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This study addresses the optimization of change propagation paths in 
complex product engineering, where multiple disciplines and heterogeneous 
knowledge sources are involved. In such settings, design, production, and 
modification processes are often simultaneous, parallel, and collaborative, 
while the knowledge driving these changes is extensive, dynamic, and 
unstructured. To manage these challenges, a multi-objective optimization 
method is proposed within a multi-process complex network. A multi-stage 
network is constructed covering product design, process planning, and 
manufacturing, and an optimization model is developed considering change 
propagation intensity, total cost, and carbon emissions. The model is solved 
using the non-dominated sorting genetic algorithm III (NSGA-III) algorithm, 
and its feasibility and effectiveness are validated through a case study on 
engineering changes in a household refrigerator. 
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1. Introduction 

*In recent years, the development of the 
manufacturing industry has been promoted to the 
height of the national development strategy. 
Complex products are a crucial component in the 
manufacturing industry. There are many parts in the 
complex product, involving a wide range of technical 
fields.  

Due to the change of demand, design, process, 
and manufacturing, it faces many kinds of 
continuous engineering changes in the production 
process. Engineering changes generally require the 
collaboration of multiple professional systems. When 
one of the components changes, it may lead to a 
series of changes in other parts. The propagation of 
changes will increase the complexity of the 
development process, costs, and risks. The research 
on changing propagation path will optimize change 
decisions and reduce design costs. Therefore, how to 
select the optimal change propagation path becomes 
an important issue with practical significance.  

In the field of complex product changes, scholars 
have conducted in-depth explorations and achieved 
notable results. Guo (2018) proposed a method of 
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design change propagation risk prediction based on 
a small-world network. Riascos et al. (2025) 
proposed a practical method to implement Dione in 
Product Lifecycle Management. Herac et al. (2024) 
used the incremental growth operation tree data 
structure to find potential conflicts in time after the 
model changes. Othman designed a hybrid research 
method combining qualitative and quantitative 
methods to explore the role of concurrent 
engineering in the management of design changes in 
the process of architectural design. Njualem and 
Pandey (2025) used the technology acceptance 
model to evaluate the adoption intention from the 
perspective of users and discussed the integration of 
Blockchain Technology in the enterprise system to 
improve the engineering change management 
process. In the study of Kalender (2024), the 
methodology of interval valued hesitant fuzzy 
decision-making experiment and evaluation 
laboratory is integrated into the change matrix. It 
provided an objective way to continuously evaluate 
and determine key processes and strategies 
consistent with changing conditions.  

On the other hand, scholars have also considered 
the influencing factors of product engineering 
change from different aspects. Qiao et al. (2015) 
combined structured path information with all 
constrained assemblies to construct an adaptive 
assembly, proposed an adaptive assembly change 
algorithm, and discussed the scalability of adaptive 
assembly. Masmoudi et al. (2017) used an ant colony 
optimization algorithm to search for the optimal 
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change propagation path by taking the maximum 
value of cumulative CPI as the goal (Xue and 
Imaniyan, 2021). Zheng et al. (2018) proposed a new 
multi-change requirement algorithm and a 
mathematical model considering the overall 
propagation risks to explore a cost-effective change 
propagation path. 

From the above research, we can see that 
complex product engineering change has received 
considerable attention from researchers and 
practitioners. In the extant literature, there are 
several studies that dealt with complex product 
engineering changes. It can be divided into two 
groups: one is about the research on the description 
model; another is about the research on change path 
choice. But there are few studies focused on multi-
stage production and carbon emissions.  

However, since complex product engineering 
changes involve multiple production stages and 
departments, it is necessary to consider multi-stage 
production relationships. In addition, it usually 
involves interdisciplinary integration, long life 
cycles, and deep collaboration in the supply chain. 
The impact of design changes is systematic - small 
material or process adjustments may cause supply 
chain reshaping, energy efficiency fluctuations, or 
environmental risks in the waste stage.  

Therefore, in the design change process of 
complex products, paying attention to 
environmental indicators is not only an inevitable 
choice to respond to global sustainable development 
trends, but also a strategic consideration determined 
by their particularity. This paper proposes a new 
representation method and path optimization 
method to enrich the research in this area. 

Previous studies have explored change 
propagation models from multiple perspectives. 
Most studies describe engineering changes in 
complex products by establishing relationships or 
networks between components. However, 
engineering changes occur across various aspects of 
product production, such as design, process, and 
manufacturing. It is essential to consider multiple 
production processes when managing changes. 
Consequently, this paper adopts a multi-process 
network approach to describe and represent the 
engineering change process in complex products 
(Hamraz et al., 2012). 

This research has primarily focused on single 
factors such as time, cost, and change impact. 
However, in actual production, numerous factors 
influence production, and environmental constraints 
must also be considered. With the rise of green 
manufacturing and increased public environmental 
awareness, greater attention should be given to the 
impact of carbon emissions on product design and 
manufacturing (Liu et al., 2025).  

Therefore, this paper establishes a multi-
objective optimization model with objectives 
including change propagation intensity, total change 
cost, and carbon emissions. Based on the 
characteristics of the multi-objective optimization 
model, the non-dominated sorting genetic algorithm 

III (NSGA-III) algorithm is employed to solve Pareto 
optimal solutions (Ma and Zou, 2025).  

Finally, an engineering change case study 
involving household refrigerators is used to 
demonstrate the feasibility and effectiveness of the 
proposed method. The research framework is 
illustrated in Fig. 1. 

The remainder of this paper is organized as 
follows. The construction of a multi-process complex 
network for engineering change is shown in Section 
2. Section 3 presents the problem description and 
optimization modeling. In Section 4, we introduce 
the algorithm design and process based on NSGA-III. 
In Section 5, we present a case study to demonstrate 
the applicability of the proposed method. Finally, 
some conclusions from this study are presented in 
Section 6. 

2. Multi-process complex network 

Engineering changes occur in product design, 
process, manufacturing, and other stages. When 
these changes occur, all processes will be affected. It 
is necessary to respond to changes to achieve a real-
time change design response. In complex product 
development, changes can occur at various stages, 
from initial design through manufacturing and 
assembly. These changes often generate a significant 
amount of information that needs to be 
systematically captured and managed. Effectively 
gathering, organizing, and managing dispersed 
knowledge pertaining to product engineering 
changes is essential for maintaining the integrity of 
the product assembly structure. Therefore, this 
paper constructs a complex network of multi-
process expressions from the aspects of design, 
process, and manufacturing process. 

In the complex product design stage, the 
structure and function are determined according to 
the market demand, which is the key to guiding the 
subsequent production and manufacturing. There 
are three sources of knowledge in product design. 
One of them is the functional knowledge from the 
transformation of customer requirements, the other 
one is selected knowledge from the basic parts, and 
the last one is redesigning knowledge according to 
the subsequent changes. This knowledge network, 
based on process, must be able to accurately record 
the comprehensive information of each part for a 
complex product. Knowledge network of the 
complex product manufacturing stage is associated 
with the assembly material attribute information, 
supplier, and quota information. In addition to 
material attribute information, the self-made parts 
should also be associated with material quota, man-
hour quota, work center, tools, accessories, 
equipment, and other information. The multi-
process complex network construction process of 
complex products is shown in Fig. 2.  

The single process network is represented 
as: 𝐺𝑘 = (𝑉, 𝐸𝐾 , 𝑊𝐾)𝑉 = (𝑉𝑖 , 𝑖 = 1,2, . . . 𝑁). If there 
are connecting edges between parts of knowledge, 
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then 𝑒𝑘,𝑗
𝑘 = 1, else, 𝑒𝑘,𝑗

𝑘 = 0. For the same connected 

edge, the weight value is 𝑤𝑖,𝑗 = ∑ 𝑤𝑖,𝑗
𝛼3

𝛼 . The 

schematic diagram of the multi-process network is 
shown in Fig. 3. In the integration of heterogeneous 
knowledge across multiple domains, functional 
knowledge, behavioral knowledge, and structural 
knowledge are abstracted into a hierarchical 

knowledge space. This space is organized into lists of 
functional, behavioral, and structural knowledge, 
which supports classification and integrated 
management. When two components work together 
by exchanging material, information, or energy 
flows, they form a functional combination and 
establish functional interdependencies. 
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Fig. 1: Engineering change propagation multi-objective optimization method framework 
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Fig. 2: Multi-process complex network of complex products 
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Fig. 3: Process diagram of multi-domain knowledge integration based on the semantic X list 

 

Behavioral knowledge refers to all knowledge 
required to satisfy product behavior requirements. 
This includes mechanical properties (e.g., strength, 
inertia, elasticity), electrical characteristics (e.g., 
conductivity, resistance, charging), and thermal 
effects (e.g., heat conduction, temperature change, 
absorption). Structural knowledge represents the 
physical basis of function, focusing on the concrete 
composition of entities needed to realize that 
function. 

A semantic “X list” enables the semantic 
description of knowledge within complex product 
systems. The isomorphism of heterogeneous 
knowledge across multiple domains is represented 
by constructing ontology spaces for functional, 
behavioral, and structural knowledge. For this 
purpose, the Web Ontology Language (OWL) is used 
to describe ontology concepts and attributes. On this 
basis, cross-list Semantic Web Rule Language 
(SWRL)-based trigger rules, namely Rule RS and 
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Rule DS, are developed to link resources with 
creative knowledge and allow their dynamic 
combination on demand. 

An intelligent agent system is then built, 
consisting of a knowledge base, a rule base, and a 
reasoning engine. The knowledge base and rule base 
store trigger rules related to elements, behaviors, 
and constraints of each ontology list. These rules and 
knowledge are processed by the reasoning engine, 
which performs knowledge reasoning. Through 
knowledge fusion, new knowledge is generated, and 
integration results are obtained. 

Overall, these operations achieve the 
isomorphism of heterogeneous knowledge across 
domains and enable effective integration, sharing, 
mutual understanding, and interoperability in the 
innovation process of complex product systems. 

3. Problem description and model 

3.1. Engineering change path optimization 
requirements 

To reduce the negative effects of engineering 
changes, we aim to limit their overall impact on the 
network while also minimizing costs, time, and 
carbon emissions. In this process, nodes with higher 
influence should be avoided to reduce chain effects. 
The duration required to implement changes should 
be kept as short as possible, and the costs involved 
should be minimized. At the same time, carbon 
emissions generated at change points should be 
reduced to support environmental sustainability 
objectives. 

3.2. Description of the optimal index for 
engineering change path 

The evaluation of node importance usually 
requires a comprehensive consideration of multiple 
indicators. Given the complexity and uncertainty of 
product knowledge, this study applies the grey 
correlation evaluation method to identify and assess 
node importance. The selected indicators are node 
betweenness, node degree, and node proximity. 

Node betweenness represents the extent to 
which a node lies on the shortest paths between 
other nodes. It is defined as the fraction of all 
shortest paths in the network that pass through the 
node. Mathematically, the betweenness of node i is 

expressed as 𝐵𝑖 = ∑
𝜂jk(𝑖)

𝜂jk
𝑗,𝑘∈𝑉 , where, 𝜂𝑗𝑘  is the 

number of shortest paths between node j and node k. 
Node degree reflects the number of direct 

connections of a node, serving as a fundamental 
property in network theory. Node proximity is the 
reciprocal of the sum of the shortest distances from a 

node to all other nodes, expressed as 𝐶𝑖,𝑗 =
1

∑ 𝛽𝑖𝑗
𝑛
𝑗=1

 , 

where,  𝛽𝑖𝑗  is the number of edges in the shortest 

path from node i to node j, and n is the total number 
of nodes. A higher proximity value indicates a node 
is closer to the network center and thus more 

important. The importance of multi-process node 
connections is further calculated using the 
evaluation of the multi-level grey correlation degree, 

expressed as 
 1

𝑚
∑ 𝜔𝑖𝛾(𝑥0(𝑘), 𝑥𝑖(𝑘))𝑚

𝑘=1 , where, 𝑚 is 

the number of the above-mentioned node evaluation 
indicators (multi-stage network node importance 
evaluation index). 𝛾(𝑥0(𝑘), 𝑥𝑖(𝑘)) is a discrete 
function constructed to determine multiple 
subsequences 𝑋𝑖  to the reference sequence. 

In addition to node indicators, edge betweenness 
is considered. It measures the fraction of shortest 
paths passing through a given edge relative to the 
total number of shortest paths in the network. Edge 
betweenness test is an important index to measure 
the role of connected edges in the whole network. 
The edge betweenness is expressed as: 
 

𝐺𝑖,𝑗 = ∑ ∑
𝐿ℎ,𝑚(𝑒𝑖,𝑗)

𝑔ℎ,𝑚
/[ℎ ≠ 𝑚，(ℎ, 𝑚) ≠ (𝑖, 𝑗)]𝑁

𝑚
𝑁
ℎ   

 

Several practical factors also affect engineering 
change evaluation. The time of engineering change is 
defined as the duration of the design task associated 
with the affected node j, denoted as 𝑡𝑗, with units in 

days. Since rapid redesign enhances product 
competitiveness in highly competitive markets, 
shorter task durations make change propagation 
along the corresponding edge more likely. 

The propagation probability of a connected edge 
is denoted by 𝑝𝑖,𝑗 is the probability of propagation 

from node 𝑖 to node 𝑗. If node j does not belong to the 
next connected edge, the propagation probability is 
0. It is easier to pass through this connecting edge 
when the propagation probability of the edge is 
greater. It can be expressed as: 

 

𝑃𝑖𝑗 = 𝑝(𝑣𝑗|𝑣𝑖) =
𝑝(𝑣𝑖∩𝑣𝑗)

𝑝(𝑣𝑖)
=

𝑝(𝑣𝑗|𝑣𝑖)𝑝(𝑣𝑗)

𝑝(𝑣𝑖)
=

𝑝𝑗𝑖𝑝(𝑣𝑗)

𝑝(𝑣𝑖)
. 

 
The cost of engineering change includes all direct 

expenses associated with the affected parts, such as 
labor, patent fees, and material costs, expressed in 
yuan. 

Finally, carbon emissions are also considered. 
These emissions are generated by the parts 
undergoing engineering changes. In line with 
national regulations on greenhouse gas emissions, 
the company is expected to implement a carbon 
emission policy, setting the product emission limit in 
kilograms of CO₂ equivalent. 

3.3. Parameter interpretation 

To establish and describe the multi-objective 0-1 
integer programming model, parameters are defined 
in Table 1. For example, 𝑖, 𝑗 are the node numbers, 
where, 𝑖 = 1,2, . . . 𝑁,𝑗 = 1,2, . . . 𝑁. 𝑆𝑗  is the multi-level 

grey correlation evaluation index of the node 𝑗. 𝐺𝑖,𝑗  

refers to the edge between nodes 𝑖 𝑎𝑛𝑑 𝑗. 𝑡𝑗 is the 

time taken by the whole product to implement the 
change task after the change of node j. 𝑝𝑖,𝑗  is the 

propagation probability from the node 𝑖 to node 𝑗. 
The carbon emissions generated in the design, 
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process and manufacturing stages after the change of 
node j are respectively represented by 𝑒𝑗

𝑟 , 𝑒𝑗
𝑚, 𝑒𝑗

𝑔
. 𝑥𝑗  

is a 0-1 decision variable. If node j is involved in the 
change, then 𝑥𝑗=1. If node j is not involved in the 

change, then 𝑥𝑗=0. 𝑦𝑖,𝑗  is a 0-1 decision variable. If the 

edge 𝑖, 𝑗 is involved in the change, then b=1. If the 
edge 𝑖, 𝑗 does not need to be involved in the change, 
then 𝑦𝑖,𝑗=0. 
 
𝑓1 =  min[∑ 𝑆𝑗 ⋅ 𝑥𝑗

𝑁
𝑗 + ∑ ∑ 𝑦𝑖,𝑗 ⋅ 𝐺𝑖,𝑗

𝑁
𝑗

𝑁
𝑖 + ∑ ∑ 𝑡𝑖,𝑗 ⋅ 𝑥𝑗

𝑁
𝑗

𝑁
𝑖 −

∑ ∑ （1 − 𝑃） ⋅ 𝑦𝑖,𝑗
𝑁
𝑗

𝑁
𝑖 ]                     (1) 

𝑓2 = 𝑚𝑖𝑛( ∑ 𝐶𝑖𝑥𝑗
𝑁
𝑗=1 )                                      (2) 

𝑓3 = 𝑚𝑖𝑛( ∑ 𝑒𝑗
𝑟𝑁

𝑗=1 + 𝑒𝑗
𝑚 + 𝑒𝑗

𝑔
) ⋅ 𝑥𝑗                     (3) 

s.t. 
𝑦𝑖,𝑗 = {0,1}                            (4) 

𝑥𝑗 = {0,1}                                      (5) 

∑ 𝑥𝑖
𝑁
𝑖 ≤ 𝑁                                    (6) 

𝑥𝑗 ≤ 𝑦𝑖 ,𝑗
                                         (7) 

∑ ∑ 𝑥𝑖,𝑗
𝑁
𝑖

𝑁
𝑖 ≤ 2𝑁                                                         (8) 

∑ (𝑒𝑗
𝑟 + 𝑒𝑗

𝑚 + 𝑒𝑗
𝑔

)𝑁
𝑗 ≤ 𝐸𝑞                                         (9) 

∑ 𝑝𝑗
𝑣
𝑗=1 ≥ 𝛥𝑝𝑖                                                (10) 

 
Eq. 1 is the first objective function, the purpose of 

it is to minimize the impact of change propagation on 
other parts. Eq. 2 is the second objective function, 
which is to achieve the minimum cost of changing 
configuration. Eq. 3 is the third objective function, 
which is to minimize the carbon emission of 
products. Eqs. 4 and 5 are the domains of decision 
variables. Eq. 6 limits the number of nodes. Eq. 7 
indicates that the decision variable is constrained 𝑦𝑖𝑘  
by the decision variable 𝑥𝑗 . Eq. 8 represents the 

number of connected edges. Eq. 9 indicates that the 
total carbon emission of the node is lower than the 
carbon limit standard. Eq. 10 represents that the 
change propagation will stop when the cumulative 
sum of changes absorbed is greater than or equal to 
the ICI of each initial change node. 

 
Table 1: Parameter interpretation 

Symbol Description 

𝑦𝑖,𝑗 0-1decision variable of connecting route. If edge 𝑒𝑖,𝑗 is selected as the design change propagation path, then 𝑦𝑖,𝑗= 1, otherwise, 𝑦𝑖,𝑗= 0. 

xj 0-1 decision variable of selected node. If edge 𝑒𝑖,𝑗 is involved in the design change propagation path，then 𝑥𝑗 = 1; otherwise, xj = 0. 

i, j Node numbers, where i=1, 2, …, N; j=1, 2, …, N. N is the total number of nodes. 
𝑆𝑗  Node importance 

𝐺𝑖,𝑗 Betweenness of edge ei,j 
𝑡𝑖  The execution time of the redesign of node 𝑣𝑖  

𝑒𝑗𝑘
𝑟 , 𝑒𝑗𝑘

𝑚, 𝑒𝑗𝑘
𝑔

 The carbon emissions produced by node 𝑗 in the stages of raw material acquisition, manufacturing, and logistics.  

𝐶𝑗 The change cost of node 𝑗 
𝛥𝑝𝑖  The initial change impact of the initial change node (ICI) 
pj The node’s ability to absorb changes 
v The number of steps of initial change node propagation 

 

4. Algorithm design 

The solution of the above model belongs to the 
class of multi-objective optimization (MO) problems. 
To handle such problems, multiple objectives are 
usually transformed into a single-objective 
optimization task, or alternatively, specialized multi-
objective algorithms are applied. Although a single-
objective approach can identify an optimal solution, 
it does not ensure Pareto optimality, which is the 
core concept in multi-objective optimization. In 
addition, single-objective optimization cannot search 
for multiple optimal solutions simultaneously and 
lacks the flexibility required for decision-making 
with conflicting objectives. 

For this reason, multi-objective algorithms are 
employed. These algorithms aim to generate a set of 
Pareto optimal solutions, from which decision-
makers can select the most appropriate option based 
on trade-offs among competing objectives. Unlike 
single-objective optimization, which focuses on 
identifying one best solution, multi-objective 
optimization recognizes the complexity of real-world 
problems where several conflicting objectives must 
be optimized at the same time. 

Representative algorithms in this field include 
the multi-objective genetic algorithm, niche genetic 
algorithm, differential evolution algorithm, strength 
Pareto evolutionary algorithm, non-dominated 
sorting genetic algorithm (NSGA), NSGA-II, NSGA-III, 
and others. Among them, NSGA-II has shown strong 

performance in terms of search ability, solution 
distribution, and coverage, and it is widely applied in 
practice. However, when the number of objectives 
increases to three or more, the convergence and 
diversity of NSGA-II become less effective. To 
address this limitation, NSGA-III was developed as 
an extension of NSGA-II. 

Therefore, in this study, NSGA-III is adopted to 
solve the given multi-objective optimization 
problem. The design steps of the algorithm are 
outlined as follows. 

4.1. Chromosome coding and initialization 

The chromosome code in this paper is composed 
of changing the node number. Combined with the 
propagation path problem of complex product 
design changes, the feasible solution must satisfy the 
following two constraints:  
 
1. The downstream neighboring node of node 𝑖 is set 

𝑈𝑖 . Node 𝑗 is the node selected for the next search. 
Then it should meet: 𝑗 ∈ 𝑈𝑖 . 

2. When ICI < 0.01, the change stops propagation. 
 

Based on the above two constraints, based on two 
constraints, a stochastic method is adopted to 
generate the initial chromosomes. The encoding 
method is shown in Fig. 4. Where the gene 
represents the node number, and the population 
with N chromosomes is initialized. 
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a c d e g r t ...Individual 1

a t g f ...Individual 2

...

...

...

a f e d s ...Individual N

 
Fig. 4: Coding pattern of the chromosome 

 

4.2. Crossover and mutation of operators 

4.2.1. Crossover operator  

In the process of iterative evolution, crossover 
and mutation can improve the search performance 
of the genetic algorithm. Crossover and mutation are 
the operations of generating individual offspring. 
The single-point crossover method is utilized to 
solve the established multi-objective optimization 
model for propagation paths. In this process, a single 
crossover point on the parent chromosomes is 
selected, and genetic material is exchanged between 
them to produce offspring. If there is the same node 
number except for the initial gene in the two 

chromosomes, they will cross at the same node 
number.  

If there are multiple optional intersections, one 
intersection will be selected randomly. The process 
of crossing is shown in Fig. 5. If there is no same 
number except for the initial gene in the two 
chromosomes, the two parent individuals are 
discarded, and the parent individuals will be 
reelected to determine whether they can be crossed. 
At the end of the crossover, we judge whether the 
two generated generations satisfy the feasible 
solution constraint. The chromosomes of too short 
progeny will be supplemented, and the 
chromosomes of long offspring will be cut until the 
feasible solution is satisfied. 

 

a c d e g r t ...
Parent 

Individual 1

a t g f ...
Parent 

Individual 2

a c d e g ...
Offspring 

individual 1 f

a t g ...
Offspring 

individual 2 r t

 
Fig. 5: Crossing pattern of a chromosome 

 

4.2.2. Mutation operator 

The chromosome is randomly selected, the gene 
position is randomly selected to change the node 
number, and whether the chromosome meets the 
constraints is judged. If the constraints are met, the 
individual will be accepted and added to the 
population; otherwise, the original dye will be added 
to the population. 

4.2.3. Non-dominated sorting 

In the solving process of the optimal solution, the 
whole population must be sorted non-dominated 
first. The target value of everyone (path propagation 
plan) in the population is compared with the 
corresponding target value of other individuals (path 
propagation plan) to determine the dominance 
relationship between individuals (path propagation 
plan) in the non-dominated sorting algorithm. For 
any two individuals 𝑝 and 𝑞,𝑝 dominates 𝑞 when all 

the objective values of 𝑝 are not less than the 
objective function values of 𝑞. Where 𝑓1(𝑝) and 𝑓1(𝑞) 
are the values of the objective function 
corresponding to individuals respectively. 
Individuals will be ranked according to the 
dominance relationship between individuals. Then 
the solution set with the highest rank in the 
population is the Pareto optimal solution. The 
specific ranking process is as follows: 

 
• For each individual p, the corresponding target 

value is compared with other individuals. Then, 
the number of individuals 𝑛𝑝 dominating p in the 

population is calculated, and the individuals 
dominated by p are included in the set 𝑆𝑝. 

• All individuals 𝑛𝑝 = 0 in the population are graded 

as 1. Then perform 𝑛𝑞 = 𝑛𝑞 − 1 on individual q in 

𝑆𝑝. 

• Repeat step (2) to generate the next level. 
• Select the highest-ranking individuals in the 

population to form a Pareto optimized solution set. 
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4.2.4. Generation of reference points 

According to the individual selection mechanism 
of reference point in NSGA-III, the reference vector is 
composed of the ideal point (new coordinate origin) 
and the reference point on the hyperplane. The 
generation mechanism is as follows: 
 
1. Firstly, the minimum value 𝑧𝑖  of each target 

dimension 𝑖 in the objective function needs to be 
calculated. The set of 𝑧𝑖  is the ideal points. Then 

the scalar formula 𝑓𝑖
′(𝑥) = 𝑓𝑖(𝑥) − 𝑧𝑖

𝑚𝑖𝑛 after 
obtaining the ideal point set can be obtained. 

2. The objective function is all traversed, and then 
the smallest individual that satisfies the equation 

𝐴𝑆𝐹(𝑥, 𝑤) = 𝑚𝑎𝑥
𝑖=1

𝑀
𝑓𝑖

′(𝑥)/𝑤𝑖  will be found, which is 
the extreme point. The intercept on the 
corresponding coordinate axis according to the 
specific function value of these points can be 
calculated, which is recorded as 𝑎𝑖 . The 
normalization operation is performed according to 

𝑓𝑖
𝑛(𝑥) =

𝑓𝑖
′(𝑥)

𝑎𝑖
. 

3. According to the reference point selection 
mechanism, the reference points are divided on 
the hyperplane. Then the reference vector is 
constructed. 

4. For each individual population, all reference 
vectors will be traversed, and the nearest 
reference point 𝑗 will be found, and the shortest 
distance and the number of reference points will 
be recorded. 

4.2.5. Algorithm flow 

Based on the above coding structure, the NSGA-
III algorithm is applied to the complex product 
change propagation path problem to obtain a Pareto 
optimization solution (The computation complexity 
of the method is O(NM2), where M is the objective 
number and N is the iterations times.) The detailed 
process is as follows in Fig. 6. 

5. Case study 

The household refrigerator is a typical example of 
a complex product, consisting of several key 
components such as the compressor, condenser, 
evaporator, control system, casing, and door 
assembly. Each of these components may pose 
challenges in terms of material selection, 
dimensional accuracy, and assembly compatibility. 
Problems in any of these areas may require design 
modifications or adjustments. 

Refrigerators must also comply with strict 
performance and safety standards, including cooling 
efficiency, energy consumption, noise levels, and the 
use of environmentally friendly refrigerants. Meeting 
national and international regulations is mandatory, 
and updates to these standards or growing market 
demands often lead to further design changes. In 

addition, regional and consumer preferences 
regarding functionality, aesthetics, and storage 
capacity increase the complexity of product 
development. To remain competitive, manufacturers 
frequently introduce customized products, which 
results in repeated design iterations. 

 

Start

Randomly generate population Pt of size N

Preliminary classification of Pt by non-

dominated sorting algorithm

Select excellent individuals from pt for 

crossover by binary tournament algorithm, 

mutation and recombination operations to a 

new population qt

Produce a new population Rt by Combining 

populations Pt and Qt 

According to the dominance level and the 

selection mechanism based on the reference 

point, the best individuals are selected to form 

the next generation population Pt+1

 Does the termination

criteria be met ?

Get the Pareto frontier 

End

No

Yes

 
Fig. 6: Basic flow chart of the NSGA-III algorithm 

 

Cost reduction is another major priority. 
Companies aim to lower expenses in materials, 
production, transportation, and maintenance. These 
efforts often involve engineering changes, such as 
replacing materials with cheaper but equally 
effective alternatives or simplifying structural 
designs. Issues discovered during prototype testing 
or small-scale pilot production also require 
correction, leading to multiple revisions before full-
scale manufacturing. 

For this reason, the household refrigerator is 
selected as a case study in this paper. In the 
production process of a particular type of 
refrigerator from Company D, the insulation process 
has been upgraded in line with technological 
advances. Product data show that this refrigerator 
consists of 43 main parts, organized into five 
modules: the insulation box, insulation door, 
refrigeration system, electrical system, and 
application attachments. A diagram of the main parts 
is provided in Fig. 7. Based on this, a change to the 
insulation layer is proposed, and the engineering 
replacement path for the refrigerator is optimized. 
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Main parts of 

refrigerator

Insulation box Insulation door Electrical system
Refrigeration 

system

Application 

attachment

Side  Plate

Backplane

Upper, middle and 

Lower beams

Container

Base plate assembly

Insulation layer

Drainage

Door shell

Door end Cover Column

Portabilis

Insulation layer

Door seal

Door stop

Self-locking mechanism

Hollow glass

Compressor

Condenser

Anti-dew tube

Capillary

Evaporator

Filter drier

Refrigeration system

Connecting pipe

Thermostat

Solenoid valve

Floodlight

Lamp holder

Compensation heater

switch

Wire harness

Computer controller

Defrost heater

Defrosting 

thermostat

temperature fuse

Shelf

Door tray

Temperature-control 

box

Fruit and vegetable 

box

Drawer

Deodorizer

Freshener

Ice-making box

 
Fig. 7: Main parts diagram of a household refrigerator 

 

Firstly, combining with the product knowledge 
base, design database, case base, and interviews with 
designers, the multi-process network diagram of this 
type of household refrigerator can be obtained. 
Based on the multi-objective optimization model, the 
importance of each node, the execution time and cost 
of changing tasks, the edge betweenness, and the 
propagation probability of each connected edge are 
calculated. The multi-stage network data is shown in 
Tables 2-4. The value of these indicators is shown in 
Tables 5 and 6. 

 
Table 2: Design phase network of the household 

refrigerator 
a b c a b c a b c 

1 2 0.53 13 16 0.14 23 32 0.45 
1 3 0.32 14 15 0.31 23 35 0.46 
1 4 0.21 14 16 0.21 23 38 0.22 
2 3 0.12 14 36 0.23 23 43 0.46 
2 4 0.17 15 16 0.17 24 25 0.4 
2 5 0.31 15 26 0.12 24 38 0.46 
2 6 0.12 15 31 0.11 24 43 0.21 
3 6 0.33 15 32 0.23 25 26 0.4 
3 8 0.31 16 25 0.11 25 29 0.48 
3 9 0.23 16 33 0.10 25 32 0.51 
4 5 0.46 16 34 0.15 25 34 0.46 
4 6 0.50 16 35 0.12 25 35 0.55 
4 7 0.24 17 18 0.65 25 28 0.11 
4 8 0.38 17 19 0.61 26 27 0.17 
5 6 0.15 17 20 0.57 26 28 0.16 
5 7 0.34 17 21 0.58 26 31 0.37 
5 8 0.37 17 23 0.63 26 32 0.51 
6 13 0.57 17 24 0.56 26 35 0.41 
6 15 0.44 17 25 0.46 27 28 0.58 
6 16 0.29 17 26 0.51 27 31 0.43 
7 17 0.56 17 32 0.57 27 30 0.22 
7 18 0.48 18 19 0.59 29 32 0.55 
7 21 0.56 18 20 0.53 29 38 0.58 
8 9 0.51 18 21 0.58 30 31 0.35 
8 10 0.22 18 22 0.37 30 32 0.28 
8 11 0.37 18 23 0.56 30 33 0.33 
8 12 0.36 18 24 0.44 30 34 0.37 
8 13 0.39 18 25 0.51 30 35 0.29 
8 14 0.48 18 26 0.31 31 32 0.44 
9 10 0.11 19 20 0.55 31 33 0.39 
9 11 0.30 19 23 0.61 31 34 0.34 
9 12 0.33 19 24 0.50 31 35 0.28 
9 13 0.42 20 21 0.56 32 33 0.41 

10 11 0.22 20 22 0.31 32 34 0.38 
10 12 0.17 20 23 0.61 32 35 0.33 
10 14 0.10 20 24 0.38 33 34 0.42 
10 16 0.21 20 36 0.14 33 35 0.39 
11 12 0.46 21 22 0.43 34 35 0.51 
11 13 0.11 21 23 0.25 36 39 0.25 
11 14 0.09 21 24 0.37 36 40 0.33 
11 16 0.12 21 29 0.36 36 41 0.16 
11 17 0.33 21 38 0.39 36 42 0.22 
12 13 0.38 22 23 0.52 37 8 0.52 
12 25 0.58 22 24 0.30 37 9 0.49 
12 29 0.56 22 25 0.27 37 12 0.10 
12 33 0.40 23 24 0.53 37 13 0.33 
12 34 0.39 23 25 0.61 43 1 0.13 

      43 4 0.12 
a: Source; b: Target; c: Weight 

Table 3: Process phase network of the household 
refrigerator 

a b c a b c a b c 
1 2 0.43 13 16 0.16 23 32 0.42 
1 3 0.35 14 15 0.33 23 35 0.43 
1 4 0.34 14 16 0.25 23 38 0.24 
2 3 0.14 14 36 0.26 23 43 0.45 
2 4 0.15 15 16 0.16 24 25 0.43 
2 5 0.34 15 26 0.19 24 38 0.41 
2 6 0.15 15 31 0.15 24 43 0.22 
3 6 0.32 15 32 0.36 25 26 0.33 
3 8 0.33 16 25 0.15 25 29 0.48 
3 9 0.25 16 33 0.18 25 32 0.53 
4 5 0.37 16 34 0.15 25 34 0.44 
4 6 0.42 16 35 0.13 25 35 0.51 
4 7 0.25 17 18 0.55 25 28 0.21 
4 8 0.26 17 19 0.63 26 27 0.18 
5 6 0.14 17 20 0.55 26 28 0.14 
5 7 0.33 17 21 0.54 26 31 0.38 
5 8 0.38 17 23 0.59 26 32 0.48 
6 13 0.49 17 24 0.49 26 35 0.39 
6 15 0.33 17 25 0.44 27 28 0.56 
6 16 0.37 17 26 0.53 27 31 0.42 
7 17 0.55 17 32 0.55 27 30 0.25 
7 18 0.61 18 19 0.61 29 32 0.48 
7 21 0.63 18 20 0.49 29 38 0.57 
8 9 0.64 18 21 0.56 30 31 0.34 
8 10 0.24 18 22 0.35 30 32 0.25 
8 11 0.36 18 23 0.53 30 33 0.32 
8 12 0.38 18 24 0.42 30 34 0.35 
8 13 0.32 18 25 0.49 30 35 0.26 
8 14 0.45 18 26 0.35 31 32 0.43 
9 10 0.14 19 20 0.52 31 33 0.34 
9 11 0.34 19 23 0.59 31 34 0.35 
9 12 0.35 19 24 0.5 31 35 0.26 
9 13 0.44 20 21 0.58 32 33 0.4 

10 11 0.21 20 22 0.32 32 34 0.36 
10 12 0.34 20 23 0.6 32 35 0.31 
10 14 0.23 20 24 0.39 33 34 0.42 
10 16 0.25 20 36 0.13 33 35 0.31 
11 12 0.39 21 22 0.44 34 35 0.51 
11 13 0.13 21 23 0.26 36 39 0.22 
11 14 0.12 21 24 0.36 36 40 0.32 
11 16 0.14 21 29 0.35 36 41 0.14 
11 17 0.35 21 38 0.32 36 42 0.24 
12 13 0.34 22 23 0.5 37 8 0.51 
12 25 0.55 22 24 0.33 37 9 0.36 
12 29 0.53 22 25 0.26 37 12 0.15 
12 33 0.42 23 24 0.51 37 13 0.24 
12 34 0.36 23 25 0.55 43 1 0.22 

      43 4 0.16 
a: Source; b: Target; c: Weight 

 

The example is solved by python programming, 
in which the initial change node is set to 17, the ICI is 
set to 1. Related parameters of NSGA-III are as 
follows. The maximum iteration number is 100, the 
population size is 300, the crossover probability is 
0.9 and the mutation probability is 0.1. When the 
change impact of propagation is less than 0.01, the 
path search change will stop. Three Pareto optimal 
solutions are obtained after calculation. The optimal 
propagation path and the value of each objective 
function are shown in Table 7. 
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Table 4: Production phase network 
a b c a b c a b c 
1 2 0.26 13 16 0.21 23 35 0.41 
1 3 0.31 14 15 0.29 23 38 0.23 
1 4 0.22 14 16 0.31 23 43 0.42 
2 3 0.15 14 36 0.25 24 25 0.39 
2 4 0.12 15 16 0.18 24 38 0.38 
2 5 0.35 15 26 0.15 24 43 0.23 
2 6 0.15 15 31 0.13 25 26 0.38 
3 6 0.31 15 32 0.24 25 29 0.39 
3 8 0.29 16 25 0.13 25 32 0.53 
3 9 0.22 16 33 0.12 25 34 0.48 
4 5 0.34 16 34 0.15 25 35 0.53 
4 6 0.48 17 18 0.62 25 28 0.21 
4 7 0.21 17 19 0.63 26 27 0.15 
4 8 0.37 17 20 0.55 26 28 0.16 
5 6 0.16 17 21 0.49 26 31 0.35 
5 7 0.46 17 23 0.41 26 32 0.55 
5 8 0.34 17 24 0.49 26 35 0.39 
6 13 0.55 17 25 0.46 27 28 0.56 
6 15 0.41 17 26 0.39 27 31 0.46 
6 16 0.32 17 32 0.46 27 30 0.21 
7 17 0.58 18 19 0.63 29 32 0.49 
7 18 0.41 18 20 0.69 29 38 0.39 
7 21 0.54 18 21 0.48 30 31 0.29 
8 9 0.52 18 22 0.31 30 32 0.26 
8 10 0.33 18 23 0.37 30 33 0.31 
8 11 0.31 18 24 0.39 30 34 0.34 
8 12 0.35 18 25 0.49 30 35 0.23 
8 13 0.36 18 26 0.28 31 32 0.41 
8 14 0.43 19 20 0.54 31 33 0.35 
9 10 0.11 19 23 0.59 31 34 0.41 
9 11 0.31 19 24 0.38 31 35 0.26 
9 12 0.32 20 21 0.58 32 33 0.39 
9 13 0.38 20 22 0.29 32 34 0.34 

10 11 0.24 20 23 0.58 32 35 0.32 
10 12 0.16 20 24 0.36 33 34 0.41 
10 14 0.13 20 36 0.32 33 35 0.29 
10 16 0.25 21 22 0.41 34 35 0.55 
11 12 0.48 21 23 0.38 36 39 0.24 
11 13 0.15 21 24 0.35 36 40 0.34 
11 14 0.13 21 29 0.37 36 41 0.23 
11 16 0.15 21 38 0.29 36 42 0.15 
11 17 0.36 22 23 0.55 37 8 0.42 
12 13 0.32 22 24 0.38 37 9 0.41 
12 25 0.54 22 25 0.28 37 12 0.13 
12 29 0.55 23 24 0.39 37 13 0.26 
12 33 0.41 23 25 0.58 43 1 0.15 
12 34 0.38 23 32 0.51 43 4 0.13 

a: Source; b: Target; c: Weight 

 
From the Pareto optimal solution, four optimal 

solutions can be identified. In these four cases, the 
modified nodes are as follows: 

 
• Case 1: 12, 34, 31, 33, 16, 10, 8, 4, 43 
• Case 2: 12, 25, 17, 24, 25, 22 
• Case 3: 12, 11, 14, 36, 42 
• Case 4: 12, 25, 28, 26, 17, 19 

 
In every examined scenario, node 12 consistently 

serves as the initial change point, although the 
subsequent nodes differ depending on the specific 
configuration. This observation indicates that three 
distinct change paths are capable of satisfying the 
established constraints. Such flexibility is valuable, 
as it enables managers to select the most 
appropriate path according to the central focus of 
their change requirements, whether related to 
efficiency, cost, or environmental considerations. 
The comparative analysis further demonstrates that 
the performance of the traditional genetic algorithm 
(GA) is notably inferior to that of NSGA-III. The 
solutions produced by NSGA-III clearly surpass those 
obtained by GA in terms of the defined objective 
function, highlighting its effectiveness and 
superiority in addressing complex optimization 

problems. To strengthen the validity of the chosen 
path impact factors, the grey comprehensive 
evaluation method was applied. The calculated grey 
relational degrees for change time, change cost, 
carbon emissions, and change propagation effects 
were 0.82, 0.85, 0.81, and 0.89, respectively. These 
values confirm strong correlations between the 
selected indicators and the outcomes of the change 
process, thus supporting the reliability of the 
evaluation framework. 

6. Conclusion 

Because of the characteristics of complex 
products, it is difficult to manage and control 
engineering changes, and managers often struggle to 
identify the optimal change propagation path. 
Traditional methods typically evaluate propagation 
paths only based on the impact of change 
propagation. However, this approach is limited, as 
complex product knowledge involves multiple 
disciplines, making knowledge extraction imprecise 
(Zhu et al., 2017). 

In this paper, we propose an importance analysis 
of product knowledge using a multi-layer grey 
correlation method. Grey system theory has been 
widely applied in engineering evaluation problems 
because of its ability to handle uncertain and 
incomplete information (Zheng et al., 2025). We then 
conduct an optimization analysis of the engineering 
change path by considering three factors: change 
propagation, change cost, and carbon emissions. A 
multi-process complex network is used to describe 
the multi-process knowledge of complex products, 
and a multi-objective optimization model is 
developed. This model is solved using the NSGA-III 
algorithm (Chaudhari et al., 2022). To demonstrate 
the feasibility and effectiveness of the proposed 
approach, we apply it to a household refrigerator 
case study and compare the results with those of 
traditional methods. 

The main conclusions of this study are as follows: 
 

1. Introducing a multi-process knowledge network to 
describe engineering changes is of practical 
significance. It allows for a more comprehensive 
consideration of knowledge across product parts, 
improving the accuracy of indicator selection. 

2. The engineering change propagation path 
developed in this study integrates node influence, 
change cost, and carbon emissions. Unlike 
traditional approaches that mainly focus on 
technical and cost factors, this study also 
incorporates environmental concerns, which are 
highly valued by both enterprises and society. This 
enhances the practical value of the research. 

3. The NSGA-III model is better suited for multi-
objective optimization problems, especially when 
dealing with three or more objectives. It addresses 
the issues of poor convergence and limited 
diversity seen in other algorithms. 
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Table 5: The attribute values of nodes in a multi-process knowledge network 
Node Parts Si ti  Ci (yuan) Carbon emission (kgCO2) 

1 Side plate 0.59 0.38 78 42 
2 Backplane 0.67 0.32 55 38 
3 Upper, middle, and lower beams 0.69 0.51 65 40 
4 Container 0.71 0.45 36 32 
5 Base plate assembly 0.73 0.39 47 35 
6 Insulation layer 0.75 0.56 71 40 
7 Drainage 0.73 0.44 21 30 
8 Door shell 0.62 0.51 45 38 
9 Door end cover 0.55 0.42 23 22 

10 Column 0.72 0.56 35 28 
11 Partition 0.68 0.41 43 31 
12 Insulation layer 0.72 0.52 55 38 
13 Door seal 0.69 0.42 31 20 
14 Door stop 0.55 0.21 20 16 
15 Self-locking mechanism 0.52 0.28 36 15 
16 Hollow glass 0.54 0.19 12 13 
17 Compressor 0.85 2.18 400 50 
18 Condenser 0.78 1.12 160 33.5 
19 Anti-dew tube 0.76 0.41 21 20 
20 Capillary 0.79 0.62 23 25 
21 Evaporator 0.74 0.36 25 36 
22 Filter drier 0.72 0.38 20 38 
23 Refrigeration system 0.75 0.81 45 55 
24 Connecting pipe 0.78 0.59 55 40 
25 Thermostat 0.76 0.45 60 56 
26 Solenoid valve 0.83 1.08 40 53 
27 Floodlight 0.60 0.17 23 18 
28 Lamp holder 0.59 0.19 28 22 
29 Compensation heater 0.68 0.45 15 25 
30 Switch 0.62 0.11 10 18 
31 Wire harness 0.65 0.35 35 29 
32 Computer controller 0.78 1.28 112 55 
33 Defrost heater 0.69 0.56 35 46 
34 Defrosting thermostat 0.79 0.50 32 45 
35 Temperature fuse 0.77 0.38 13 22 
36 Shelf 0.65 0.22 12 35 
37 Door tray 0.68 0.21 20 37 
38 Temperature-control box 0.76 0.39 19 45 
39 Fruit and vegetable box 0.61 0.20 13 39 
40 Drawer 0.65 0.22 45 46 
41 Deodorizer 0.67 0.25 35 50 
42 Freshener 0.65 0.19 29 52 
43 Ice-making box 0.69 0.32 32 48 

 

This study offers significant managerial insights 
that complement its theoretical contributions. 
Engineering changes frequently occur at various 
stages of the product lifecycle, such as design, 
production, and related processes. As a result, 
managers and designers should develop broad 
management capabilities rather than limiting 
themselves to narrow technical expertise. In 
particular, strong emergency management skills are 
essential for ensuring project control, improving 
success rates, reducing unnecessary costs and 
material waste, and ultimately enhancing 
organizational competitiveness. Effective 
interdepartmental communication also plays a 
crucial role. Establishing timely channels of 
information exchange enables firms to minimize 
disruptions caused by engineering changes and 
respond more effectively to unexpected challenges. 

In addition to assessing direct costs and 
operational impacts, enterprises should consider 
environmental factors when managing change. By 
integrating sustainability into decision-making, 
organizations not only enhance their corporate 
responsibility but also build greater public trust and 
long-term legitimacy. Furthermore, personnel 
engaged in design, process planning, and 
manufacturing should be trained to identify and 

prioritize critical components in complex products. 
Paying focused attention to these key parts helps 
reduce the likelihood of large-scale propagation 
effects, which can magnify risks and complicate 
engineering change management. 

Future research could further expand the 
applicability of the proposed model in several 
directions. First, real-world production 
environments often involve the need to modify 
multiple nodes at the same time. Extending the 
model to address concurrent engineering changes 
would therefore be highly valuable. Second, future 
studies might analyze how simultaneous changes 
interact and the extent to which their combined 
influence shapes system-wide performance. Such 
investigations could provide a more comprehensive 
understanding of dynamic production settings. 
Finally, there is considerable potential for 
developing decision-support systems that assist 
managers and engineers in evaluating multiple 
changes under cost, time, and resource constraints. 
Leveraging advanced simulation methods, such 
systems could generate practical recommendations 
for complex scenarios involving numerous change 
points, thereby improving organizational 
adaptability and the effectiveness of decision-making 
in engineering change management. 
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Table 6: The attribute values of edges in multi-process knowledge network 

Serial number Edge 
Edge 

betweenness 
Connection 
probability 

Serial number Edge 
Edge 

betweenness 
Connection 
probability 

1 (1,2) 3.26 0.55 73 (17,25) 10.99 0.47 
2 (1,3) 13.48 0.34 74 (17,26) 21.61 0.53 
3 (1,4) 10.18 0.21 75 (17,32) 20.58 0.58 
4 (1,43) 22.76 0.13 76 (18,19) 5.73 0.61 
5 (2,3) 9.35 0.16 77 (18,20) 16.18 0.55 
6 (2,4) 4.91 0.18 78 (18,21) 4.24 0.59 
7 (2,5) 6.39 0.32 79 (18,22) 3.97 0.38 
8 (2,6) 18.50 0.11 80 (18,23) 4.91 0.58 
9 （2,43） 19.28 0.14 81 (18,24) 4.35 0.43 

10 (3,6) 14.40 0.35 82 (18,25) 16.29 0.55 
11 (3,8) 20.33 0.32 83 (18,26) 21.33 0.32 
12 (3,9) 12.61 0.24 84 (19,20) 7.03 0.56 
13 (4,5) 2.40 0.48 85 (19,23) 9.59 0.62 
14 (4,6) 15.13 0.52 86 (19,24) 5.47 0.54 
15 (4,7) 19.70 0.23 87 (20,21) 17.69 0.57 
16 (4,8) 30.26 0.39 88 (20,22) 9.30 0.32 
17 (4,43) 16.80 0.12 89 (20,23) 26.37 0.63 
18 (5,6) 12.15 0.14 90 (20,24) 17.19 0.44 
19 (5,7) 19.85 0.35 91 (20,36) 90.65 0.15 
20 (5,8) 20.44 0.38 92 (21,22) 3.88 0.43 
21 (6,13) 10.94 0.56 93 (21,23) 7.28 0.25 
22 (6,15) 34.10 0.45 94 (21,24) 4.16 0.38 
23 (6,16) 33.12 0.32 95 (21,29) 18.43 0.35 
24 (7,17) 22.60 0.57 96 (21,38) 7.13 0.41 
25 (7,18) 17.36 0.49 97 (22,23) 6.08 0.53 
26 (7,21) 15.73 0.58 98 (22,24) 3.91 0.32 
27 (8,9) 6.13 0.52 99 (22,25) 20.39 0.28 
28 (8,10) 7.36 0.21 100 (23,24) 2.78 0.54 
29 (8,11) 11.27 0.38 101 (23,25) 17.52 0.62 
30 (8,12) 27.03 0.35 102 (23,32) 24.01 0.47 
31 (8,13) 6.24 0.41 103 (23,35) 26.47 0.43 
32 (8,14) 47.88 0.49 104 (23,38) 14.58 0.26 
33 (8,37) 14.19 0.53 105 (23,43) 42.36 0.45 
34 (9,10) 5.32 0.12 106 (24,25) 22.63 0.41 
35 (9,11) 12.53 0.32 107 (24,38) 9.55 0.45 
36 (9,12) 18.48 0.35 108 (24,43) 29.02 0.23 
37 (9,13) 2.95 0.42 109 (25,26) 11.15 0.42 
38 (9,37) 3.03 0.48 110 (25,29) 31.59 0.45 
39 (10,11) 5.76 0.23 111 (25,32) 10.04 0.52 
40 (10,12) 11.52 0.18 112 (25,34) 6.71 0.47 
41 (10,14) 11.95 0.11 113 (25,35) 11.92 0.53 
42 (10,16) 11.49 0.24 114 (25,28) 6.69 0.12 
43 (11,12) 8.74 0.47 115 (26,27) 23.14 0.18 
44 (11,13) 9.69 0.12 116 (26,28) 10.35 0.15 
45 (11,14) 16.38 0.10 117 (26,31) 6.90 0.38 
46 (11,16) 8.42 0.12 118 (26,32) 4.79 0.55 
47 (11,17) 43.78 0.34 119 (26,35) 5.65 0.42 
48 (12,13) 10.59 0.39 120 (27,28) 5.34 0.60 
49 (12,25) 39.85 0.59 121 (27,31) 6.84 0.41 
50 (12,29) 24.29 0.55 122 (27,30) 10.78 0.21 
51 (12,33) 18.05 0.43 123 (29,32) 12.84 0.56 
52 (12,34) 16.94 0.40 124 (29,38) 13.39 0.59 
53 (12,37) 19.99 0.11 125 (30,31) 3.35 0.34 
54 (13,16) 13.87 0.13 126 (30,32) 14.87 0.29 
55 (13,37) 4.78 0.34 127 (30,33) 7.90 0.32 
56 (14,15) 33.03 0.31 128 (30,34) 8.60 0.36 
57 (14,16) 35.29 0.22 129 (30,35) 9.43 0.31 
58 (14,36) 109.60 0.24 130 (31,32) 7.83 0.42 
59 (15,16) 7.23 0.18 131 (31,33) 6.27 0.38 
60 (15,26) 22.56 0.13 132 (31,34) 6.40 0.35 
61 (15,31) 21.80 0.11 133 (31,35) 5.54 0.27 
62 (15,32) 19.20 0.25 134 (32,33) 10.64 0.42 
63 (16,25) 30.21 0.12 135 (32,34) 6.02 0.39 
64 (16,33) 17.24 0.11 136 (32,35) 2.51 0.35 
65 (16,34) 16.51 0.16 137 (33,34) 1.66 0.48 
66 (16,35) 20.25 0.12 138 (33,35) 5.68 0.42 
67 (17,18) 4.52 0.68 139 (34,35) 3.33 0.52 
68 (17,19) 14.18 0.62 140 (36,39) 42.00 0.23 
69 (17,20) 25.25 0.59 141 (36,40) 42.00 0.35 
70 (17,21) 9.43 0.60 142 (36,41) 42.00 0.14 
71 (17,23) 7.55 0.64 143 (36,42) 42.00 0.21 
72 (17,24) 8.89 0.58     

 
Table 7: Pareto optimal scheme and target value by NSGA-III and NSGA-II 

 Serial number Edge serial number Change node 𝑓1 𝑓2 𝑓3 

NSGA-III 

1 51,131,130,63,41,27,15,16 12,34,31,33,16,10,8,4,43 106.02 589 210 
2 48,72,71,105,98 12,25,17,24,25,22 176.42 162 182 
3 42,44,57,142 12,11,14,36,42 112.21 322 321 
4 48,113,115,73,67 12,25,28,26,17,19 89.56 718 206 

NSGA-II 
1 50,123,134,138,53,48,54,63 12,29,13,37,32,33,35,37 130.16 631 235 
2 52,132,135,53,48,54 12,13,16,31,32,34,37 198.15 221 232 
3 40,48,54,64 10,12,13,16,33 112.25 278 281 
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