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Selecting an appropriate database is a common challenge for professionals, 
including web developers and machine learning engineers. Choosing the 
most suitable database for an application is important for maximizing its 
performance. However, because many features of different databases 
overlap, manually predicting the best database is difficult and prone to 
errors. To address this issue, a new approach is proposed using a 
Feedforward Neural Network (FFNN) for database selection. This method 
involves four steps: feature selection, dataset generation, neural network 
modeling, and database prediction. In the feature selection step, important 
features of seven major relational databases—MySQL, MS SQL Server, Oracle, 
IBM DB2, PostgreSQL, SQLite, and Microsoft Access—are gathered through 
web searches. These features are used to create a ground truth table. During 
dataset generation, 2,400 combinations of 75 features are generated, and 
labels for each instance are calculated using a weighted average method. The 
neural network modeling step involves selecting an optimal feedforward 
neural network based on its parameters and performance. The network is 
then trained using the Levenberg-Marquardt backpropagation algorithm. In 
testing, user input is provided (a selected set of features is fed into the pre-
trained network), and the system predicts the best database with a mean 
squared error (MSE) of 5.16E-14. 
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1. Introduction 

*Database types (or models) refer to the 
structures used to organize and manage data within 
a database management system (DBMS). Over the 
past decades, various types of databases have been 
developed, starting from early systems such as the 
Information Management System to modern 
platforms including Oracle, IBM DB2, PostgreSQL, 
MySQL, SQLite, and Microsoft Access (Abbasi et al., 
2024). Based on their usage, databases can be 
classified into several categories: centralized, 
distributed, personal, end-user, commercial, NoSQL 
(including graph, key-value, document, and column 
databases), operational, relational, cloud-based, and 
object-oriented databases (Mouhiha and Mabrouk, 
2025). While each of these databases serves a 
specific purpose, this paper focuses on relational 
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databases and their prediction using selected 
relevant features. 

In a traditional row store, each entity is stored in 
a separate row (Kanade and Gopal, 2013). In 
contrast, a column store arranges data by storing the 
attributes of tuples contiguously (Abadi et al., 2008; 
El-Helw et al., 2011). Thus, row-oriented databases 
organize information by records, keeping all the data 
related to a record close together in memory. 
Popular examples of relational databases include 
MySQL, SQL Server, PostgreSQL, IBM DB2, Microsoft 
Access, SQLite, MariaDB, Informix, and Azure SQL. 

An example can demonstrate how read and write 
operations are performed in a relational database. 
Consider a table named Friends that includes three 
records: Person A from City X aged 27, Person B 
from City Y aged 30, and Person C from City Z aged 
33. In a row-oriented database, these records are 
stored on disk sequentially as: Person A, City X, 27; 
Person B, City Y, 30; Person C, City Z, 33. When a new 
record is inserted, such as Person D from City W, 
aged 35, the entry is appended to the end of the 
sequence. 

Relational databases allow fast write operations 
because new data can be easily appended at the end. 
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However, read operations tend to be slower. For 
instance, calculating a value such as the sum of ages 
requires loading all records into memory. Thus, each 
type of database has its own advantages and 
limitations, along with distinct features. 

This paper proposes an automated approach for 
selecting a suitable database based on database 
characteristics and user requirements. Section 2 
reviews related studies on the selection of row-
oriented and column-oriented databases through 
experimental comparisons, as well as approaches 
based on feature selection. Section 3 describes the 
proposed methodology, including feature selection, 
dataset generation, neural network modeling, and 
database prediction. Section 4 presents the 
experimental results used to assess the performance 
of the proposed approach. Finally, Section 5 
summarizes the main findings and highlights 
potential directions for future research. 

2. Literature survey 

Research on predicting suitable databases based 
on user input using machine learning techniques 
remains limited. However, several studies have 
investigated the prediction or selection of row-
oriented and column-oriented databases through 
experimental analysis under different conditions. 

Bousalem et al. (2019) compared a relational 
database (MySQL) with a NoSQL database (HBase) in 
terms of runtime and latency using the YCSB 
framework. They conducted three tests: (1) loading 
data, (2) running workloads while increasing the 
number of records with a fixed 10,000 operations, 
and (3) running workloads while increasing the 
number of operations with one million records. 
Their results showed that MySQL had consistently 
higher runtime during data loading, while HBase 
outperformed MySQL in most cases. For latency, 
MySQL was faster in read operations, whereas HBase 
was more efficient in write operations. In workload 
runtime, HBase performed better overall, except in 
read-only workloads. 

Yassien and Desouky (2016) carried out a similar 
benchmark study using YCSB on MySQL, MongoDB, 
and HBase. They varied the operation count and 
thread count and applied the Pearson Correlation 
Test to examine relationships between workload 
parameters and performance metrics such as 
throughput, latency, and runtime. Their findings 
showed that HBase had the highest read latency but 
performed well in updates, runtime, and throughput, 
though it was negatively affected by large operation 
counts. MySQL, by contrast, had the lowest read 
latency under heavy read loads but exhibited the 
highest update and write latency, as well as the 
longest runtime during dataset loading and 
generation. 

Salunke and Ouda (2024) focused on selecting 
suitable databases for machine learning projects, 
considering factors such as data volume, scalability, 
and support resources. They recommended using 
traditional databases for datasets up to 1 TB and 

shifting to solutions like Amazon Redshift or Google 
Big Query for larger datasets. 

Earlier, Jarke and Vassiliou (1985) proposed a 
methodology for selecting database query languages 
for different user classes. Their approach was based 
on an interpretation model of database query 
languages, considering two key aspects: (1) 
programming language and database theory, and (2) 
human factors engineering.  

3. Methodology 

The proposed method consists of the following 
four main steps. Fig. 1 outlines the pictorial 
representation of the methodology. 
 
• Feature selection 
• Dataset generation 
• Neural network modeling 
• Database prediction 

3.1. Feature selection 

Prominent features of the database are searched 
from the web and literature (Kanade and Gopal, 
2013; Kim, 2014; Okman et al., 2011; Kepner et al., 
2016). Thirteen categories of features consisting of 
75 sub-features are selected based on the review. 
Selected categories and their features are shown in 
Table 1.  

Thirteen main features were identified for 
evaluation. These include the type of license, 
whether open source (freeware) or closed source 
(proprietary), the level of memory requirements 
(high or low), operating system compatibility, and 
fundamental functionalities such as ACID properties, 
referential integrity, transaction management, 
record-level locking (RLL), multi-version 
concurrency control (MVCC), Unicode support, type 
inference, compression, and scalability. Further 
categories include interface and schema features 
such as tables, views, indexing types, and supported 
data types, as well as database capabilities including 
union, intersect, except, inner joins, outer joins, 
nested selects, and merge joins. Partitioning 
methods such as range, hash, combined range-hash, 
list, and expression-based techniques were also 
considered. Access control features were included as 
well, such as native network encryption, brute-force 
protection, enterprise directory compatibility, 
password complexity rules, patch management, 
unprivileged execution, auditing, resource limits, 
separation of duties (RBAC), security certifications, 
and attribute-based access control (ABAC). In 
addition, other features such as crash recovery, big 
data handling, data warehousing, and cloud 
compatibility were taken into account. 

Let F represent an instance of a database defined 
by a set of 75 selected features, expressed as: 
 
𝐹 = (𝑓(1), 𝑓(2), 𝑓(3), … 𝑓(75)) 
 

where, 
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𝑓(𝑖) = {
 1 ;  𝑖𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓  

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

 

For prediction purposes, seven commonly used 
databases were selected, namely MySQL, MS SQL 
Server, Oracle, IBM DB2, PostgreSQL, SQLite, and 
Microsoft Access. Ground-truth values were 

established for these databases based on their most 
recent versions, without including add-ons, 
extensions, or external routines. A complete list of 
the ground-truth values corresponding to the 75 
features of the seven databases is provided in 
Appendix A. 

 

Feature Selection Dataset Generation
Neural Network

Modeling
User Input and Database

Selection

Phase 1 Phase 2 Phase 3 Phase 4

.Searched web to find the 

important 75 features of the 
databases

.Generated ground truth

From the data collected

.Generated 2400 combination 

of 75 features

.Calculated labls for each 
instances using

The weighted average

.Selected a feedforward 

network model having the best 
parameters and preformance

. Trained the ANN using the 

training dataset and calculated 

the performance

.From the newly developed 

GUI the user has to select the 

required features

.input fed to pre-trained ANN 

was tested and output 

obtained

Labels
USER

 
Fig. 1: Proposed methodology stepwise 

 
Table 1: Prominent features and sub-features of databases 

Category Features 
Type of the license Open source, closed source 

Memory requirements High, low 
OS support Windows, macOS, Linux, BSD, Unix, AmigaOS, z/OS, Android, Open VMs 

Basic features 
ACID properties, referential integrity, transactions, locking (RLL), MVCC, Unicode, type inference, compression, 

scalability 
Interface API, GUI, SQL 

Tables and views Temporary tables, materialized views 
Indexes B-/B+ tree, R-/R+ tree, hash expression, partial, reverse, bitmap, full-text, spatial, FOT, duplicate index prevention 

Data types Integer, floating point, decimal, string 

DB capabilities 
Union, intersect, except, inner joins, outer joins, nested selects, merge joins, blobs and clobs, common table expressions, 

windowing functions, parallel query, system-versioned tables 
Partitioning Range, hash, combined range-hash, list, expression 

Objects Data domain, cursor, trigger, function, procedure, external routine 

Access controls 
Native network encryption, brute-force protection, enterprise directory compatibility, password complexity rules, patch 
management, run unprivileged, audit, resource limit, separation of duties (RBAC), security certification, attribute-based 

access control (ABAC) 
Other features Crash recovery, big data handling, data warehousing, cloud compatibility 

 

3.2. Dataset generation 

Different combinations of features were 
randomly selected and assigned values of either 0 or 
1. After comparing the selected features with those 
in the ground truth data, the databases that matched 
more closely received higher scores, while those 
with fewer matches received lower scores. The 
databases with the highest scores were labeled with 
a larger percentage, and those with the lowest scores 
were labeled with a smaller percentage. In this way, 
2400 instances were generated, each with its 
corresponding label, to train the neural network.  

Let Scoredb(j) represent the final score obtained 
for the j-th database. For this calculation, Ft(i) for the 
j-th database takes a value of 1 or 0 depending on 
the ground truth data. If the i-th feature of the j-th 
database equals 1, then Ft(i) is set to 1; otherwise, it 
is set to 0. The score was calculated for all seven 
databases, and the corresponding Percentagedb was 
also determined. These percentage values were then 

assigned as labels for each database. In total, [2400 × 
7] labels were generated corresponding to the [2400 
× 75] feature instances. The equations used for 
calculating scores and percentages are as follows: 
 

𝑆𝑐𝑜𝑟𝑒𝑑𝑏(𝑗) = ∑ 𝑓𝑡(𝑖)

75

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝑗 = 1: 7 

𝑓𝑡(𝑖) = {
  1 ;  𝑖𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (𝑓(𝑖), 𝑑𝑏(𝑗)) = 1

0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

𝐿𝑎𝑏𝑒𝑙 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑑𝑏(𝑗) =
𝑆𝑐𝑜𝑟𝑒𝑑𝑏(𝑗)

∑ 𝑆𝑐𝑜𝑟𝑒𝑑𝑏(𝑗)7
𝑗=1

∗ 100 

 

The training dataset S consists of features and 
labels. F(1) denotes the set of 75 features for the first 
instance, and Label(1) represents the corresponding 
set of seven values assigned to the databases. If n 
represents the total size of the training dataset, then 
the structure of S is expressed as: 
 
𝑆

= [(𝐹(1), 𝐿𝑎𝑏𝑒𝑙(1)), (𝐹(2), 𝐿𝑎𝑏𝑒𝑙(2)), … (𝐹(𝑛), 𝐿𝑎𝑏𝑒𝑙(𝑛))] 
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3.3. Neural network modeling 

The Feedforward Neural Network (FFNN) was 
employed to train the generated dataset. The 
proposed FFNN is composed of four layers. The first 
is the input layer, which contains 75 neurons, each 
corresponding to one of the feature vectors. The 
second and third layers are two identical hidden 
layers, each consisting of eight neurons and using the 
hyperbolic tangent sigmoid activation function 
(tansig). Each layer receives connections from the 
preceding one. The fourth and final layer is the 
output layer, which contains seven neurons 
corresponding to the database labels. This layer uses 
a purely linear activation function (purelin), and its 
outputs are used for database prediction. Variants of 
the FFNN include fitting networks, pattern 
recognition networks, and cascade forward 
networks. 

Two main functions were applied in the FFNN. 
The first is the training function, which uses 
Levenberg-Marquardt backpropagation (trainlm) 

(Levenberg, 1944; Marquardt, 1963). This algorithm 
updates the weights and biases in the network. 
Although it requires more memory than other 
methods, it is the fastest approach for training 
feedforward neural networks. Because the algorithm 
relies on the Jacobian matrix, the performance 
measure must be either mean squared error (MSE) 
or the sum of squared errors (SSE). Training 
terminates when one of the following conditions is 
satisfied: the maximum number of training epochs 
reaches 1000, the performance goal approaches 
zero, the number of validation failures reaches six, 
the minimum performance gradient falls below 
0.0000001, or the maximum mu value reaches 10. 

The second is the transfer function, which 
employs the hyperbolic tangent sigmoid function 
(tansig) in the hidden layers and the linear function 
(purelin) in the output layer, as illustrated in Fig. 2. 
Fig. 3 illustrates the structure of the proposed FFNN 
(75, 8, 8, 7), which consists of 75 input neurons, two 
hidden layers with 8 neurons each, and 7 output 
neurons. 

 

a

n

+1

-1

= tansig (n)
Tan-sigmoid transfer function

a

0

 

a

n

+1

-1

= purelin (n)
linear transfer function

a

0

 
Fig. 2: Graphical representation of the transfer functions used 
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Fig. 3: Proposed FFNN (75, 8, 8, 7) 

 

3.4. Database prediction 

The neural network is trained with the given 
training dataset and labeled with a minimum error 
function. The final stage of this methodology is the 
testing part of the modeled neural network using 
user input. The methodology shown in Fig. 4 
summarizes both the training and testing phases of 
the FFNN. Testing involves the prediction of the 
most relevant database based on user input. The 

user inputs are extracted and fed to the FFNN to test. 
Once the testing is over, the network labels each 
database with a particular score. Based on the 
relevance, each database receives a score from high 
to low scores as shown in Table 2. 

4. Result analysis 

Thirty-five experiments were conducted by 
changing the number of hidden layers to as follows: 
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one, two, and three. Additionally, the number of 
hidden neurons was shifted to 8 and 10 for all the 
varying hidden layer sizes. 

4.1. Performance measurement: Mean squared 
error  

The performance of the feedforward neural 
network (FFNN) was assessed using the mean 
squared error (MSE). As a widely recognized metric 
in neural network evaluation, MSE quantifies the 
average squared difference between predicted and 
actual outputs. The following equation presents the 
calculation of this performance measure: 
 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑡𝑎𝑟𝑔𝑒𝑡(𝑖) − 𝑜𝑢𝑡(𝑖))

𝑛

𝑖

 

 

where, n is the number of output nodes, target is the 
desired neural network output, and out is the actual 
neural network output. MSE obtained for different 
experiments is given in Appendix B and Table 3.  

4.2. Training functions  

Four different training functions were evaluated, 
namely Levenberg-Marquardt backpropagation 
(trainlm), resilient backpropagation, Bayesian 
regularization (Burden and Winkler, 2008), and 
scaled conjugate gradient backpropagation (Møller, 
1993). Among these, the trainlm algorithm was 
found to perform better than the others in terms of 
mean squared error (MSE) and elapsed time. The 
best results obtained for the proposed FFNN (75, 8, 
8, 7) using different training functions and ten-fold 
cross-validation are presented in Table 4. 

 
Table 2: The score achieved by each database 

Database Score predicted by ANN Score predicted by average method 
Oracle DB 18.2373 19.3548 

MySQL 19.9824 17.7419 
MS SQL Server 16.1902 16.1290 

PostgreSQL 21.2966 20.1613 
IBM DB2 15.2503 14.5161 

MS Access 4.1646 2.4194 
SQLite 4.8860 9.6774 

 

Training
Data set

Labels

User Input

Training stops
When the
Gradiant is
minimum

Updating Weights
And Parameters

2400 Instaces
With 75 features

Proposed ANN with an Input layer (75).
2 hudden layers (8) . And an output layar(7)

User Chosen
75 features

Pretrained ANN
Estimated Values given for

The seven Databases

TRAINING PHASE TESTING PHASE

 
Fig. 4: Training and testing phases of the FFNN 

 
Table 3: Experimental results of FFNN (75, 8, 8, 7) using different training functions 

Training function Elapsed time MSE Epoch Exit condition 
trainlm 0:53 minutes 5.16E-14 153 Minimum gradient reached 
trainbr 0:12 minutes 1.01E-13 69 Minimum gradient reached 
trainrp 0:02 minutes 8.13E-02 1000 Max epoch reached 
trainscg 0:03 minutes 9.78E-03 1000 Max epoch reached 

 
Table 4: Experimental results of FFNN (75, 8, 8, 7) using different cross-validation methods 

Cross-validation method Elapsed time MSE Epoch Exit condition 
Holdout, 75%-15%-10% 0:14 minutes 2.68E-14 47 Minimum gradient reached 
10-fold cross-validation 0:53 minutes 5.16E-14 153 Minimum gradient reached 

LOOCV 5:44 minutes 8.61E-14 1000 Max epoch reached 

 

4.3. Cross-validation techniques 

The evaluation employed three validation 
methods: the Holdout method (Arlot and Celisse, 
2010), ten-fold cross-validation (McLachlan et al., 
2005), and leave-one-out cross-validation (LOOCV) 
(Vanwinckelen and Blockeel, 2012). Both exhaustive 

validation approaches, such as LOOCV, and non-
exhaustive approaches, such as the Holdout method 
and ten-fold cross-validation, were applied. Table 3 
presents the experiments conducted on the 
proposed FFNN (75, 8, 8, 7) using the trainlm 
algorithm. Among these methods, ten-fold cross-
validation was selected as the most suitable, as it 



Al-Dmour et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 150-158 

155 

 

achieved better results than the others in terms of 
both elapsed time and mean squared error (MSE). 

5. Conclusion 

Database prediction based on user-selected 
features using a feedforward neural network has 
been discussed. The proposed methodology consists 
of four main stages: feature selection, dataset 
generation, neural network modeling, and database 
prediction. Feature selection involves identifying the 
key characteristics of row-oriented databases and 
generating ground-truth values for the seven 
selected databases, namely MySQL, MS SQL Server, 
Oracle, IBM DB2, PostgreSQL, SQLite, and Microsoft 
Access. Dataset generation is the second stage, which 
produces 2400 instances of different feature 
combinations along with their labels derived from 
scores and percentages. Neural network modeling 
forms the third stage and focuses on selecting the 

optimal parameters of the network to achieve the 
best performance. The final stage, database 
prediction, uses user inputs as features, which are 
fed into the trained FFNN to predict the most 
suitable database based on the network output. 

A limitation of the current approach is the lack of 
access to raw data. Future work will aim to address 
this by applying other popular machine learning 
methods, such as support vector machines and 
random forests, and by incorporating a larger 
number of features and databases.. 

Appendix A. Ground Truth of databases and 
corresponding features 

In Table A1, the value of ((𝑓(𝑖), 𝑑𝑏(𝑗)) = 1 
indicates that the feature ‘i’ is present in the 
database ‘j’. zero otherwise. Features underlined are 
common to all the selected databases. 

 

Table A1: Ground truth data 

Features 
Databases 

Oracle Mysql MS Sql Server Postgre SQL IBM DB2 Ms Access SQLite 

License 
Open source 0 1 0 1 0 0 1 

Closed source 1 1 1 0 1 1 0 
Memory req 

High 1 0 1 1 0 0 0 
Low 0 1 0 0 0 0 1 

OS support 
Windows 1 1 1 1 1 1 1 

macOS 1 1 0 1 1 0 1 
Linux 1 1 1 1 0 0 0 
BSD 0 1 0 1 0 0 1 

UNIX 1 1 0 1 1 0 1 
AmigaOS 0 1 0 1 0 0 1 

z/OS 1 1 0 0 1 0 0 
iOS 0 0 0 0 1 0 1 

Android 0 1 0 1 0 0 1 
OpenVMS 1 0 0 0 0 0 0 

Basic features 
ACID 1 1 1 1 1 1 1 

Referential Integrity 1 1 1 1 1 1 1 
Transactions 1 1 1 1 1 1 1 

Locking (RLL) 1 1 1 1 1 0 0 
Multiversion concurrency control 1 1 1 1 1 1 0 

Unicode 1 1 1 1 1 1 1 
Type inference 1 1 1 0 1 1 1 
Compression 1 1 1 0 1 1 0 

Scalability 1 1 1 1 0 0 0 
Interface 

API 1 0 0 1 0 0 1 
GUI 1 1 1 1 1 1  

SQL 1 1 1 1 1 1 1 
Tables and views 

Temporary table 1 1 1 1 1 0 1 
Materialized views 1 0 0 1 1 0 0 

Indexes 
B-/B+ tree 1 1 1 1 1 1 1 
R-/R+ tree 1 1 1 1 1 0 1 

Hash expression 1 1 1 1 1 0 1 
Partial 1 0 1 1 1 0 1 

Reverse 1 0 1 1 1 0 1 
Bitmap 1 0 1 1 1 0 0 

Full-text 1 0 1 0 0 0 
Spatial 1 1 1 1 1 0 1 

FOT 1 1 1 1 0 0 1 
Duplicate index prevention 1 0 0 0 0 0 0 

Datatypes 
Integer 1 1 1 1 1 1 1 

Floating point 1 1 1 1 1 1 1 
Decimal 1 1 1 1 1   

String 1 1 1 1 1 1 1 
Binary 1 1 1 1 1 1 1 

Date/Time 1 1 1 1 1 0 0 
Boolean 1 1 1 1 1 0 0 

DB capabilities 
Union 1 1 1 1 1 1 1 

Intersect 1 0 1 1 0 0 1 
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Except 1 0 1 1 0 0 1 
Inner joins 1 1 1 1 1 1 1 
Outer joins 1 1 1 1 1 1 1 

Inner selects 1 1 1 1 1 1 1 
Merge joins 1 0 1 1 0 0 0 

Blobs and clobs 1 1 1 1 1 1 1 
Common expression table 1 1 1 1 0 0 1 

Windowing functions 1 0 1 1 0 0 1 
Parallel query 1 0 1 1 0 0 1 

System-versioned tables 1 0 1 1 0 0  

Aggregation queries 1 1 1 1 1 1 1 
Partitioning 

Range 1 1 0 1 1 0 0 
Hash 1 1 0 1 1 0 0 

Composite (R+H) 1 1 0 1 1 0 0 
List 1 1 0 1 1 0 0 

Expression 1 1 0 1 1 0 0 
Objects 

Data domain 1 0 1 0 1 1 0 
Cursor 1 1 1 1 1 0 0 
Trigger 1 1 1 1 1 0 1 

Function 1 1 1 1 1 0 0 
Procedure 1 1 1 1 1 1 0 

External routine 1 1 1 1 1 1 1 
Access controls 

Native network encryption 1 1 1 1 1 0 0 
Brute-force protection 1 0 1 1 0 0 0 

Enterprise directory compatibility 1 1 1 1 1 0 0 
Password complexity rules 1 1 1 0 0 0 0 

Patch access 1 1 1 0 0 0 
Run unprivileged 1 1 1 1 1 1 1 

Audit 1 1 1 1 1 0 1 
Resource limit 1 1 1 1 1 0 1 

Separation of duties (RBAC) 1 1 1 1 1 0 0 
Security certification 1 1 1 1 1 0 0 

Other features 
Crash recovery 1 0 1 1 1 0 0 

Big data handling 1 0 0 1 0 0 0 
Data warehousing 1 0 0 1 0 0 0 
Cloud compatible 1 1 1 1 1 1 1 

 

Appendix B. Experiments 

Thirty-five experiments conducted as a part of 
neural network modeling are summarized in Table 
B1. Different parameters of neural networks were 
considered including the number of hidden layers, 
number of hidden neurons, different training 

functions and transfer functions, cross validation 
methods. After running the neural network its 
elapsed time and mean squared errors were 
examined carefully. The best set of parameters are 
chosen from the results obtained from the 
experiments. 

 
Table B1: Experiments done as a part of neural network modeling 

a b c d e f g h i 

1 10 Trainbr logsig, logsig Holdout, 75%-15%-10% 2:46 minutes 1.17E-10 706 Max MU reached 

1 10 Trainrp logsig, logsig Holdout, 75%-15%-10% 0:04 minutes 0.0382 
100

0 
Max epoch reached 

1 10 Trainlm logsig, logsig Holdout, 75%-15%-10% 4:04 minutes 2.30E-04 
100

0 
Max epoch reached 

1 10 Trainlm tansig,purlin Holdout, 75%-15%-10% 0:05 minuutes 7.71E-14 27 
Minimum gradient 

reached 

1 10 
Trainsc

g 
logsig, logsig Holdout, 75%-15%-10% 0:03 minutes 0.037 

100
0 

Max epoch reached 

1 10 Trainlm tansig,purlin 
k fold cross validation, 

k=10 
0:15 Minutes 9.44E-14 56 

Minimum gradient 
reached 

1 8 Trainrp tansig,purlin 
k fold cross validation, 

k=10 
0:02 minutes 1.18E-01 

100
0 

Max epoch reached 

1 8 Trainlm tansig,purlin 
k fold cross validation, 

k=10 
1:02 minutes 3.20E-14 211 

Minimum gradient 
reached 

1 8 Trainlm tansig,purlin LOOCV 1:52 Minutes 1.72E-14 332 
Minimum gradient 

reached 

1 8 Trainlm logsig,purlin LOOCV 0:57 minutes 1.50E-14 53 
Minimum gradient 

reached 

2 10--10 tarinlm logsig ,logsig, softmax Holdout, 75%-15%-10% 6:03 minutes 14.032 
100

0 
Max epoch reached 

2 10--10 trainbr logsig ,logsig, softmax Holdout, 75%-15%-10% 6:24 minutes 14.1 
100

0 
Max epoch reached 

2 10--10 tarinlm logsig, logsig,logsig Holdout, 75%-15%-10% 0:22 minutes 
0.05570

1 
58 Max MU reached 

2 10--10 trainbr logsig, logsig,logsig Holdout, 75%-15%-10% 1:23 minutes 5.44E-10 337 Max MU reached 

2 8--8 tarinlm tansig,tansig,purlin Holdout, 75%-15%-10% 0:14 minutes 2.68E-14 47 
Minimum gradient 

reached 

2 10--10 trainbr tansig,tansig,purlin 
k fold cross validation, 

k=10 
0:56 Minutes 9.98E-14 153 

Minimum gradient 
reached 

2 8--8 tarinlm tansig,tansig,purlin 
k fold cross validation, 

k=10 
0:53 Minutes 5.16E-14 153 

Minimum gradient 
reached 

2 8--8 trainbr tansig,tansig,purlin 
k fold cross validation, 

k=10 
0:12 minutes 1.01E-13 69 

Minimum gradient 
reached 

2 8--8 trainrp tansig,tansig,purlin k fold cross validation, 0:02 minutes 8.13E-02 100 Max epoch reached 
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k=10 0 

2 8--8 
Trainsc

g 
tansig,tansig,purlin 

k fold cross validation, 
k=10 

0:03 Minutes 9.78E-03 
100

0 
Max epoch reached 

2 10--10 trainrp tansig,tansig,purlin 
k fold cross validation, 

k=10 
0:03 Minutes 2.43E-02 

100
0 

Max epoch reached 

2 8--8 tarinlm tansig,tansig,purlin LOOCV 5:44 minutes 8.61E-14 
100

0 
Max epoch reached 

2 8--8 tarinlm logsig,logsig,purlin LOOCV 0:19 minutes 1.07E-14 106 
Minimum gradient 

reached 

2 8--8 tarinlm tansig,tansig,softmax 
k fold cross validation, 

k=10 
0:09 minutes 

4.97E+0
0 

52 Validation Stop 

2 10--10 tarinlm tansig,tansig,softmax Holdout, 75%-15%-10% 6:06 minutes 4.69 
100

0 
Max epoch reached 

3 
10--10--

10 
Trainlm logsig, logsig,logsig,logsig Holdout, 75%-15%-10% 

0:0051minute
s 

15.2417 17 Max MU reached 

3 
10--10--

10 
Trainlm tansig,tansig, tansig,purlin Holdout, 75%-15%-10% 0:33 minutes 1.73E-14 70 

Minimum gradient 
reached 

3 
10--10--

10 
Trainlm tansig,tansig, tansig,purlin 

k fold cross validation, 
k=10 

1:02 Minutes 2.69E-13 144 
Minimum gradient 

reached 

3 
10--10--

10 
trainrp tansig,tansig, tansig,purlin 

k fold cross validation, 
k=10 

0:03 Minutes 0.0772 
100

0 
Max epoch reached 

3 8--8--8 Trainlm tansig,tansig, tansig,purlin LOOCV 8:36 minutes 1.07E-08 
100

0 
Max epoch reached 

3 8--8--8 trainrp logsig, logsig,logsig,purlin LOOCV 1:02 minutes 0.0471 
100

0 
Max epoch reached 

3 
10--10--

10 
Trainlm tansig,tansig, tansig,logsig Holdout, 75%-15%-10% 0:35 Minutes 5.21 47 Validation Stopped 

3 
10--10--

10 
Trainlm logsig, logsig,logsig,logsig Holdout, 75%-15%-10% 4:10 minutes 7.89 509 Validation Stopped 

3 
10--10--

10 
Trainlm 

purelin,purelin,purelin,tansi
g 

Holdout, 75%-15%-10% 9:27 minutes 4.60E-10 
100

0 
Max epoch reached 

3 8--8--8 
Trainsc

g 
tansig,tansig, tansig,purlin 

k fold cross validation, 
k=10 

0:04 Minutes 0.0596 
100

0 
Max epoch reached 

a: #Hidden layers; b: #Hidden neurons; c: Training function; d: Activation functions; e: Cross validation methods; f: Elapsed time; g: MSE; h: epoch; i: Exit condition 

 

List of abbreviations 

ABAC Attribute-based access control 
ACID ACID properties 
ANN Artificial neural network 
API Application programming interface 
DBMS Database management system 
FFNN Feedforward neural network 
FOT Feature-oriented typing 
GUI Graphical user interface 
LOOCV Leave-one-out cross-validation 
MSE Mean squared error 
MVCC Multiversion concurrency control 
NoSQL NoSQL database 
RBAC Role-based access control 
RLL Record-level locking 
SQL Structured query language 
SSE Sum of squared errors 
YCSB Yahoo! cloud serving benchmark 
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