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ARTICLE INFO ABSTRACT

This study presents the development of TAER_Robot, an explainable Al
(XAI)-based medical assistant for predicting Alzheimer’s Disease (AlzD). The
main aim is to integrate Machine Learning (ML) models with explanation
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interpretability. LightGBM achieved the highest performance, with 95.6%
accuracy and a 0.955 ROC-AUC score, exceeding previous models. Further
testing confirmed system reliability with up to 94.1% accuracy. TAER_Robot
enhances early-stage AlzD prediction by offering both strong performance
and transparent decision-making, contributing to the improvement of Al-
supported clinical decision systems.
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1. Introduction

Alzheimer's disease (AlzD) represents a chronic
brain-destroying illness, which appears among
millions of people globally while affecting both
patients and their caregivers alongside healthcare
institutions (Chen et al., 2025). Diagnosing AlzD at an
early stage is fundamental to enhancing patient
outcomes and reducing the disease's advancement.
Modern artificial intelligence (AI) and machine
learning (ML) technology demonstrates remarkable
potential for making Alzheimer’s disease prediction
both faster and more precise, which holds great
promise to transform current medical practices
(Javed et al., 2025). Because early detection and
precise prediction enable patients and healthcare
providers to take proactive measures to manage the
condition, they can help lessen the impact of
Alzheimer's disease worldwide (Rehman et al., 2024;
Sethi et al., 2024). Products powered by Al, such as
TAER Robot (The Arabic English Russian Robot),
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provide creative answers in multiple languages to
this issue by using conversational Al to collect
critical health data and provide real-time risk
assessments. TAER Robot uses machine learning
models to assess risk factors, generate predictions,
and interpret its results in order to deliver a
customized and enjoyable user experience.

The most evident application of TAER_Robot is in
enhancing Alzheimer’s disease prediction, where it
functions as a virtual assistant to detect early
symptoms and support timely intervention. While
traditional machine learning models offer predictive
capabilities, they often operate as opaque black
boxes, providing limited insight into their decision-
making processes. This lack of interpretability
undermines trust in clinical practice, where
transparency is critical. Explainable AI (XAI)
addresses this challenge by  generating
understandable predictions. By integrating advanced
machine learning models with conversational Al,
TAER_Robot ensures that predictions are both clear
and actionable. Through the XAl-enhanced system,
users can see how specific factors—such as genetic
predisposition, physical activity, and dietary
habits—influence their risk of Alzheimer’s disease.
This understanding supports informed decision-
making and encourages preventive actions, including
lifestyle adjustments and cognitive health strategies.
Broader adoption of Al in healthcare requires careful
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consideration of ethical issues such as data privacy,
accountability, and equity (Akinrinola et al., 2024).
To ensure fair predictions across all patient groups,
XAl techniques play a key role in detecting and
reducing bias. TAER_Robot represents an important
advancement in Alzheimer’s prediction by
combining the transparency of XAl with the
predictive power of machine learning. By increasing
users’ awareness of their health risks and supporting
informed decision-making, the system fosters
greater trust in Al-based healthcare solutions.
Looking ahead, future developments—such as
extending applications to other neurodegenerative
diseases and incorporating real-time data—may
establish TAER_Robot as a vital tool for personalized
healthcare management.

Alzheimer’s disease is a progressive neurological
disorder that affects individuals worldwide and
places a significant burden on patients, caregivers,
and healthcare systems. Early detection provides
substantial benefits by supporting patient well-being
and slowing disease progression. However,
conventional diagnostic methods often face
challenges in identifying the disease at its earliest
stages, leading to delays in treatment and
intervention. Traditional machine learning models
often have limited interpretability in predicting
Alzheimer’s disease, which makes them function as
black-box systems in clinical settings. This lack of
transparency reduces their acceptance in hospitals,
as  healthcare professionals require clear
explanations of how predictions are made. By using
XAI techniques, the TAER_Robot system provides a
more interactive and understandable interface,
although further development is still needed to
enhance Alzheimer’s prediction analysis. At the same
time, it is essential to address ethical challenges such
as data privacy, bias in datasets, and the need for
accountable decision-making, to ensure fair and
transparent Al predictions across all patient groups.

The main advantage of the TAER Robot system
lies in its use of explainable artificial intelligence
(XAI) methods, specifically SHAP and LIME, to clarify
medical decisions for healthcare professionals. Our
Alzheimer’s prediction approach allows medical staff
to identify the key variables influencing prediction
outcomes, avoiding the limitations of traditional
black-box models. The system achieves strong
performance by supporting different data-splitting
ratios, ranging from 80/20 and 70/30 to 60/40,
which makes it both flexible and reliable.
TAER Robot’s risk assessment is based on a wide
range of features, including demographic factors,
lifestyle patterns, and genetic indicators. By
integrating machine learning with XAI techniques,
the system establishes a new standard for
Alzheimer’s disease diagnosis.

2. Literature review
The Al-based systems use enormous medical

datasets, including records, imaging results, genetic
profiles, and behavioral patterns, to construct
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predictive diagnostic models for Alzheimer's disease
detection (Sharma and Kaushik, 2025; Wahyudi and
Ayuningsih, 2024). Decision trees alongside support
vector machines and deep learning emerge as typical
machine learning algorithms that evaluate extensive
datasets to discover cognitive decline indicators
(Vanaja et al,, 2025; Ali et al.,, 2025). The diagnostic
approach  surpasses conventional diagnostic
procedures because it relies on expert judgment and
suffers from mistakes and delays (Wang et al., 2025).
Detecting Alzheimer's disease at its early stages
enables healthcare providers to initiate vital
intervention plans and assist in producing focused
therapeutic options (Mishra et al, 2025). Al
reinforces machine learning capabilities that solve
complex operational challenges in healthcare and
employment systems (Parul et al.,, 2025).

The current predictive systems have promise, but
they are challenging to develop. High accuracy and
interpretability can be attained technically by
improving feature selection model training and
machine learning algorithm selection (Mostafa et al,,
2024; Shannaq et al,, 2019).

There is stil a need to balance model
transparency and complexity. For instance, deep
neural networks are typically more complex to
understand than straightforward models like logistic
regression or decision trees, even though they may
be more accurate than other models (Islam et al,
2024; Adekeye et al., 2023). To get the best results,
researchers are investigating hybrid approaches that
combine the best aspects of several models (Kareem
etal, 2024; Azevedo et al., 2024). Close collaboration
with neurologists and other medical specialists is
necessary to improve the TAER Robot design, and
patient-generated data must be used for clinical
validation. Because of these collaborations, the
system can be adjusted to meet patients' various
needs and situations.

Autonomous systems have been made possible
by technological developments and Al. Robots are
becoming increasingly common in the medical field
as patient advisors (Alelyani, 2024; Adetunji et al,
2024). Nevertheless, issues like  hesitant
communication and ambiguous answers continue to
exist (Li et al,, 2024). To solve these problems, this
study suggests an intelligent TAER Robot system
that uses XAl The system guarantees secure data
handling, transparent explanations, and pre-
processing of patient data for machine learning (ML)
algorithms for predictive analysis.

The proposed work proposes a distinctive aspect
of your method: Finding optimal distributions
between training and testing datasets. Different
ratios of 80/20, 70/30, and 60/40 allow this to
identify the best configuration for predictive quality
that lets your model work effectively across multiple
data sets (Shannagq, 2025; Farhan et al., 2025).

Interdisciplinary design in TAER_Robot enhances
its innovation by integrating artificial intelligence
with machine learning and healthcare-specific
medical expertise. The proposed tool provides
clinical adaptability through its user-friendly design,
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which enhances two important aspects of
Alzheimer’s  disease risk evaluations while
surpassing existing models with unclear assessment
criteria. XAl integration within the proposed system
provides healthcare with a necessary solution by
enabling trust in Al-based early-stage Alzheimer’s
detection predictions.

3. Methodology

This work achieves predictive modeling through
a data mining implementation that depends on
Random Forest, CatBoost, and XGBoost machine
learning algorithms. Including XAl allows predictions
to remain understandable, establishing better trust
in the system's decision processes. The methodology
framework explores multiple data separation ratios
starting from 80/20, progressing to 70/30, and
ending with 60/40 to better understand the relation
between training data volume and system accuracy.
Protection and normalization of data, as well as
categorical transformation and missing value
resolution methods, were applied to generate
reliable  outcomes. @ The  research utilizes
experimental methods to optimize data protocols
while enhancing  the performance and
interpretability of diagnostic models useful for
Alzheimer's disease identification.

3.1. Data collection

Data has been collected from kaggle.com, 2149
records with 33 variables that cover a broad range of
demographic, health, and lifestyle factors are
included in the Alzheimer's Disease dataset collected
from. Age, gender, ethnicity, and education level are
important demographic factors. In addition to
medical history indicators like family history of
Alzheimer's disease, cardiovascular disease,
diabetes, depression, head injuries, and
hypertension, health-related variables include BM],
smoking, alcohol consumption, physical activity, diet
quality, and sleep quality. Clinical measurements
include systolic and diastolic blood pressure,
cholesterol, total LDL, HDL, and triglycerides. MMSE
Functional Assessment Memory Complaints and ADL
(Activities of daily living) scores are used to record
cognitive and functional evaluations. Confusion,
disorientation, personality changes, difficulty
finishing tasks, and forgetfulness are examples of
behavioral characteristics. Finally, DoctorInCharge
classifies accountable healthcare providers, whereas
Diagnosis indicates the presence of Alzheimer's
disease. This varied dataset offers a thorough basis
for comprehending and forecasting the risk of
Alzheimer's disease.

3.2. Data pre-processing
Selecting features proves essential for enhancing

model performance because it simultaneously
reduces unwanted signals while making predictions
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more comprehensible. The mixture of similar
features, such as BMI and weight, leads to data
redundancy, which decreases the model
performance quality. We applied the SHAP analysis
method to identify crucial predictors, leading us to
eliminate unnecessary features. The assessment of
model consistency across different scenarios takes
advantage of multiple data split methods for
verification purposes. Data processing phases
include training (70%) and validation (30%).
Predictions are saved if the criteria are satisfied;
changes are made. The method improves data
integrity, precise forecasts, and trust in healthcare
applications.

Our study utilizes a structured attribute choice
procedure that deletes correlated components
because it boosts interpretability while reducing
duplicity. After SHAP analysis, the chosen features
are essential for predicting Alzheimer’s because they
add value to diagnosis. The robustness across
different data distributions is validated using
multiple train-test splits with 80/20, 70/30, and
60/40 ratios. The selected approach prevents model
overfitting by establishing generalizable results. A
thorough analysis of the selection criteria,
supporting statistical evidence, and validation
strategies for feature selection methods will appear
in the methodology section.

3.3. Model selection

This study suggests a healthcare prediction
system that uses historical data. To handle null
values, duplicates, outliers, and class imbalances, it
uses Exploratory Data Analysis (EDA) to determine
pre-processing requirements. Models

Like Random Forest, they are used for prediction,
and the data is divided into 80%,70%,60% training,
and 20%,30%, and 40% testing sets. Performance is
assessed using metrics like recall accuracy and
precision. To interpret predictions and provide clear
insights into contributing features, the system
incorporates XAl techniques such as LIME (Vimbi et
al., 2024; Salih et al.,, 2025). Fig. 1 workflow ensures
responsible predictions and efficient health
condition detection or case dismissal, improves trust
and interpretability for healthcare professionals
when no disease is identified.

4. Experiments and results

Three experiments were conducted to evaluate
various machine learning models for Alzheimer's
Disease prediction, using different data split
strategies: By dividing 100 into 80 and 20, 70 and 30,
and 60 and 40, respectively, this work was able to
obtain 80%-20%, 70%-30%, and 60%-40% for
training and testing. Evaluation measures like ROC-
AUC and accuracy were applied for model
comparison, mainly LightGBM, XGBoost, and
Gradient Boosting. Table 1 presents the obtained
results from experiment 1.
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Fig. 1: System workflow diagram
Table 1: Experiment 1 results
Model (80%, 20%) ROC_AUC Accuracy
LightGBM 0.954697 0.955814
XGBoost 0.952007 0.948837
CatBoost 0.952337 0.953488
RandomForest 0.949376 0.94186
SVM 0.781612 0.644186
DecisionTree 0.894493 0.909302
LogisticRegression 0.799792 0.769767
GradientBoosting 0.95531 0.95814
AdaBoost 0.93365 0.916279
VotingEnsemble 0.891555 0.830233
4.1. Experiment 1 (80%-20% split) results obtained from the three proposed
experiments.

LightGBM performed best with ROC-AUC = 0.955
and accuracy = 0.956, followed by Gradient Boosting.
SVM performed poorly, with accuracy = 0.644.

Table 2 presents the obtained results from
experiment 2.

4.2. Experiment 2 (70%-30% split)

Gradient Boosting achieved the best results with
ROC-AUC = 0.951 and accuracy = 0.941, followed
closely by LightGBM. SVM remained the lowest-
performing model, with accuracy = 0.622. Table 3
presents the obtained results from experiment 3.

4.3. Experiment 3 (60%-40% split)

Gradient Boosting again excelled with ROC-AUC =
0951 and accuracy = 0.941, while Logistic
Regression and Voting Ensemble lagged with lower
accuracy and ROC-AUC scores. Table 4 compares the
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The comparison Table 4 shows that the 80% and
20% distributions proved to be most effective for the
model, thus having the highest ROC-AUC and
accuracy of LightGBM. While Gradient Boosting did a
fairly reasonable job on the rest of the splits, it did
slightly worse than LightGBM in the 80%-20%
experiment. Perhaps it was mainly due to the more
extensive training set in the first experiment that
gave the model a better generalization and result.

Three 80/20, 70/30, and 60/40 split datasets
showed increased predictive performance. This way
of splitting the data was proving to be quite
productive with LightGBM standing at 95.6%
accuracy, which is 3.6% better than the previous
studies (Vimbi et al., 2024; Wahyudi and Ayuningsih,
2024; Dalakoti et al., 2024; Gortz et al,, 2023). While
analyzing other splits, Gradient Boosting exhibited
94.1 % accuracy, indicating that TAER_Robot is
accurate, explainable, and capable of predicting
Alzheimer’s disease at an early stage.
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Table 2: Experiment 2 results

Model (70%,30%) ROC_AUC Accuracy
LightGBM 0.950421 0.939535
XGBoost 0.948019 0.933333
CatBoost 0.942725 0.942636
RandomForest 0.939306 0.902326
SVM 0.778791 0.621705
DecisionTree 0.875639 0.885271
LogisticRegression 0.853992 0.790698
GradientBoosting 0.950523 0.941085
AdaBoost 0.928698 0.897674
VotingEnsemble 0.89701 0.835659
Table 3: Experiment 3 results
Model (60%,40%) ROC_AUC Accuracy
LightGBM 0.950421 0.939535
XGBoost 0.948019 0.933333
CatBoost 0.942725 0.942636
RandomForest 0.939306 0.902326
SVM 0.778791 0.621705
DecisionTree 0.875639 0.885271
LogisticRegression 0.853992 0.790698
GradientBoosting 0.950523 0.941085
AdaBoost 0.928698 0.897674
VotingEnsemble 0.89701 0.835659
Table 4: Comparison table
Experiment Best model ROC-AUC Accuracy Rank

80%-20% LightGBM 0.955 0.956 1

70%-30% GradientBoosting 0.951 0.941 2

60%-40% GradientBoosting 0.951 0.941 3

The ROC curve shown in Fig. 2 provides an
objective evaluation of our classification model,
which is especially important for medical prediction
systems. ROC curves illustrate diagnostic
performance by comparing sensitivity (true positive
rate) with 1-specificity (false positive rate) across
different thresholds. The model’s discriminative
ability is measured by the Area Under the Curve
(AUCQ).

A higher AUC indicates stronger predictive
performance, with values ranging from 0.5 (no
discrimination, equivalent to random chance) to 1.0
(perfect discrimination). This metric is particularly
valuable in healthcare applications such as
Alzheimer’s disease prediction, where minimizing
false negatives and achieving high true positive rates
are essential for timely and effective diagnosis and
treatment.

ROC Curves

0.8 o

0.6 o

True Positive Rate

0.4 o

0.2 o

0.0 A

=== LightGBM (AUC=0.95)
XGBoost (AUC=0.95)

= CatBoost (AUC=0.95)

= RandomForest (AUC=0.95)

== SVM (AUC=0.78)

= DecisionTree (AUC=0.87)
LogisticRegression (AUC=0.80)

= GradientBoosting (AUC=0.96)
AdaBoost (AUC=0.93)

= \otingEnsemble (AUC=0.89)

T T T
0.4

T T T
0.6 0.8 1.0

False Positive Rate

Fig. 2: Receiver operating characteristic (ROC) curve

The models were evaluated using an 80-20
dataset split, and their ROC-AUC scores provided the
following insights. Gradient Boosting achieved the

highest performance with an ROC-AUC of 0.955,
making it the most reliable model for prediction.
LightGBM achieved a similar score of 0.955,
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confirming its efficiency and suitability for large
datasets. XGBoost and CatBoost also performed
strongly, both reaching an ROC-AUC of 0.952, which
reflects their strong predictive ability. AdaBoost
obtained an ROC-AUC of 0.933, indicating its
capacity to handle imbalanced data effectively. The
Random Forest model achieved an ROC-AUC of
0.949, while the Decision Tree model scored 0.894.
Although slightly lower than boosting models, both
still demonstrated competitive performance. In
contrast, Logistic Regression (0.799) and SVM
(0.782) achieved lower ROC-AUC scores, suggesting
that they may be less appropriate for this dataset

compared to ensemble methods. The Voting
Ensemble, which combines predictions from all
models, produced an ROC-AUC of 0.892. This
represents a moderate improvement over some
individual models but does not surpass the
performance of the best boosting methods.

Fig. 3 illustrates the most important features
contributing to the risk of Alzheimer’s disease. It
shows that ADL, MMSE, and Functional Assessment
are the strongest predictors of disease risk. These
measures, along with Memory Complaints, are
critical for evaluating both cognitive and functional
performance.
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Fig. 3: Feature importance (from LightGBM model)

4.4. Agreement of MMSE, functional assessment,
and ADL scores

e MMSE (Mini-Mental State Examination): The MMSE
is a brief cognitive test that evaluates a person’s
mental state, ability to orient in space and time,
attention, short-term memory, and language.

o Real-world example: an 80-year-old patient, went
to a clinic complaining of forgetfulness. During the
MMSE, he must recall three objects after some
interval (such as an apple, a table, or a penny),
count downwards from 100 in sevens, and state
the current day's date. Let him make 22/30, and
then the nurse realizes that he has moderate
cognitive impairment and hence needs further
testing for Alzheimer’s Disease.

Functional assessment: quantifies a person’s

capacity for activities of daily living—dressing,

cooking, handling money, and the like. It
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establishes stages of dependency and assists in
determining a patient's path of treatment.

o Real-world example: another patient has issues
managing the household finances under her care.
She requires assistance when dressing. She scores
below her level of functioning on the Functional
Assessment and has lost some of her
independence; with the help of her caregivers,
more assistance is needed, and some changes in
the home environment may help prevent the
patient from falling.

e Memory complaints: These are self-reports of
forgetfulness or memory loss. Cohort members’
memory complaints might not necessarily be
related to dementia, but can signal impending
cognitive deterioration.

o Real-world example: A 65-year-old teacher
complains of forgetting the names of the students
and the lessons she had planned to teach. Her full
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monte cognitive abnormalities are reported to be
expected, but she complains of memory loss, hence
her doctor advises her to undergo routine
administration of cognitive tests to check on any
progression.

e ADL (Activities of daily living): The ADL scores
indicate the extent of difficulty that a person may
have in carrying out simple activities like feeding,
washing, or using the washroom. This score assists
in evaluating the trend of functional impairment
and the required amount and type of care.

o Real-world example: another patient, for Instance,
is an 82-year-old man with moderate Alzheimer’s
disease, who cannot bathe or dress himself. His
ADL score indicates dependence, and his family has
sought help from home care services for increased
safety and quality of this client’s life.

4.5. Real-world integration

All these forms are used by healthcare
professionals in combination to determine the state
of cognitive and functional impairment of patients
with conditions such as Alzheimer’s Disease. For
instance, a patient who has a poor MMSE score,
complains of memory impairment, and exhibits poor
ADL performance may be diagnosed with moderate
Alzheimer's Disease and would need a specialized
management plan. These assessments determine the
further course of treatment, whether the person will
require a caretaker, and protective measures that
will improve that person’s quality of life.

FunctionalAssessment
ADL
MemoryComplaints
MMSE
BehavioralProblems
CholesterolLDL
SleepQuality
CholesterolTotal
DietQuality
CholesterolHDL

BMI

SystolicBP

Age

DiastolicBP
PhysicalActivity
CholesterolTriglycerides
EducationLevel
AlcoholConsumption
Ethnicity

Confusion

Likewise, Fig. 4 below reveals that utilizing the
SHAP (SHapley Additive exPlanations) plot shows
the different features that affect the output of a
particular system. Each point represents an
individual case, and the location reflects the SHAP
value to determine whether the feature contributes
to the optimistic prediction. ADL, MMSE, and the
Functional Assessment category of the case have the
most significant impact; higher values of features
(marked in red) lead to positive model results. On
the other hand, low feature values (blue) give less
value to the prediction models to go in the opposite
direction. The plot helps show how each
characteristic relates to the related system and its
decision-making.

In Fig. 5, it is therefore depicted that LIME
prediction of the model shows 0% probability of
having Alzheimer’s disease and 100% probability of
not having any Alzheimer’s disease. ADL, MMSE,
Memory Complaints, Functional Assessment, and

Behavioral Problems reveal large contribution
measures in Alzheimer’s disease prognosis, as
represented by blue.

More specifically, the results indicate that each
feature specified, such as ADL, Memory Complaints,
Functional Assessment, and Behavioral Problems
being less than 8, raises the probability of not having
Alzheimer’s disease, while features like MMSE
slightly decrease it. LIME offers how personal
attributes affect the input process and bring about
the forecast, making the system more transparent
and comprehensible.

High
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8 -6
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cr+4dbPe
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SHAP value (impact on model output)
Fig. 4: SHAP value

5. Discussion

The presented experimental results show that
implementing the TAER_Robot system with models
such as LightGBM and Gradient Boosting can
effectively make reliable predictions concerning
Alzheimer’s Disease. A vast disparity was observed
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when an 80%-20% split was applied, as the
tokenizer was more precise, indicating that a large
training data set is critical in enhancing the model's
accuracy and the tokenizers' ability.

The conclusion of developing the TAER_Robot
system signifies an important advancement in
Alzheimer’s disease prediction because it combines
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machine learning with explainable Al techniques.
This research evaluated the potential value of
uniting these evaluation methods to boost the
precision and understanding of assessments in
Alzheimer's disease risk prediction. The research
employed 2,149 records containing 33 variables,

which included lifestyle and demographic
information such as age, gender, and cigarette usage.
The information went through pre-processing steps
that normalized data while performing categorical
encoding and managing absent values.
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Fig. 5: LIME prediction as ‘Alzheimer’s Disease' found or not found

The implementation of Random Forest, together
with CatBoost and XGBoost algorithms, used SHAP
and LIME techniques as explainability tools to
interpret predictive results. Using 80/20 split
proportions resulted in the best performance from
the dataset, which underwent separate training and
testing ratio modifications (80/20, 70/30, and
60/40). The LightGBM model produced superior
results through its outstanding ROC-AUC score of
0.955 with 95.6% accuracy, surpassing previous
research findings of around 92%.

The TAER_Robot system enhances early-stage
Alzheimer’s diagnosis by providing more accurate
diagnoses  with a  more  straightforward
interpretation of results. XAl implementation in
models provides improved model transparency and
enhanced user trust, making it an effective tool that
clinicians find valuable. The system demonstrates its
wide range of compatibility through excellent
performance  measurements across multiple
datasets. The research indicates that such an
approach could be a basis for enhancing next-
generation predictive systems for Alzheimer’s
Disease management while enabling astute clinical
choices across the board.

The novelty of this research lies in applying XAl
to a machine learning-based Alzheimer’s Disease
prediction system through the development of the
TAER_Robot. Your system produces accurate
predictions since it integrates XAI functions while
maintaining an understandable output that
healthcare experts can easily trust. The developed
TAER_Robot system utilizes SHAP and LIME
techniques to show healthcare professionals and
patients exactly which features, including age,
cognitive ability, and lifestyle choices, affect their
predicted risk outcomes. User confidence increases
significantly because users can see exactly how the
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Al system works while decision-makers
assurance about the Al results' trustworthiness.
The distinctive aspect of the proposed method
involves finding optimal distributions between
training and testing datasets. Different ratios of
80/20 and 70/30, and 60/40 allow this work to
identify the best configuration for predictive quality
that lets your model work effectively across multiple
data sets. Paying attention to data partitioning of the
proposed model demonstrates increased robustness,
resulting in better accuracy levels (up to 95.6%)
beyond previous research (which typically reached
92%) with its model predictions. The proposed
specific methodology for model training enhances
the value of your work compared to earlier studies.
Interdisciplinary design in TAER_Robot enhances
its innovation by integrating artificial intelligence
with machine learning and healthcare-specific
medical expertise. The tool provides clinical
adaptability through its user-friendly design, which
enhances two important aspects of Alzheimer’s
disease risk evaluations while surpassing existing
models with unclear assessment criteria. XAI
integration within your system provides healthcare a
necessary solution by enabling trust in Al-based
early-stage Alzheimer’s detection predictions.

gain

5.1. Real-world applications

Thus, TAER_Robot can help doctors select high-
risk patients by offering reliable predictions and a
proper explanation of why they are considered risky,
using post-hoc explanations such as SHAP and LIME.
For instance, a doctor could examine the list
generated by the system, where patients who have
low MMSE scores and high cholesterol levels, which
could be coded for AlzD, can be treated early.
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5.2. Recommendations and future systems

e Enhancing interpretability: Applying SHAP values
for all types of models can provide details about
feature contributions, giving clinicians better
insight into the predictions.

e Integrating real-time data: As mentioned above,
integrating with a live EHR could mean that patient
profiles can be updated dynamically on
TAER_Robot.

e Improving model training: Perhaps blending the
different structures of Gradient Boosting and
LightGBM would improve the prediction.

e Personalized insights: Extending the functionality
to consider the user's risk profile can help engage
the users and improve their health outcomes.

5.3. Future challenges

e Data privacy: The protection of sensitive, detailed
medical information is of paramount importance.

e Ethical considerations: It is of the utmost
importance to erase biases when the data for
training the models is collected and to make it
equally fair when used on different groups of
patients.

e Scalability: When adopting TAER_Robot, possible
limitations of the current technique in large setups
include computational costs and health system
S1Ze.

5.4. Persuading decision-makers

It explicitly improves stakeholder trust in
handling patient data, thereby solving the “black-
box” problem associated with traditional machine
learning techniques, as featured by TAER_Robot. For
example, using TAER_Robot, a hospital administrator
can select which patients should be sent for a more
detailed checkup according to clearly defined and
explained risks, while also being concerned about
how this process impacts resource utilization.

5.5. Study limitations and future work

The Kaggle datasets contain various examples;
however, their medical verification remains absent.
Our study maintains data integrity because data
preprocessing and anonymization combine with
ethical compliance standards. To acknowledge this
constraint, future work needs on-site hospital-based
testing to improve research reliability in future
work.

6. Conclusion

Our results identify Gradient Boosting as the
best-performing model, with LightGBM in the second
place as all the ROC-AUC indices were above 0.95.
The results also show how the boosting techniques
are particularly effective in dealing with the
complexities inherent in the interrelations of the
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data. Based on the findings, all the ensemble models
performed better than the individual models, such as
Logistic Regression and SVM, hence the need to
enhance model diversity to predict Alzheimer’s
disease. Notably, this analysis underlines the
possibility of utilizing these techniques for correct
and unerring approaches to early diagnosis.

As a tool that stands right in the middle of highly
advanced statistical modeling and clinically driven
decision-making, TAER_Robot has the power to
revolutionize the management of Alzheimer’s
disease by diagnosing the disease in its earliest
stages and tailoring specific care plans for patients
with the disease. Social Proof can be extended even
more through evidence of database implementation
about patient and clinician satisfaction.
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