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This study presents the development of TAER_Robot, an explainable AI 
(XAI)-based medical assistant for predicting Alzheimer’s Disease (AlzD). The 
main aim is to integrate Machine Learning (ML) models with explanation 
techniques to build an accurate and interpretable risk assessment system. 
The research explores how age, cognitive function, and lifestyle factors 
influence prediction results, using a dataset of 2,149 records with 33 features 
such as age, gender, BMI, smoking, and alcohol use. Data preprocessing 
involved normalization, categorical encoding, and handling missing values. 
The dataset was split into training and testing sets at ratios of 80/20, 70/30, 
and 60/40 to identify the best configuration. Random Forest, CatBoost, and 
XGBoost were used as core ML models, while SHAP and LIME provided 
interpretability. LightGBM achieved the highest performance, with 95.6% 
accuracy and a 0.955 ROC-AUC score, exceeding previous models. Further 
testing confirmed system reliability with up to 94.1% accuracy. TAER_Robot 
enhances early-stage AlzD prediction by offering both strong performance 
and transparent decision-making, contributing to the improvement of AI-
supported clinical decision systems. 
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1. Introduction 

*Alzheimer's disease (AlzD) represents a chronic 
brain-destroying illness, which appears among 
millions of people globally while affecting both 
patients and their caregivers alongside healthcare 
institutions (Chen et al., 2025). Diagnosing AlzD at an 
early stage is fundamental to enhancing patient 
outcomes and reducing the disease's advancement. 
Modern artificial intelligence (AI) and machine 
learning (ML) technology demonstrates remarkable 
potential for making Alzheimer’s disease prediction 
both faster and more precise, which holds great 
promise to transform current medical practices 
(Javed et al., 2025). Because early detection and 
precise prediction enable patients and healthcare 
providers to take proactive measures to manage the 
condition, they can help lessen the impact of 
Alzheimer's disease worldwide (Rehman et al., 2024; 
Sethi et al., 2024). Products powered by AI, such as 
TAER_Robot (The Arabic English Russian Robot), 
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provide creative answers in multiple languages to 
this issue by using conversational AI to collect 
critical health data and provide real-time risk 
assessments. TAER_Robot uses machine learning 
models to assess risk factors, generate predictions, 
and interpret its results in order to deliver a 
customized and enjoyable user experience. 

The most evident application of TAER_Robot is in 
enhancing Alzheimer’s disease prediction, where it 
functions as a virtual assistant to detect early 
symptoms and support timely intervention. While 
traditional machine learning models offer predictive 
capabilities, they often operate as opaque black 
boxes, providing limited insight into their decision-
making processes. This lack of interpretability 
undermines trust in clinical practice, where 
transparency is critical. Explainable AI (XAI) 
addresses this challenge by generating 
understandable predictions. By integrating advanced 
machine learning models with conversational AI, 
TAER_Robot ensures that predictions are both clear 
and actionable. Through the XAI-enhanced system, 
users can see how specific factors—such as genetic 
predisposition, physical activity, and dietary 
habits—influence their risk of Alzheimer’s disease. 
This understanding supports informed decision-
making and encourages preventive actions, including 
lifestyle adjustments and cognitive health strategies. 
Broader adoption of AI in healthcare requires careful 
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consideration of ethical issues such as data privacy, 
accountability, and equity (Akinrinola et al., 2024). 
To ensure fair predictions across all patient groups, 
XAI techniques play a key role in detecting and 
reducing bias. TAER_Robot represents an important 
advancement in Alzheimer’s prediction by 
combining the transparency of XAI with the 
predictive power of machine learning. By increasing 
users’ awareness of their health risks and supporting 
informed decision-making, the system fosters 
greater trust in AI-based healthcare solutions. 
Looking ahead, future developments—such as 
extending applications to other neurodegenerative 
diseases and incorporating real-time data—may 
establish TAER_Robot as a vital tool for personalized 
healthcare management. 

Alzheimer’s disease is a progressive neurological 
disorder that affects individuals worldwide and 
places a significant burden on patients, caregivers, 
and healthcare systems. Early detection provides 
substantial benefits by supporting patient well-being 
and slowing disease progression. However, 
conventional diagnostic methods often face 
challenges in identifying the disease at its earliest 
stages, leading to delays in treatment and 
intervention. Traditional machine learning models 
often have limited interpretability in predicting 
Alzheimer’s disease, which makes them function as 
black-box systems in clinical settings. This lack of 
transparency reduces their acceptance in hospitals, 
as healthcare professionals require clear 
explanations of how predictions are made. By using 
XAI techniques, the TAER_Robot system provides a 
more interactive and understandable interface, 
although further development is still needed to 
enhance Alzheimer’s prediction analysis. At the same 
time, it is essential to address ethical challenges such 
as data privacy, bias in datasets, and the need for 
accountable decision-making, to ensure fair and 
transparent AI predictions across all patient groups. 

The main advantage of the TAER_Robot system 
lies in its use of explainable artificial intelligence 
(XAI) methods, specifically SHAP and LIME, to clarify 
medical decisions for healthcare professionals. Our 
Alzheimer’s prediction approach allows medical staff 
to identify the key variables influencing prediction 
outcomes, avoiding the limitations of traditional 
black-box models. The system achieves strong 
performance by supporting different data-splitting 
ratios, ranging from 80/20 and 70/30 to 60/40, 
which makes it both flexible and reliable. 
TAER_Robot’s risk assessment is based on a wide 
range of features, including demographic factors, 
lifestyle patterns, and genetic indicators. By 
integrating machine learning with XAI techniques, 
the system establishes a new standard for 
Alzheimer’s disease diagnosis. 

2. Literature review 

The AI-based systems use enormous medical 
datasets, including records, imaging results, genetic 
profiles, and behavioral patterns, to construct 

predictive diagnostic models for Alzheimer's disease 
detection (Sharma and Kaushik, 2025; Wahyudi and 
Ayuningsih, 2024). Decision trees alongside support 
vector machines and deep learning emerge as typical 
machine learning algorithms that evaluate extensive 
datasets to discover cognitive decline indicators 
(Vanaja et al., 2025; Ali et al., 2025). The diagnostic 
approach surpasses conventional diagnostic 
procedures because it relies on expert judgment and 
suffers from mistakes and delays (Wang et al., 2025). 
Detecting Alzheimer's disease at its early stages 
enables healthcare providers to initiate vital 
intervention plans and assist in producing focused 
therapeutic options (Mishra et al., 2025). AI 
reinforces machine learning capabilities that solve 
complex operational challenges in healthcare and 
employment systems (Parul et al., 2025). 

The current predictive systems have promise, but 
they are challenging to develop. High accuracy and 
interpretability can be attained technically by 
improving feature selection model training and 
machine learning algorithm selection (Mostafa et al., 
2024; Shannaq et al., 2019).  

There is still a need to balance model 
transparency and complexity. For instance, deep 
neural networks are typically more complex to 
understand than straightforward models like logistic 
regression or decision trees, even though they may 
be more accurate than other models (Islam et al., 
2024; Adekeye et al., 2023). To get the best results, 
researchers are investigating hybrid approaches that 
combine the best aspects of several models (Kareem 
et al., 2024; Azevedo et al., 2024). Close collaboration 
with neurologists and other medical specialists is 
necessary to improve the TAER_Robot design, and 
patient-generated data must be used for clinical 
validation. Because of these collaborations, the 
system can be adjusted to meet patients' various 
needs and situations. 

Autonomous systems have been made possible 
by technological developments and AI. Robots are 
becoming increasingly common in the medical field 
as patient advisors (Alelyani, 2024; Adetunji et al., 
2024). Nevertheless, issues like hesitant 
communication and ambiguous answers continue to 
exist (Li et al., 2024). To solve these problems, this 
study suggests an intelligent TAER_Robot system 
that uses XAI. The system guarantees secure data 
handling, transparent explanations, and pre-
processing of patient data for machine learning (ML) 
algorithms for predictive analysis.  

The proposed work proposes a distinctive aspect 
of your method: Finding optimal distributions 
between training and testing datasets. Different 
ratios of 80/20, 70/30, and 60/40 allow this to 
identify the best configuration for predictive quality 
that lets your model work effectively across multiple 
data sets (Shannaq, 2025; Farhan et al., 2025). 

Interdisciplinary design in TAER_Robot enhances 
its innovation by integrating artificial intelligence 
with machine learning and healthcare-specific 
medical expertise. The proposed tool provides 
clinical adaptability through its user-friendly design, 
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which enhances two important aspects of 
Alzheimer’s disease risk evaluations while 
surpassing existing models with unclear assessment 
criteria. XAI integration within the proposed system 
provides healthcare with a necessary solution by 
enabling trust in AI-based early-stage Alzheimer’s 
detection predictions. 

3. Methodology 

This work achieves predictive modeling through 
a data mining implementation that depends on 
Random Forest, CatBoost, and XGBoost machine 
learning algorithms. Including XAI allows predictions 
to remain understandable, establishing better trust 
in the system's decision processes. The methodology 
framework explores multiple data separation ratios 
starting from 80/20, progressing to 70/30, and 
ending with 60/40 to better understand the relation 
between training data volume and system accuracy. 
Protection and normalization of data, as well as 
categorical transformation and missing value 
resolution methods, were applied to generate 
reliable outcomes. The research utilizes 
experimental methods to optimize data protocols 
while enhancing the performance and 
interpretability of diagnostic models useful for 
Alzheimer's disease identification. 

3.1. Data collection 

Data has been collected from kaggle.com, 2149 
records with 33 variables that cover a broad range of 
demographic, health, and lifestyle factors are 
included in the Alzheimer's Disease dataset collected 
from. Age, gender, ethnicity, and education level are 
important demographic factors. In addition to 
medical history indicators like family history of 
Alzheimer's disease, cardiovascular disease, 
diabetes, depression, head injuries, and 
hypertension, health-related variables include BMI, 
smoking, alcohol consumption, physical activity, diet 
quality, and sleep quality. Clinical measurements 
include systolic and diastolic blood pressure, 
cholesterol, total LDL, HDL, and triglycerides. MMSE 
Functional Assessment Memory Complaints and ADL 
(Activities of daily living) scores are used to record 
cognitive and functional evaluations. Confusion, 
disorientation, personality changes, difficulty 
finishing tasks, and forgetfulness are examples of 
behavioral characteristics. Finally, DoctorInCharge 
classifies accountable healthcare providers, whereas 
Diagnosis indicates the presence of Alzheimer's 
disease. This varied dataset offers a thorough basis 
for comprehending and forecasting the risk of 
Alzheimer's disease. 

3.2. Data pre-processing 

Selecting features proves essential for enhancing 
model performance because it simultaneously 
reduces unwanted signals while making predictions 

more comprehensible. The mixture of similar 
features, such as BMI and weight, leads to data 
redundancy, which decreases the model 
performance quality. We applied the SHAP analysis 
method to identify crucial predictors, leading us to 
eliminate unnecessary features. The assessment of 
model consistency across different scenarios takes 
advantage of multiple data split methods for 
verification purposes . Data processing phases 
include training (70%) and validation (30%). 
Predictions are saved if the criteria are satisfied; 
changes are made. The method improves data 
integrity, precise forecasts, and trust in healthcare 
applications.  

Our study utilizes a structured attribute choice 
procedure that deletes correlated components 
because it boosts interpretability while reducing 
duplicity. After SHAP analysis, the chosen features 
are essential for predicting Alzheimer’s because they 
add value to diagnosis. The robustness across 
different data distributions is validated using 
multiple train-test splits with 80/20, 70/30, and 
60/40 ratios. The selected approach prevents model 
overfitting by establishing generalizable results. A 
thorough analysis of the selection criteria, 
supporting statistical evidence, and validation 
strategies for feature selection methods will appear 
in the methodology section. 

3.3. Model selection 

This study suggests a healthcare prediction 
system that uses historical data. To handle null 
values, duplicates, outliers, and class imbalances, it 
uses Exploratory Data Analysis (EDA) to determine 
pre-processing requirements. Models  

Like Random Forest, they are used for prediction, 
and the data is divided into 80%,70%,60% training, 
and 20%,30%, and 40% testing sets. Performance is 
assessed using metrics like recall accuracy and 
precision. To interpret predictions and provide clear 
insights into contributing features, the system 
incorporates XAI techniques such as LIME (Vimbi et 
al., 2024; Salih et al., 2025). Fig. 1 workflow ensures 
responsible predictions and efficient health 
condition detection or case dismissal, improves trust 
and interpretability for healthcare professionals 
when no disease is identified. 

4. Experiments and results 

Three experiments were conducted to evaluate 
various machine learning models for Alzheimer's 
Disease prediction, using different data split 
strategies: By dividing 100 into 80 and 20, 70 and 30, 
and 60 and 40, respectively, this work was able to 
obtain 80%-20%, 70%-30%, and 60%-40% for 
training and testing. Evaluation measures like ROC-
AUC and accuracy were applied for model 
comparison, mainly LightGBM, XGBoost, and 
Gradient Boosting. Table 1 presents the obtained 
results from experiment 1. 
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Fig. 1: System workflow diagram 

 
Table 1: Experiment 1 results 

Model (80%, 20%) ROC_AUC Accuracy 
LightGBM 0.954697 0.955814 
XGBoost 0.952007 0.948837 
CatBoost 0.952337 0.953488 

RandomForest 0.949376 0.94186 
SVM 0.781612 0.644186 

DecisionTree 0.894493 0.909302 
LogisticRegression 0.799792 0.769767 
GradientBoosting 0.95531 0.95814 

AdaBoost 0.93365 0.916279 
VotingEnsemble 0.891555 0.830233 

 

4.1. Experiment 1 (80%-20% split) 

LightGBM performed best with ROC-AUC = 0.955 
and accuracy = 0.956, followed by Gradient Boosting. 
SVM performed poorly, with accuracy = 0.644. 

Table 2 presents the obtained results from 
experiment 2. 

4.2. Experiment 2 (70%-30% split) 

Gradient Boosting achieved the best results with 
ROC-AUC = 0.951 and accuracy = 0.941, followed 
closely by LightGBM. SVM remained the lowest-
performing model, with accuracy = 0.622. Table 3 
presents the obtained results from experiment 3. 

4.3. Experiment 3 (60%-40% split) 

Gradient Boosting again excelled with ROC-AUC = 
0.951 and accuracy = 0.941, while Logistic 
Regression and Voting Ensemble lagged with lower 
accuracy and ROC-AUC scores. Table 4 compares the 

results obtained from the three proposed 
experiments. 

The comparison Table 4 shows that the 80% and 
20% distributions proved to be most effective for the 
model, thus having the highest ROC-AUC and 
accuracy of LightGBM. While Gradient Boosting did a 
fairly reasonable job on the rest of the splits, it did 
slightly worse than LightGBM in the 80%-20% 
experiment. Perhaps it was mainly due to the more 
extensive training set in the first experiment that 
gave the model a better generalization and result. 

Three 80/20, 70/30, and 60/40 split datasets 
showed increased predictive performance. This way 
of splitting the data was proving to be quite 
productive with LightGBM standing at 95.6% 
accuracy, which is 3.6% better than the previous 
studies (Vimbi et al., 2024; Wahyudi and Ayuningsih, 
2024; Dalakoti et al., 2024; Görtz et al., 2023). While 
analyzing other splits, Gradient Boosting exhibited 
94.1 % accuracy, indicating that TAER_Robot is 
accurate, explainable, and capable of predicting 
Alzheimer’s disease at an early stage. 
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Table 2: Experiment 2 results 
Model (70%,30%) ROC_AUC Accuracy 

LightGBM 0.950421 0.939535 
XGBoost 0.948019 0.933333 
CatBoost 0.942725 0.942636 

RandomForest 0.939306 0.902326 
SVM 0.778791 0.621705 

DecisionTree 0.875639 0.885271 
LogisticRegression 0.853992 0.790698 
GradientBoosting 0.950523 0.941085 

AdaBoost 0.928698 0.897674 
VotingEnsemble 0.89701 0.835659 

 
Table 3: Experiment 3 results 

Model (60%,40%) ROC_AUC Accuracy 
LightGBM 0.950421 0.939535 
XGBoost 0.948019 0.933333 
CatBoost 0.942725 0.942636 

RandomForest 0.939306 0.902326 
SVM 0.778791 0.621705 

DecisionTree 0.875639 0.885271 
LogisticRegression 0.853992 0.790698 
GradientBoosting 0.950523 0.941085 

AdaBoost 0.928698 0.897674 
VotingEnsemble 0.89701 0.835659 

 
Table 4: Comparison table 

Experiment Best model ROC-AUC Accuracy Rank 
80%-20% LightGBM 0.955 0.956 1 
70%-30% GradientBoosting 0.951 0.941 2 
60%-40% GradientBoosting 0.951 0.941 3 

 

The ROC curve shown in Fig. 2 provides an 
objective evaluation of our classification model, 
which is especially important for medical prediction 
systems. ROC curves illustrate diagnostic 
performance by comparing sensitivity (true positive 
rate) with 1-specificity (false positive rate) across 
different thresholds. The model’s discriminative 
ability is measured by the Area Under the Curve 
(AUC).  

A higher AUC indicates stronger predictive 
performance, with values ranging from 0.5 (no 
discrimination, equivalent to random chance) to 1.0 
(perfect discrimination). This metric is particularly 
valuable in healthcare applications such as 
Alzheimer’s disease prediction, where minimizing 
false negatives and achieving high true positive rates 
are essential for timely and effective diagnosis and 
treatment. 

 

 
Fig. 2: Receiver operating characteristic (ROC) curve 

 

The models were evaluated using an 80–20 
dataset split, and their ROC-AUC scores provided the 
following insights. Gradient Boosting achieved the 

highest performance with an ROC-AUC of 0.955, 
making it the most reliable model for prediction. 
LightGBM achieved a similar score of 0.955, 
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confirming its efficiency and suitability for large 
datasets. XGBoost and CatBoost also performed 
strongly, both reaching an ROC-AUC of 0.952, which 
reflects their strong predictive ability. AdaBoost 
obtained an ROC-AUC of 0.933, indicating its 
capacity to handle imbalanced data effectively. The 
Random Forest model achieved an ROC-AUC of 
0.949, while the Decision Tree model scored 0.894. 
Although slightly lower than boosting models, both 
still demonstrated competitive performance. In 
contrast, Logistic Regression (0.799) and SVM 
(0.782) achieved lower ROC-AUC scores, suggesting 
that they may be less appropriate for this dataset 

compared to ensemble methods. The Voting 
Ensemble, which combines predictions from all 
models, produced an ROC-AUC of 0.892. This 
represents a moderate improvement over some 
individual models but does not surpass the 
performance of the best boosting methods. 

Fig. 3 illustrates the most important features 
contributing to the risk of Alzheimer’s disease. It 
shows that ADL, MMSE, and Functional Assessment 
are the strongest predictors of disease risk. These 
measures, along with Memory Complaints, are 
critical for evaluating both cognitive and functional 
performance. 

 

 
Fig. 3: Feature importance (from LightGBM model) 

 

4.4. Agreement of MMSE, functional assessment, 
and ADL scores 

• MMSE (Mini-Mental State Examination): The MMSE 
is a brief cognitive test that evaluates a person’s 
mental state, ability to orient in space and time, 
attention, short-term memory, and language. 

o Real-world example: an 80-year-old patient, went 
to a clinic complaining of forgetfulness. During the 
MMSE, he must recall three objects after some 
interval (such as an apple, a table, or a penny), 
count downwards from 100 in sevens, and state 
the current day's date. Let him make 22/30, and 
then the nurse realizes that he has moderate 
cognitive impairment and hence needs further 
testing for Alzheimer’s Disease. 

• Functional assessment: quantifies a person’s 
capacity for activities of daily living—dressing, 
cooking, handling money, and the like. It 

establishes stages of dependency and assists in 
determining a patient's path of treatment. 

o Real-world example: another patient has issues 
managing the household finances under her care. 
She requires assistance when dressing. She scores 
below her level of functioning on the Functional 
Assessment and has lost some of her 
independence; with the help of her caregivers, 
more assistance is needed, and some changes in 
the home environment may help prevent the 
patient from falling. 

• Memory complaints: These are self-reports of 
forgetfulness or memory loss. Cohort members’ 
memory complaints might not necessarily be 
related to dementia, but can signal impending 
cognitive deterioration. 

o Real-world example: A 65-year-old teacher 
complains of forgetting the names of the students 
and the lessons she had planned to teach. Her full 
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monte cognitive abnormalities are reported to be 
expected, but she complains of memory loss, hence 
her doctor advises her to undergo routine 
administration of cognitive tests to check on any 
progression. 

• ADL (Activities of daily living): The ADL scores 
indicate the extent of difficulty that a person may 
have in carrying out simple activities like feeding, 
washing, or using the washroom. This score assists 
in evaluating the trend of functional impairment 
and the required amount and type of care. 

o Real-world example: another patient, for Instance, 
is an 82-year-old man with moderate Alzheimer’s 
disease, who cannot bathe or dress himself. His 
ADL score indicates dependence, and his family has 
sought help from home care services for increased 
safety and quality of this client’s life. 

4.5. Real-world integration 

All these forms are used by healthcare 
professionals in combination to determine the state 
of cognitive and functional impairment of patients 
with conditions such as Alzheimer’s Disease. For 
instance, a patient who has a poor MMSE score, 
complains of memory impairment, and exhibits poor 
ADL performance may be diagnosed with moderate 
Alzheimer's Disease and would need a specialized 
management plan. These assessments determine the 
further course of treatment, whether the person will 
require a caretaker, and protective measures that 
will improve that person’s quality of life. 

Likewise, Fig. 4 below reveals that utilizing the 
SHAP (SHapley Additive exPlanations) plot shows 
the different features that affect the output of a 
particular system. Each point represents an 
individual case, and the location reflects the SHAP 
value to determine whether the feature contributes 
to the optimistic prediction. ADL, MMSE, and the 
Functional Assessment category of the case have the 
most significant impact; higher values of features 
(marked in red) lead to positive model results. On 
the other hand, low feature values (blue) give less 
value to the prediction models to go in the opposite 
direction. The plot helps show how each 
characteristic relates to the related system and its 
decision-making. 

In Fig. 5, it is therefore depicted that LIME 
prediction of the model shows 0% probability of 
having Alzheimer’s disease and 100% probability of 
not having any Alzheimer’s disease. ADL, MMSE, 
Memory Complaints, Functional Assessment, and 
Behavioral Problems reveal large contribution 
measures in Alzheimer’s disease prognosis, as 
represented by blue.  

More specifically, the results indicate that each 
feature specified, such as ADL, Memory Complaints, 
Functional Assessment, and Behavioral Problems 
being less than 8, raises the probability of not having 
Alzheimer’s disease, while features like MMSE 
slightly decrease it. LIME offers how personal 
attributes affect the input process and bring about 
the forecast, making the system more transparent 
and comprehensible. 

 

 
Fig. 4: SHAP value 

 

5. Discussion  

The presented experimental results show that 
implementing the TAER_Robot system with models 
such as LightGBM and Gradient Boosting can 
effectively make reliable predictions concerning 
Alzheimer’s Disease. A vast disparity was observed 

when an 80%-20% split was applied, as the 
tokenizer was more precise, indicating that a large 
training data set is critical in enhancing the model's 
accuracy and the tokenizers' ability. 

The conclusion of developing the TAER_Robot 
system signifies an important advancement in 
Alzheimer’s disease prediction because it combines 
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machine learning with explainable AI techniques. 
This research evaluated the potential value of 
uniting these evaluation methods to boost the 
precision and understanding of assessments in 
Alzheimer's disease risk prediction. The research 
employed 2,149 records containing 33 variables, 

which included lifestyle and demographic 
information such as age, gender, and cigarette usage. 
The information went through pre-processing steps 
that normalized data while performing categorical 
encoding and managing absent values. 

 

 
Fig. 5: LIME prediction as ‘Alzheimer’s Disease' found or not found 

 

The implementation of Random Forest, together 
with CatBoost and XGBoost algorithms, used SHAP 
and LIME techniques as explainability tools to 
interpret predictive results. Using 80/20 split 
proportions resulted in the best performance from 
the dataset, which underwent separate training and 
testing ratio modifications (80/20, 70/30, and 
60/40). The LightGBM model produced superior 
results through its outstanding ROC-AUC score of 
0.955 with 95.6% accuracy, surpassing previous 
research findings of around 92%. 

The TAER_Robot system enhances early-stage 
Alzheimer’s diagnosis by providing more accurate 
diagnoses with a more straightforward 
interpretation of results. XAI implementation in 
models provides improved model transparency and 
enhanced user trust, making it an effective tool that 
clinicians find valuable. The system demonstrates its 
wide range of compatibility through excellent 
performance measurements across multiple 
datasets. The research indicates that such an 
approach could be a basis for enhancing next-
generation predictive systems for Alzheimer’s 
Disease management while enabling astute clinical 
choices across the board. 

The novelty of this research lies in applying XAI 
to a machine learning-based Alzheimer’s Disease 
prediction system through the development of the 
TAER_Robot. Your system produces accurate 
predictions since it integrates XAI functions while 
maintaining an understandable output that 
healthcare experts can easily trust. The developed 
TAER_Robot system utilizes SHAP and LIME 
techniques to show healthcare professionals and 
patients exactly which features, including age, 
cognitive ability, and lifestyle choices, affect their 
predicted risk outcomes. User confidence increases 
significantly because users can see exactly how the 

AI system works while decision-makers gain 
assurance about the AI results' trustworthiness. 

The distinctive aspect of the proposed method 
involves finding optimal distributions between 
training and testing datasets. Different ratios of 
80/20 and 70/30, and 60/40 allow this work to 
identify the best configuration for predictive quality 
that lets your model work effectively across multiple 
data sets. Paying attention to data partitioning of the 
proposed model demonstrates increased robustness, 
resulting in better accuracy levels (up to 95.6%) 
beyond previous research (which typically reached 
92%) with its model predictions. The proposed 
specific methodology for model training enhances 
the value of your work compared to earlier studies. 

Interdisciplinary design in TAER_Robot enhances 
its innovation by integrating artificial intelligence 
with machine learning and healthcare-specific 
medical expertise. The tool provides clinical 
adaptability through its user-friendly design, which 
enhances two important aspects of Alzheimer’s 
disease risk evaluations while surpassing existing 
models with unclear assessment criteria. XAI 
integration within your system provides healthcare a 
necessary solution by enabling trust in AI-based 
early-stage Alzheimer’s detection predictions. 

5.1. Real-world applications 

Thus, TAER_Robot can help doctors select high-
risk patients by offering reliable predictions and a 
proper explanation of why they are considered risky, 
using post-hoc explanations such as SHAP and LIME. 
For instance, a doctor could examine the list 
generated by the system, where patients who have 
low MMSE scores and high cholesterol levels, which 
could be coded for AlzD, can be treated early. 
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5.2. Recommendations and future systems 

• Enhancing interpretability: Applying SHAP values 
for all types of models can provide details about 
feature contributions, giving clinicians better 
insight into the predictions. 

• Integrating real-time data: As mentioned above, 
integrating with a live EHR could mean that patient 
profiles can be updated dynamically on 
TAER_Robot. 

• Improving model training: Perhaps blending the 
different structures of Gradient Boosting and 
LightGBM would improve the prediction. 

• Personalized insights: Extending the functionality 
to consider the user's risk profile can help engage 
the users and improve their health outcomes. 

5.3. Future challenges 

• Data privacy: The protection of sensitive, detailed 
medical information is of paramount importance. 

• Ethical considerations: It is of the utmost 
importance to erase biases when the data for 
training the models is collected and to make it 
equally fair when used on different groups of 
patients. 

• Scalability: When adopting TAER_Robot, possible 
limitations of the current technique in large setups 
include computational costs and health system 
size. 

5.4. Persuading decision-makers 

It explicitly improves stakeholder trust in 
handling patient data, thereby solving the “black-
box” problem associated with traditional machine 
learning techniques, as featured by TAER_Robot. For 
example, using TAER_Robot, a hospital administrator 
can select which patients should be sent for a more 
detailed checkup according to clearly defined and 
explained risks, while also being concerned about 
how this process impacts resource utilization. 

5.5. Study limitations and future work 

The Kaggle datasets contain various examples; 
however, their medical verification remains absent. 
Our study maintains data integrity because data 
preprocessing and anonymization combine with 
ethical compliance standards. To acknowledge this 
constraint, future work needs on-site hospital-based 
testing to improve research reliability in future 
work. 

6. Conclusion 

Our results identify Gradient Boosting as the 
best-performing model, with LightGBM in the second 
place as all the ROC-AUC indices were above 0.95. 
The results also show how the boosting techniques 
are particularly effective in dealing with the 
complexities inherent in the interrelations of the 

data. Based on the findings, all the ensemble models 
performed better than the individual models, such as 
Logistic Regression and SVM, hence the need to 
enhance model diversity to predict Alzheimer’s 
disease. Notably, this analysis underlines the 
possibility of utilizing these techniques for correct 
and unerring approaches to early diagnosis. 

As a tool that stands right in the middle of highly 
advanced statistical modeling and clinically driven 
decision-making, TAER_Robot has the power to 
revolutionize the management of Alzheimer’s 
disease by diagnosing the disease in its earliest 
stages and tailoring specific care plans for patients 
with the disease. Social Proof can be extended even 
more through evidence of database implementation 
about patient and clinician satisfaction. 
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AdaBoost Adaptive Boosting 
ADL Activities of Daily Living 
AI Artificial Intelligence 
AlzD Alzheimer's Disease 
AUC Area Under the Curve 
BMI Body Mass Index 
CatBoost Categorical Boosting 
EDA Exploratory Data Analysis 
EHR Electronic Health Record 
HDL High-Density Lipoprotein 
LDL Low-Density Lipoprotein 

LIME 
Local Interpretable Model-agnostic 
Explanations 

LightGBM Light Gradient Boosting Machine 
ML Machine Learning 
MMSE Mini-Mental State Examination 
NPV Negative Predictive Value 
PPV Positive Predictive Value 
ROC Receiver Operating Characteristic 

ROC-AUC 
Receiver Operating Characteristic - Area 
Under the Curve 

SHAP SHapley Additive exPlanations 
SVM Support Vector Machine 
TAER_Robot The Arabic English Russian Robot 
XAI Explainable AI 
XGBoost Extreme Gradient Boosting 
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