOS, Linux, BSD, Unix, AmigaOS, z/OS, Android, Open VMs

Basic features
ACID properties, referential integrity, transactions, locking (RLL), MVCC, Unicode, type inference, compression,

scalability
Interface API, GUI, SQL

Tables and views Temporary tables, materialized views
Indexes B-/B+ tree, R-/R+ tree, hash expression, partial, reverse, bitmap, full-text, spatial, FOT, duplicate index prevention

Data types Integer, floating point, decimal, string

DB capabilities
Union, intersect, except, inner joins, outer joins, nested selects, merge joins, blobs and clobs, common table expressions,

windowing functions, parallel query, system-versioned tables
Partitioning Range, hash, combined range-hash, list, expression

Objects Data domain, cursor, trigger, function, procedure, external routine

Access controls
Native network encryption, brute-force protection, enterprise directory compatibility, password complexity rules, patch
management, run unprivileged, audit, resource limit, separation of duties (RBAC), security certification, attribute-based

access control (ABAC)
Other features Crash recovery, big data handling, data warehousing, cloud compatibility

3.2. Dataset generation

Different combinations of features were
randomly selected and assigned values of either 0 or
1. After comparing the selected features with those
in the ground truth data, the databases that matched
more closely received higher scores, while those
with fewer matches received lower scores. The
databases with the highest scores were labeled with
a larger percentage, and those with the lowest scores
were labeled with a smaller percentage. In this way,
2400 instances were generated, each with its
corresponding label, to train the neural network.

Let Scoredb(j) represent the final score obtained
for the j-th database. For this calculation, Ft(i) for the
j-th database takes a value of 1 or 0 depending on
the ground truth data. If the i-th feature of the j-th
database equals 1, then Ft(i) is set to 1; otherwise, it
is set to 0. The score was calculated for all seven
databases, and the corresponding Percentagedb was
also determined. These percentage values were then

assigned as labels for each database. In total, [2400 ×
7] labels were generated corresponding to the [2400
× 75] feature instances. The equations used for
calculating scores and percentages are as follows:

𝑆𝑐𝑜𝑟𝑒𝑑𝑏(𝑗) = ∑ 𝑓𝑡(𝑖)

75

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝑗 = 1: 7

𝑓𝑡(𝑖) = {
 1 ; 𝑖𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (𝑓(𝑖), 𝑑𝑏(𝑗)) = 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

𝐿𝑎𝑏𝑒𝑙 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑑𝑏(𝑗) =
𝑆𝑐𝑜𝑟𝑒𝑑𝑏(𝑗)

∑ 𝑆𝑐𝑜𝑟𝑒𝑑𝑏(𝑗)7
𝑗=1

∗ 100

The training dataset S consists of features and
labels. F(1) denotes the set of 75 features for the first
instance, and Label(1) represents the corresponding
set of seven values assigned to the databases. If n
represents the total size of the training dataset, then
the structure of S is expressed as:

𝑆

= [(𝐹(1), 𝐿𝑎𝑏𝑒𝑙(1)), (𝐹(2), 𝐿𝑎𝑏𝑒𝑙(2)), … (𝐹(𝑛), 𝐿𝑎𝑏𝑒𝑙(𝑛))]

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

153

3.3. Neural network modeling

The Feedforward Neural Network (FFNN) was
employed to train the generated dataset. The
proposed FFNN is composed of four layers. The first
is the input layer, which contains 75 neurons, each
corresponding to one of the feature vectors. The
second and third layers are two identical hidden
layers, each consisting of eight neurons and using the
hyperbolic tangent sigmoid activation function
(tansig). Each layer receives connections from the
preceding one. The fourth and final layer is the
output layer, which contains seven neurons
corresponding to the database labels. This layer uses
a purely linear activation function (purelin), and its
outputs are used for database prediction. Variants of
the FFNN include fitting networks, pattern
recognition networks, and cascade forward
networks.

Two main functions were applied in the FFNN.
The first is the training function, which uses
Levenberg-Marquardt backpropagation (trainlm)

(Levenberg, 1944; Marquardt, 1963). This algorithm
updates the weights and biases in the network.
Although it requires more memory than other
methods, it is the fastest approach for training
feedforward neural networks. Because the algorithm
relies on the Jacobian matrix, the performance
measure must be either mean squared error (MSE)
or the sum of squared errors (SSE). Training
terminates when one of the following conditions is
satisfied: the maximum number of training epochs
reaches 1000, the performance goal approaches
zero, the number of validation failures reaches six,
the minimum performance gradient falls below
0.0000001, or the maximum mu value reaches 10.

The second is the transfer function, which
employs the hyperbolic tangent sigmoid function
(tansig) in the hidden layers and the linear function
(purelin) in the output layer, as illustrated in Fig. 2.
Fig. 3 illustrates the structure of the proposed FFNN
(75, 8, 8, 7), which consists of 75 input neurons, two
hidden layers with 8 neurons each, and 7 output
neurons.

a

n

+1

-1

= tansig (n)
Tan-sigmoid transfer function

a

0

a

n

+1

-1

= purelin (n)
linear transfer function

a

0

Fig. 2: Graphical representation of the transfer functions used

Neural Network

Algorithms

Progress

Data Division :
Training:
Preformance: Mean Squared Error (mse)
Calculations: MEX

Epoch:

Time:

Performance:

Gradient:

Mu:

Validation Checks:

Input

75

w

b

+
w ww

b b

w
Output

7

788

1000

0.00

1.00e-07

1.00e+10

6

0

59.5

198

0.00100

0

9.97e-08

1.00e-08

0

0:03:44

1.38e-11

874 iterations

Levenberg-Marquardt (trainlm)
Random (dividerand)

++

Fig. 3: Proposed FFNN (75, 8, 8, 7)

3.4. Database prediction

The neural network is trained with the given
training dataset and labeled with a minimum error
function. The final stage of this methodology is the
testing part of the modeled neural network using
user input. The methodology shown in Fig. 4
summarizes both the training and testing phases of
the FFNN. Testing involves the prediction of the
most relevant database based on user input. The

user inputs are extracted and fed to the FFNN to test.
Once the testing is over, the network labels each
database with a particular score. Based on the
relevance, each database receives a score from high
to low scores as shown in Table 2.

4. Result analysis

Thirty-five experiments were conducted by
changing the number of hidden layers to as follows:

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

154

one, two, and three. Additionally, the number of
hidden neurons was shifted to 8 and 10 for all the
varying hidden layer sizes.

4.1. Performance measurement: Mean squared
error

The performance of the feedforward neural
network (FFNN) was assessed using the mean
squared error (MSE). As a widely recognized metric
in neural network evaluation, MSE quantifies the
average squared difference between predicted and
actual outputs. The following equation presents the
calculation of this performance measure:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑡𝑎𝑟𝑔𝑒𝑡(𝑖) − 𝑜𝑢𝑡(𝑖))

𝑛

𝑖

where, n is the number of output nodes, target is the
desired neural network output, and out is the actual
neural network output. MSE obtained for different
experiments is given in Appendix B and Table 3.

4.2. Training functions

Four different training functions were evaluated,
namely Levenberg-Marquardt backpropagation
(trainlm), resilient backpropagation, Bayesian
regularization (Burden and Winkler, 2008), and
scaled conjugate gradient backpropagation (Møller,
1993). Among these, the trainlm algorithm was
found to perform better than the others in terms of
mean squared error (MSE) and elapsed time. The
best results obtained for the proposed FFNN (75, 8,
8, 7) using different training functions and ten-fold
cross-validation are presented in Table 4.

Table 2: The score achieved by each database

Database Score predicted by ANN Score predicted by average method
Oracle DB 18.2373 19.3548

MySQL 19.9824 17.7419
MS SQL Server 16.1902 16.1290

PostgreSQL 21.2966 20.1613
IBM DB2 15.2503 14.5161

MS Access 4.1646 2.4194
SQLite 4.8860 9.6774

Training
Data set

Labels

User Input

Training stops
When the
Gradiant is
minimum

Updating Weights
And Parameters

2400 Instaces
With 75 features

Proposed ANN with an Input layer (75).
2 hudden layers (8) . And an output layar(7)

User Chosen
75 features

Pretrained ANN
Estimated Values given for

The seven Databases

TRAINING PHASE TESTING PHASE

Fig. 4: Training and testing phases of the FFNN

Table 3: Experimental results of FFNN (75, 8, 8, 7) using different training functions

Training function Elapsed time MSE Epoch Exit condition
trainlm 0:53 minutes 5.16E-14 153 Minimum gradient reached
trainbr 0:12 minutes 1.01E-13 69 Minimum gradient reached
trainrp 0:02 minutes 8.13E-02 1000 Max epoch reached
trainscg 0:03 minutes 9.78E-03 1000 Max epoch reached

Table 4: Experimental results of FFNN (75, 8, 8, 7) using different cross-validation methods

Cross-validation method Elapsed time MSE Epoch Exit condition
Holdout, 75%-15%-10% 0:14 minutes 2.68E-14 47 Minimum gradient reached
10-fold cross-validation 0:53 minutes 5.16E-14 153 Minimum gradient reached

LOOCV 5:44 minutes 8.61E-14 1000 Max epoch reached

4.3. Cross-validation techniques

The evaluation employed three validation
methods: the Holdout method (Arlot and Celisse,
2010), ten-fold cross-validation (McLachlan et al.,
2005), and leave-one-out cross-validation (LOOCV)
(Vanwinckelen and Blockeel, 2012). Both exhaustive

validation approaches, such as LOOCV, and non-
exhaustive approaches, such as the Holdout method
and ten-fold cross-validation, were applied. Table 3
presents the experiments conducted on the
proposed FFNN (75, 8, 8, 7) using the trainlm
algorithm. Among these methods, ten-fold cross-
validation was selected as the most suitable, as it

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

155

achieved better results than the others in terms of
both elapsed time and mean squared error (MSE).

5. Conclusion

Database prediction based on user-selected
features using a feedforward neural network has
been discussed. The proposed methodology consists
of four main stages: feature selection, dataset
generation, neural network modeling, and database
prediction. Feature selection involves identifying the
key characteristics of row-oriented databases and
generating ground-truth values for the seven
selected databases, namely MySQL, MS SQL Server,
Oracle, IBM DB2, PostgreSQL, SQLite, and Microsoft
Access. Dataset generation is the second stage, which
produces 2400 instances of different feature
combinations along with their labels derived from
scores and percentages. Neural network modeling
forms the third stage and focuses on selecting the

optimal parameters of the network to achieve the
best performance. The final stage, database
prediction, uses user inputs as features, which are
fed into the trained FFNN to predict the most
suitable database based on the network output.

A limitation of the current approach is the lack of
access to raw data. Future work will aim to address
this by applying other popular machine learning
methods, such as support vector machines and
random forests, and by incorporating a larger
number of features and databases..

Appendix A. Ground Truth of databases and
corresponding features

In Table A1, the value of ((𝑓(𝑖), 𝑑𝑏(𝑗)) = 1
indicates that the feature ‘i’ is present in the
database ‘j’. zero otherwise. Features underlined are
common to all the selected databases.

Table A1: Ground truth data

Features
Databases

Oracle Mysql MS Sql Server Postgre SQL IBM DB2 Ms Access SQLite

License
Open source 0 1 0 1 0 0 1

Closed source 1 1 1 0 1 1 0
Memory req

High 1 0 1 1 0 0 0
Low 0 1 0 0 0 0 1

OS support
Windows 1 1 1 1 1 1 1

macOS 1 1 0 1 1 0 1
Linux 1 1 1 1 0 0 0
BSD 0 1 0 1 0 0 1

UNIX 1 1 0 1 1 0 1
AmigaOS 0 1 0 1 0 0 1

z/OS 1 1 0 0 1 0 0
iOS 0 0 0 0 1 0 1

Android 0 1 0 1 0 0 1
OpenVMS 1 0 0 0 0 0 0

Basic features
ACID 1 1 1 1 1 1 1

Referential Integrity 1 1 1 1 1 1 1
Transactions 1 1 1 1 1 1 1

Locking (RLL) 1 1 1 1 1 0 0
Multiversion concurrency control 1 1 1 1 1 1 0

Unicode 1 1 1 1 1 1 1
Type inference 1 1 1 0 1 1 1
Compression 1 1 1 0 1 1 0

Scalability 1 1 1 1 0 0 0
Interface

API 1 0 0 1 0 0 1
GUI 1 1 1 1 1 1

SQL 1 1 1 1 1 1 1
Tables and views

Temporary table 1 1 1 1 1 0 1
Materialized views 1 0 0 1 1 0 0

Indexes
B-/B+ tree 1 1 1 1 1 1 1
R-/R+ tree 1 1 1 1 1 0 1

Hash expression 1 1 1 1 1 0 1
Partial 1 0 1 1 1 0 1

Reverse 1 0 1 1 1 0 1
Bitmap 1 0 1 1 1 0 0

Full-text 1 0 1 0 0 0
Spatial 1 1 1 1 1 0 1

FOT 1 1 1 1 0 0 1
Duplicate index prevention 1 0 0 0 0 0 0

Datatypes
Integer 1 1 1 1 1 1 1

Floating point 1 1 1 1 1 1 1
Decimal 1 1 1 1 1

String 1 1 1 1 1 1 1
Binary 1 1 1 1 1 1 1

Date/Time 1 1 1 1 1 0 0
Boolean 1 1 1 1 1 0 0

DB capabilities
Union 1 1 1 1 1 1 1

Intersect 1 0 1 1 0 0 1

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

156

Except 1 0 1 1 0 0 1
Inner joins 1 1 1 1 1 1 1
Outer joins 1 1 1 1 1 1 1

Inner selects 1 1 1 1 1 1 1
Merge joins 1 0 1 1 0 0 0

Blobs and clobs 1 1 1 1 1 1 1
Common expression table 1 1 1 1 0 0 1

Windowing functions 1 0 1 1 0 0 1
Parallel query 1 0 1 1 0 0 1

System-versioned tables 1 0 1 1 0 0

Aggregation queries 1 1 1 1 1 1 1
Partitioning

Range 1 1 0 1 1 0 0
Hash 1 1 0 1 1 0 0

Composite (R+H) 1 1 0 1 1 0 0
List 1 1 0 1 1 0 0

Expression 1 1 0 1 1 0 0
Objects

Data domain 1 0 1 0 1 1 0
Cursor 1 1 1 1 1 0 0
Trigger 1 1 1 1 1 0 1

Function 1 1 1 1 1 0 0
Procedure 1 1 1 1 1 1 0

External routine 1 1 1 1 1 1 1
Access controls

Native network encryption 1 1 1 1 1 0 0
Brute-force protection 1 0 1 1 0 0 0

Enterprise directory compatibility 1 1 1 1 1 0 0
Password complexity rules 1 1 1 0 0 0 0

Patch access 1 1 1 0 0 0
Run unprivileged 1 1 1 1 1 1 1

Audit 1 1 1 1 1 0 1
Resource limit 1 1 1 1 1 0 1

Separation of duties (RBAC) 1 1 1 1 1 0 0
Security certification 1 1 1 1 1 0 0

Other features
Crash recovery 1 0 1 1 1 0 0

Big data handling 1 0 0 1 0 0 0
Data warehousing 1 0 0 1 0 0 0
Cloud compatible 1 1 1 1 1 1 1

Appendix B. Experiments

Thirty-five experiments conducted as a part of
neural network modeling are summarized in Table
B1. Different parameters of neural networks were
considered including the number of hidden layers,
number of hidden neurons, different training

functions and transfer functions, cross validation
methods. After running the neural network its
elapsed time and mean squared errors were
examined carefully. The best set of parameters are
chosen from the results obtained from the
experiments.

Table B1: Experiments done as a part of neural network modeling

a b c d e f g h i

1 10 Trainbr logsig, logsig Holdout, 75%-15%-10% 2:46 minutes 1.17E-10 706 Max MU reached

1 10 Trainrp logsig, logsig Holdout, 75%-15%-10% 0:04 minutes 0.0382
100

0
Max epoch reached

1 10 Trainlm logsig, logsig Holdout, 75%-15%-10% 4:04 minutes 2.30E-04
100

0
Max epoch reached

1 10 Trainlm tansig,purlin Holdout, 75%-15%-10% 0:05 minuutes 7.71E-14 27
Minimum gradient

reached

1 10
Trainsc

g
logsig, logsig Holdout, 75%-15%-10% 0:03 minutes 0.037

100
0

Max epoch reached

1 10 Trainlm tansig,purlin
k fold cross validation,

k=10
0:15 Minutes 9.44E-14 56

Minimum gradient
reached

1 8 Trainrp tansig,purlin
k fold cross validation,

k=10
0:02 minutes 1.18E-01

100
0

Max epoch reached

1 8 Trainlm tansig,purlin
k fold cross validation,

k=10
1:02 minutes 3.20E-14 211

Minimum gradient
reached

1 8 Trainlm tansig,purlin LOOCV 1:52 Minutes 1.72E-14 332
Minimum gradient

reached

1 8 Trainlm logsig,purlin LOOCV 0:57 minutes 1.50E-14 53
Minimum gradient

reached

2 10--10 tarinlm logsig ,logsig, softmax Holdout, 75%-15%-10% 6:03 minutes 14.032
100

0
Max epoch reached

2 10--10 trainbr logsig ,logsig, softmax Holdout, 75%-15%-10% 6:24 minutes 14.1
100

0
Max epoch reached

2 10--10 tarinlm logsig, logsig,logsig Holdout, 75%-15%-10% 0:22 minutes
0.05570

1
58 Max MU reached

2 10--10 trainbr logsig, logsig,logsig Holdout, 75%-15%-10% 1:23 minutes 5.44E-10 337 Max MU reached

2 8--8 tarinlm tansig,tansig,purlin Holdout, 75%-15%-10% 0:14 minutes 2.68E-14 47
Minimum gradient

reached

2 10--10 trainbr tansig,tansig,purlin
k fold cross validation,

k=10
0:56 Minutes 9.98E-14 153

Minimum gradient
reached

2 8--8 tarinlm tansig,tansig,purlin
k fold cross validation,

k=10
0:53 Minutes 5.16E-14 153

Minimum gradient
reached

2 8--8 trainbr tansig,tansig,purlin
k fold cross validation,

k=10
0:12 minutes 1.01E-13 69

Minimum gradient
reached

2 8--8 trainrp tansig,tansig,purlin k fold cross validation, 0:02 minutes 8.13E-02 100 Max epoch reached

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

157

k=10 0

2 8--8
Trainsc

g
tansig,tansig,purlin

k fold cross validation,
k=10

0:03 Minutes 9.78E-03
100

0
Max epoch reached

2 10--10 trainrp tansig,tansig,purlin
k fold cross validation,

k=10
0:03 Minutes 2.43E-02

100
0

Max epoch reached

2 8--8 tarinlm tansig,tansig,purlin LOOCV 5:44 minutes 8.61E-14
100

0
Max epoch reached

2 8--8 tarinlm logsig,logsig,purlin LOOCV 0:19 minutes 1.07E-14 106
Minimum gradient

reached

2 8--8 tarinlm tansig,tansig,softmax
k fold cross validation,

k=10
0:09 minutes

4.97E+0
0

52 Validation Stop

2 10--10 tarinlm tansig,tansig,softmax Holdout, 75%-15%-10% 6:06 minutes 4.69
100

0
Max epoch reached

3
10--10--

10
Trainlm logsig, logsig,logsig,logsig Holdout, 75%-15%-10%

0:0051minute
s

15.2417 17 Max MU reached

3
10--10--

10
Trainlm tansig,tansig, tansig,purlin Holdout, 75%-15%-10% 0:33 minutes 1.73E-14 70

Minimum gradient
reached

3
10--10--

10
Trainlm tansig,tansig, tansig,purlin

k fold cross validation,
k=10

1:02 Minutes 2.69E-13 144
Minimum gradient

reached

3
10--10--

10
trainrp tansig,tansig, tansig,purlin

k fold cross validation,
k=10

0:03 Minutes 0.0772
100

0
Max epoch reached

3 8--8--8 Trainlm tansig,tansig, tansig,purlin LOOCV 8:36 minutes 1.07E-08
100

0
Max epoch reached

3 8--8--8 trainrp logsig, logsig,logsig,purlin LOOCV 1:02 minutes 0.0471
100

0
Max epoch reached

3
10--10--

10
Trainlm tansig,tansig, tansig,logsig Holdout, 75%-15%-10% 0:35 Minutes 5.21 47 Validation Stopped

3
10--10--

10
Trainlm logsig, logsig,logsig,logsig Holdout, 75%-15%-10% 4:10 minutes 7.89 509 Validation Stopped

3
10--10--

10
Trainlm

purelin,purelin,purelin,tansi
g

Holdout, 75%-15%-10% 9:27 minutes 4.60E-10
100

0
Max epoch reached

3 8--8--8
Trainsc

g
tansig,tansig, tansig,purlin

k fold cross validation,
k=10

0:04 Minutes 0.0596
100

0
Max epoch reached

a: #Hidden layers; b: #Hidden neurons; c: Training function; d: Activation functions; e: Cross validation methods; f: Elapsed time; g: MSE; h: epoch; i: Exit condition

List of abbreviations

ABAC Attribute-based access control
ACID ACID properties
ANN Artificial neural network
API Application programming interface
DBMS Database management system
FFNN Feedforward neural network
FOT Feature-oriented typing
GUI Graphical user interface
LOOCV Leave-one-out cross-validation
MSE Mean squared error
MVCC Multiversion concurrency control
NoSQL NoSQL database
RBAC Role-based access control
RLL Record-level locking
SQL Structured query language
SSE Sum of squared errors
YCSB Yahoo! cloud serving benchmark

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Abadi DJ, Madden SR, and Hachem N (2008). Column-stores vs.
row-stores: How different are they really? In the Proceedings
of the 2008 ACM SIGMOD International Conference on
Management of Data, Association for Computing Machinery,
Vancouver, Canada: 967-980.
https://doi.org/10.1145/1376616.1376712

Abbasi M, Bernardo MV, Váz P, Silva J, and Martins P (2024).
Adaptive and scalable database management with machine
learning integration: A PostgreSQL case study. Information,
15(9): 574. https://doi.org/10.3390/info15090574

Arlot S and Celisse A (2010). A survey of cross-validation
procedures for model selection. Statistics Surveys, 4: 40–79.
https://doi.org/10.1214/09-SS054

Bousalem Z, Guabassi IE, and Cherti I (2019). Relational databases
versus HBase: An experimental evaluation. Advances in
Science, Technology and Engineering Systems Journal, 4(2):
395-401. https://doi.org/10.25046/aj040249

Burden F and Winkler D (2008). Bayesian regularization of neural
networks. In: Livingstone DJ (Eds.), Artificial neural networks:
Methods and applications: 23-42. Humana Press, Totowa,
USA.
https://doi.org/10.1007/978-1-60327-101-1_3
PMid:19065804

El-Helw A, Ross KA, Bhattacharjee B, Lang CA, and Mihaila GA
(2011). Column-oriented query processing for row stores. In
the Proceedings of the ACM 14th International Workshop on
Data Warehousing and OLAP, Association for Computing
Machinery, Glasgow, UK: 67-74.
https://doi.org/10.1145/2064676.2064689

Jarke M and Vassiliou Y (1985). A framework for choosing a
database query language. ACM Computing Surveys, 17(3):
313-340. https://doi.org/10.1145/5505.5506

Kanade AS and Gopal A (2013). Choosing right database system:
Row or column-store. In the International Conference on
Information Communication and Embedded Systems, IEEE,
Chennai, India: 16-20.
https://doi.org/10.1109/ICICES.2013.6508217

Kepner J, Gadepally V, Hutchison D, Jananthan H, Mattson T, Samsi
S, and Reuther A (2016). Associative array model of SQL,
NoSQL, and NewSQL databases. In the IEEE High Performance
Extreme Computing Conference, IEEE, Waltham, USA: 1-9.
https://doi.org/10.1109/HPEC.2016.7761647

Kim W (2014). Web data stores (aka NoSQL databases): A data
model and data management perspective. International
Journal of Web and Grid Services, 10(1): 100-110.
https://doi.org/10.1504/IJWGS.2014.058774

Levenberg K (1944). A method for the solution of certain non-
linear problems in least squares. Quarterly of Applied
Mathematics, 2(2): 164-168.
https://doi.org/10.1090/qam/10666

Marquardt DW (1963). An algorithm for least-squares estimation
of nonlinear parameters. Journal of the Society for Industrial

https://doi.org/10.1145/1376616.1376712
https://doi.org/10.3390/info15090574
https://doi.org/10.1214/09-SS054
https://doi.org/10.25046/aj040249
https://doi.org/10.1007/978-1-60327-101-1_3
https://doi.org/10.1145/2064676.2064689
https://doi.org/10.1145/5505.5506
https://doi.org/10.1109/ICICES.2013.6508217
https://doi.org/10.1109/HPEC.2016.7761647
https://doi.org/10.1504/IJWGS.2014.058774
https://doi.org/10.1090/qam/10666

Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158

158

and Applied Mathematics, 11(2): 431-441.
https://doi.org/10.1137/0111030

McLachlan GJ, Do KA, and Ambroise C (2005). Analyzing
microarray gene expression data. John Wiley and Sons,
Hoboken, USA. https://doi.org/10.1002/047172842X

Møller MF (1993). A scaled conjugate gradient algorithm for fast
supervised learning. Neural Networks, 6(4): 525-533.
https://doi.org/10.1016/S0893-6080(05)80056-5

Mouhiha M and Mabrouk A (2025). NoSQL data warehouse
optimizing models: A comparative study of column-oriented
approaches. Big Data Research, 40: 100523.
https://doi.org/10.1016/j.bdr.2025.100523

Okman L, Gal-Oz N, Gonen Y, Gudes E, and Abramov J (2011).
Security issues in NoSQL databases. In the 10th International

Conference on Trust, Security and Privacy in Computing and
Communications, IEEE, Changsha, China: 541-547.
https://doi.org/10.1109/TrustCom.2011.70

Salunke SV and Ouda A (2024). A performance benchmark for the
PostgreSQL and MySQL databases. Future Internet, 16(10):
382. https://doi.org/10.3390/fi16100382

Vanwinckelen G and Blockeel H (2012). On estimating model
accuracy with repeated cross-validation. In the Proceedings of
the 21st Belgian-Dutch Conference on Machine Learning,
Ghent, Belgium: 39-44.

Yassien AW and Desouky AF (2016). RDBMS, NoSQL, Hadoop: A
performance-based empirical analysis. In the 2nd Africa and
Middle East Conference on Software Engineering, Association
for Computing Machinery, Cairo, Egypt: 52-59.
https://doi.org/10.1145/2944165.2944174

https://doi.org/10.1137/0111030
https://doi.org/10.1002/047172842X
https://doi.org/10.1016/S0893-6080(05)80056-5
https://doi.org/10.1016/j.bdr.2025.100523
https://doi.org/10.1109/TrustCom.2011.70
https://doi.org/10.3390/fi16100382
https://doi.org/10.1145/2944165.2944174

	A novel approach to database selection using feedforward neural networks
	1. Introduction
	2. Literature survey
	3. Methodology
	3.1. Feature selection
	3.2. Dataset generation
	3.3. Neural network modeling
	3.4. Database prediction

	4. Result analysis
	4.1. Performance measurement: Mean squarederror
	4.2. Training functions
	4.3. Cross-validation techniques

	5. Conclusion
	Appendix A. Ground Truth of databases and corresponding features
	Appendix B. Experiments
	List of abbreviations
	Compliance with ethical standards
	Conflict of interest
	References

