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Raccoon Stealer malware is difficult to detect as it actively evades traditional 
methods. This study proposes Recealer, a hybrid detection model that 
integrates machine learning (ML) and deep learning (DL). The model applies 
static and dynamic analysis to extract features from sample files, which are 
first classified using an ML algorithm. Files with uncertain classification 
results are then transformed into grayscale images and analyzed by a 
convolutional neural network for improved precision. Experimental results 
demonstrate that Recealer achieves 94% overall detection accuracy, with the 
random forest algorithm attaining 97.53% in the ML stage and the DL stage 
reaching 95%. These findings indicate that Recealer is both efficient and 
reliable for detecting Raccoon Stealer malware. 
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1. Introduction 

*In the late 1980s, malware began spreading 
rapidly across computer and network systems, 
enabling attackers to carry out various malicious 
activities. Malware, short for malicious software, is 
software designed with the intent of disrupting or 
acquiring unauthorized access to a computer system. 
As a result, it is critical to detect and respond to 
malware accurately and swiftly. Raccoon Stealer is 
an indistinct info-stealer malware that was first 
discovered in 2019 and sold as Malware-as-a-service 
(MaaS) on underground forums. MaaS is a business 
model used by cybercriminals to charge users for 
access to malicious software and support 
infrastructure. A new version of the malware, known 
as Raccoon StealerV2, was released in 2022, but 
considering it is relatively new, it hasn't been 
properly identified and eliminated. This malware is a 
trojan that infiltrates a system to capture an 
immense amount of data, including credit cards, 
usernames, passwords, history, cookies, auto-filled 
browser passwords, cryptocurrency wallets, and 
other sensitive data. The victim's information is 
often collected with the intent to sell it on the dark 
web. For instance, one marketplace sold off 
4,368,909 units of victim data between January 2021 
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and March 2022. Info-stealer victims get infected by 
malicious actors; they use phishing emails (most 
commonly), cracked and pirated software, cheating 
packages for games, browser extensions, and 
cryptocurrency-related software. For example, one 
info-stealer spreads phishing emails by sending 
Excel spreadsheets through emails that contain 
macros, which results in downloading a persistent 
executable (Nurmi et al., 2023). 

To reduce the malware's impact, the structure of 
the malware must be recognized to fully 
comprehend its characteristics and behaviours; this 
can be achieved by thoroughly analysing the 
malware. Comprehending the actions and intentions 
of a malware structure to stop further cyberattacks 
is known as malware analysis.  

This research is being conducted to analyze and 
detect Raccoon Stealer malware. Since most 
detection methods are signature-based, many of 
them cannot discover the behavior of the malware. 
Research indicates that malware lacking a signature 
exhibits certain behavioral traits at a higher level 
and is more accurate in exposing the true intention 
of the malware. Static analysis, which will assist in 
learning the characteristics and structure of the 
malware without running it, and dynamic analysis, 
which will be used to execute the malware and 
observe its functionality in the test environment 
(Yucel et al., 2021), In order to detect new malware 
efficiently, both static and dynamic analyses will be 
used, and the features generated from them will be 
used to train the machine learning (ML) model. In 
addition, deep learning will be implemented to 
guarantee a higher level of malware detection. 
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According to a study, Windows is one of the most 
widely used operating systems, and an excessive 
amount of malware targets it compared to other 
operating systems. Consequently, it is now more 
crucial than ever to create efficient methods for 
detecting Windows malware (Prachi et al., 2023). 
The Raccoon Stealer's payload is intended to infect 
Windows-based 32-bit and 64-bit PCs. This research 
proposes a Recealer malware detection technique 
model, which performs the following: 
 
• Taking advantage of both dynamic and static 

features of the malware to understand the 
malware behavior. 

• Utilizing the properties of machine learning for 
faster detection and deep learning for precise and 
accurate results. 

• Providing a brief report or alert after handling the 
file.   

 
The proposed model aims to assist in malware 

detection by enhancing established techniques and 
methods used by previous researchers. 

Malicious software, or malware, is designed to 
damage computer systems and programs. Trojan 
horses, worms, viruses, and malware are just a few 
of the various forms it can take. Viruses are a 
segment of code that attaches to a file or program. 
Viruses replicate themselves by altering other 
computer programs and infecting them with their 
bits of code. This happens silently when a user runs 
an infected program. Worms are programs that 
duplicate themselves, run separately from other 
programs, and move from computer to computer 
across a network without human interaction. The 
primary difference between worms and viruses is 
that worms function independently, whereas viruses 
always hide within software and need human 
interaction to be activated. Spyware is installed on a 
computer; it gathers data about users' online and 
offline activities and sends it back to a central 
location (Saeed, 2020). A Trojan horse is hidden 
within another program that seems innocuous; a 
Trojan horse can take control of the computer 
(Sreekumari, 2020). Because Trojans are not 
identical in any way, it can be challenging to tell the 
difference between files that could be risky and ones 
that are not. Also, new Trojans are being written 
continuously, and because of that, their signatures 
differ from the ones that are already identified.  

Raccoon Stealer first emerged in 2019, acting as 
one of the most impactful information-stealing 
malware. A new enhanced version in 2022 was 
released, which has become more sophisticated and 
cumbersome to detect by security technologies. 
Recealer is initially delivered to the target user by 
applying manipulative techniques that urge the 
victim to click, download, and execute received 
attachments on which the malware resides. This 
transmission could be done through phishing emails, 
fake websites, and other allurement tactics. Once the 
Recealer arrives in the Windows system, it 
establishes its command and control (C2) channels 

that are used for extracting valuable information and 
data from the victim. C2’s channel-specific source 
and destination information are hidden in the 
executable of the Recealer itself by Rivest cipher 4 
(RC4) encryption and Base64 encoding. The raccoon 
will then be injected into the process level of the 
computer to execute itself by seeming benign, as 
these locations are mostly run by the operating 
system. To further proceed with the information 
extractions, dynamic link libraries are going to be 
imported and used to find application cache default 
locations that store credentials such as usernames 
and passwords, browser cookies, email agents, 
digital currencies, and other sensitive data. These 
caches are copied to a temporary file location that 
can be encrypted and extracted to the C2 covert 
channels. Detecting and stopping those actions 
conducted by the raccoon stealer is essential to 
mitigating further attacks that were initially aided by 
the collected information, as this will also help 
protect the victims’ privacy. 

 Malware detection refers to the collection of 
defensive methods and tools needed to identify and 
prevent the negative impacts of malware. Depending 
on the kind of malware that infected the device, this 
preventive strategy consists of a wide variety of 
techniques that are strengthened by different 
technologies. Such techniques include behavior-
based detection and signature-based detection. 
Signature-based detection is a technique that utilizes 
a database of known malware signatures and 
compares them with suspicious files or network 
traffic. A signature is a unique byte pattern, or 
fingerprint, that identifies a specific malware. 
Despite its rapid and precise identification of known 
malware variants, it has several drawbacks. To start, 
it is unable to identify brand-new or unidentified 
malware that does not yet have a signature in the 
database.  

To stay up to speed with the ever-changing 
environment of malware, the signature database 
needs to be updated frequently. Secondly, malware 
that modifies or obscures its signature to evade 
detection can successfully deceive signature-based 
detection. Behavior-based detection is a novel 
approach for cybersecurity that uses user behavior 
monitoring to identify and block malicious activity. 
It's a proactive strategy that keeps a watchful eye on 
every relevant activity to swiftly spot and handle any 
alterations to typical behavior patterns. Beyond 
identifying specific attack signatures, behavior-based 
detection can discover and examine unusual or 
malicious patterns of behavior. This kind of 
technology analyzes immense amounts of data and 
network traffic using machine learning, artificial 
intelligence, and statistics to identify anomalies. 
Behavior-based detection increases the probability 
of discovering and terminating a malicious action 
before the network becomes compromised by 
monitoring behaviors that may be linked to the 
attacker, as opposed to looking for patterns 
associated with types of attacks. Although both 
techniques can have satisfying results, especially 
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when combined, malware detection techniques can 
be enhanced by applying these two approaches: 
threat intelligence and threat hunting. 

Threat hunting is a proactive approach to 
cybersecurity in which specially trained personnel, 
referred to as threat hunters, actively seek out, 
identify, and isolate sophisticated threats that evade 
existing security measures. Instead of waiting for a 
warning to act, it actively looks for any hidden 
threats that may be present in the system. Threat 
hunting's primary objective is to identify and 
eliminate threats before they have a chance to cause 
damage. It's about reducing the possible damage of 
an intrusion and remaining one step ahead of the 
attackers. Whereas threat intelligence, a reactive 
approach, is the information gathered that gives the 
ability to stop or mitigate cyber threats. It's all about 
getting to know the enemy—who they are, what 
motivates them, and what techniques they employ. 
Having this knowledge is essential for creating 
proactive security plans and techniques. The goal of 
threat intelligence is to comprehend the threat 
environment. It's about being aware of possible 
attackers, understanding their strategies, and being 
prepared for their attacks.    

 Analyzing malware is the first step towards 
stopping it and has several benefits, including 
obtaining sufficient data regarding the malware, 
implementing adequate defense and response 
mechanisms, assessing the capability of detecting 
malware, and understanding the risks associated 
with malware and its intentions. It is possible to 
analyze malware in many ways, including static code 
analysis, where the analysis is performed without 
execution; dynamic code analysis, in which the code 
line is executed with the help of the debugger; and 
behavioral/dynamic analysis, in which malware is 
executed, and a variety of information is gathered 
based on its interactions with the environment. 

CUCKOO SANDBOX is a dynamic malware 
analysis tool that provides a secure and isolated 
environment. Additionally, it provides detailed 
reports on malware samples, and its design allows 
for integration with external tools and platforms. 
Using ANY.RUN, researchers can interact with 
malware samples and analyze their activities 
through this powerful interactive malware analysis 
platform. It has many features, such as network 
tracking, process monitoring, and so much more. 
PROCESS HACKER is an open-source malware 
analysis tool that helps identify the processes 
affected by malware in the system and provides real-
time data on the system and network usage. GHIDRA 
is also an open-source static analysis tool that was 
recently released. It is used to disassemble malware, 
allowing users to examine malware's functionality to 
gain a better understanding of it. Lastly, X64DBG for 
Windows systems is a dynamic code analysis tool 
with a debugger that can be used to disassemble 
malware and execute it line by line (Bermejo Higuera 
et al., 2020). 

Over the last few years, machine learning has 
been increasingly utilized to assist people in a 

variety of fields, including healthcare to detect 
diseases, streets to detect speeding cars, finance to 
predict the stock market, and many others. Future 
predictions, automation of numerous tools, and 
reducing human error are some of its main benefits. 
As a result of its integration into the cybersecurity 
field, many tools and devices have been improved. 
Deep learning (DL) is a specific area of machine 
learning that uses artificial neural networks to 
interpret raw data directly. In fact, deep neural 
networks make it possible to create end-to-end 
prediction models by handling every processing 
step, including feature extraction and learning that is 
often required to create a classic machine learning 
model. DL models can automatically extract imaging 
features to optimize the model's performance for the 
given task. Representation-learning algorithms 
known as deep neural networks are made up of a 
stack of processing layers with a finite number of 
nonlinear units (Castiglioni et al., 2021). Some of the 
deep learning methods are recurrent neural network 
(RNN) and convolutional neural network (CNN). 
Recurrent Neural Networks: at any input stage, the 
RNN considers the results of earlier calculations 
along with the present circumstances. By using these 
techniques, the model can be trained with the least 
amount of data loss possible (Elsayed et al., 2020). 
Convolutional Neural Networks (CNNs) are neural 
networks that combine deep learning functionality. 
It possesses the self-adaptive ability to encode the 
combination of less important data aspects into 
more important ones, and the feature extraction 
process is integrated into the calibration procedures 
(Chen et al., 2020). 

2. Literature review 

The malware analysis and intelligence tool 
(MAIT) tool (Yucel et al., 2021) consists of 4 main 
parts: the analysis package, the reporting package, 
the cyber threat intelligence (CTI) generator, and the 
dispatcher, which will connect the packages. What 
concerns this project most is the analysis package, 
which includes the interfaces with the chosen tools 
for sandboxing and analysis, as well as scripts for 
administering the sandboxing virtualization tool. 

A system that combines static analysis and 
machine learning to detect malware in Windows 
operating systems existed in past research (Hussain 
et al., 2022). The system is divided into four layers: 
data acquisition layer, pre-processing layer, 
prediction layer, and performance evaluation layer. 
The malware data used from static analysis is the PE 
header information that will be used to train the 
models. The models' performance was assessed 
using a variety of measures, such as accuracy, 
precision, recall, F-score, and support. Random 
forest (RF) and decision tree (DT) algorithms gave 
the best results compared to other algorithms. 

Sun et al. (2022) presented a novel approach 
with the ability to detect malware based on system 
calls in real-time, where both machine learning and 
deep learning have been combined to get fast 
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detection features of ML and accurate results of DL. 
In this research, the performance was based on 
accuracy, precision, recall, F1 score, and FP rate. The 
first step was to measure performance without 
combining the DL and ML algorithms using different 
hyperparameter values. The DL model 
DEEPMalware, among the different models, 
performed the best. Secondly, the performance 
evaluation was conducted when combining both ML 
and DL algorithms; the performance evaluation was 
based on using specific interval values. As a first 
step, ML will be used to classify a sample, and if the 
value received by the classifier is less than the lower 
bound, then the sample is considered benign; if it is 
higher than the upper bound, it will be considered 
malicious; and if it is within the interval, the DL 
model will be used to evaluate it. 

Rabadi and Teo (2020) proposed a malware 
detection and type classification approach that 
includes four main components as follows: 1. 
Behavior monitoring: The behavior of the malicious 
and benign samples is monitored while executing 
them in an isolated virtual machine using Cuckoo 
Sandbox3. 2. Feature extraction and generation: This 
component aims to extract API (application 
programming interface)-based features and prepare 
them for the next step (e.g., machine learning). There 
are two methods for extracting API-based features. 
In Method 1, each API call and its arguments are 
treated as one token. Method 2, on the other hand, 
treats each argument element of each API call as a 
separate token. 3. Malware detection using machine 
learning algorithms: This component includes five 
different machine learning algorithms (e.g., Support 
Vector Machine (SVM), Extreme Gradient Boosting 

(XGBoost), Random Forest (RF), DT, and Passive-
aggressive (PA)) that are trained using the API-based 
dynamic features (i.e., bit-vectors from the previous 
step), resulting in classifying samples as benign or 
malicious. 4. Malware type classification using 
machine learning algorithms: After detecting the 
malware samples in the previous step, the bit 
vectors from Methods 1 and 2 are utilized to train 
the same five machine learning algorithms (SVM, 
XGBoost, RF, DT, and PA), which result in the 
classification of malicious samples into their 
respective classes. 

The malware detection technique in Singh and 
Singh (2020) consisted of four primary components: 
runtime behavior, feature extraction, feature 
processing, and classifier training. The runtime 
activities describe the behavior of an executing file. 
Both benign and malicious samples are run in a 
controlled setting. Using the Cuckoo Sandbox, the 
activities are recorded while the binary files are 
being executed. The runtime features are chosen by 
the feature extraction module from the generated 
analysis reports. It has been observed that malicious 
files differ from benign ones in terms of printable 
strings. Additionally, they discovered several odd 
strings in behavior reports, such as earning money, 
winning a lucky present, or downloading free 
software or movie content. Processing of the 

extracted features results in the following feature 
sets: (i) Printable string information (PSI); (ii) API 
calls; and (iii) registry, file, and network activities. 
Many machine learning algorithms are applied 
across the feature sets to construct the malware 
detection system. The proposed strategy is assessed 
using the 10-fold cross-validation method. Ten 
sections make up the original dataset in this 
evaluation method. The first nine are used for 
training, while the tenth is used to test the outcomes. 
To consider every aspect of the feature set for 
training and testing, this process is repeated ten 
times. This assessment method prevents the 
classifier's overfitting and underfitting issues. 
Several performance indicators, including F-scores, 
accuracy, recall, and precision, are utilized to assess 
the effectiveness of the suggested strategy. 

Malware analysis intermediate language (MAIL) 
(Alam et al., 2013) is a new proposed intermediate 
language for malware analysis, which can improve 
the detection of metamorphic malware. The majority 
of malware enters a computer system through 
binaries, which are computer-interpretable and 
executable instructions. Any assembly language has 
hundreds of different instructions. To maximize the 
static analysis of any such assembly program for 
malware detection, we must significantly decrease 
and simplify these instructions. MAIL gives an 
assembly program an abstract representation, 
enabling a tool to automatically analyze and detect 
malware. Annotated patterns are included in every 
MAIL statement, which a tool might exploit to 
maximize malware analysis and detection. 

Pant and Bista (2021) have used a grayscale 
malware images dataset to train and validate 
different deep learning models to be able to classify 
malware samples into different families. Table 1 
presents a comparison of the current studies that 
use the same components suggested in this research 
technique. 

3. Proposed solution 

3.1. System architecture 

The proposed model architecture and its details 
are depicted in Fig. 1, which is implemented through 
two different stages. Two datasets are constructed, 
one for ML and the other for DL.  

In the first stage, static and dynamic analysis are 
conducted on the raccoon stealer samples to create 
the dataset needed for training and testing the 
machine learning model. Cuckoo Sandbox is used for 
conducting such analysis. The ML model will 
eventually classify the input file as malware if the 
value generated by the classifier is higher than the 
maximum assigned interval value; otherwise, if it is 
less than the minimum assigned interval value, it will 
be classified as benign. These interval values are 
going to be defined based on many performance 
metrics, and the chosen pair with the best values is 
used. In the second stage, if the value generated by 
the ML classifier has fallen between the lower and 
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the upper interval value, the file would be converted 
to a grayscale image and further subjected to the 
CNN deep learning model to identify the image as 
malware or benign. The dataset that is used in the 
training and testing of the CNN model is generated 
and consists of malware and benign file images. The 
model’s workflow is described below: 

 
• Step 1: Collect Recealer malware samples from the 

"Malware Bazaar" website. 
• Step 2: Run the Cuckoo Sandbox tool to collect 

static and dynamic features from the collected 
samples that will be used to form datasets. 

• Step 3: For the development of the deep learning 
dataset, we will convert the Raccoon Stealer 
malware samples along with benign files into 
images and use these images to create the dataset 
to train and test the CNN model. 

• Step 4: The ML datasets will be divided into two 
parts; one will be used for training the model, and 
the other will be used for testing. For the ML 
model, a classification probability will be 
generated, from which a decision will be made. 
Depending on an interval value (lower, upper), 
three different scenarios can occur. If the value 
generated by the classifier is less than the lower 
value, it will be considered a benign sample; else, if 

it is higher than the upper value, it will be 
malicious, and action will be taken to delete it. 

• Step 5: The sample would be further subjected to 
the deep learning model if its value was located 
within the interval. The best interval value will be 
decided based on many performance evaluation 
metrics, such as accuracy, precision, recall, and F1 
score. 

• Step 6: The file will be converted to a grayscale 
image for the deep learning model that has already 
been trained on benign and Raccoon Stealer 
malware images. Portable Executable (PE) files, 
which are usually associated with Windows 
operating systems, can be represented by binary 
code that can be translated as an 8-bit unsigned 
integer vector. This vector may be organized into a 
2-dimensional array to generate a grayscale 
picture that represents the malware. This 
representation assigns grayscale tones inside the 
(0, 255) range, where 0 represents black and 255 
represents white (Fig. 2). 

• Step 7: The deep learning model will identify if the 
file is benign or malicious, and if it is malicious, it 
will take action to delete it. 

• Step 8: A report is generated for the user, giving 
information such as whether the file was malware 
or benign, etc. 

 
Table 1: Current malware detection analysis 

Reference Components/methods Strengths Limitations 

Yucel et al. 
(2021) 

Dynamic and static analysis (Cuckoo Sandbox, 
Radare2, Regular Expressions) 

Automated tool integrating static and 
dynamic analysis. Radare2 extracts static 

features. Regex identifies indicators of 
compromise (IoC). 

Generates enormous data, causing overhead for 
analysts. 

Hussain et 
al. (2022) 

Static analysis, ML algorithms (RF, DT, GB, 
AdaBoost, SVM, Gaussian naive bayes (GNB)) 

Random Forest achieved 99.4% accuracy. 
Provides real-time scanning of 

executables. 

Lacks integration with dynamic analysis, which 
could improve outcomes. 

Sun et al. 
(2022) 

ML (RF, XGBoost, AdaBoost), DL 
(DEEPMalware), Dynamic analysis 

Real-time malware detection. Efficient 
combination of ML and DL under 

resource constraints. 

Complex framework; risk of recurrent loops 
between ML and DL algorithms. 

Rabadi and 
Teo (2020) 

Ml algorithms (SVM, XGBoost, RF, DT, PA), 
Cuckoo sandbox, Hashing vectorizer 

Resilient to mutation/obfuscation (not 
reliant on API call order/frequency). 

Small number of misclassifications leading to 
false positives. 

Singh and 
Singh 

(2020) 

Cuckoo sandbox, Text mining, Singular value 
decomposition (SVD), Shannon entropy, Ml 
(K-nearest neighbors (KNN), Naive Bayes 

(NB), SVM, RF, DT, AdaBoost, GB) 

High accuracy (99.54%) using string 
components + SVD for classification. 

Limited prior use of string features → 
uncertainties in scalability/resilience. Accuracy 

only reported, lacking detailed False Positive Rate 
(FPR) and the False Negative Rate (FNR) 

evaluation. 

Alam et al. 
(2013) 

Google rapid response (GRR), Wireshark, 
Virustotal, Static analysis 

Control flow graph (CFG)-based 
behavioral signatures improve malware 

classification. 

Only static analysis, not dynamic. Patterns alone 
insufficient—unknown malware may go 

undetected. 
Pant and 

Bista 
(2021) 

Malware as gray-scale images, CNN models 
(VGG16, ResNet-18, InceptionV3, Custom) 

Achieved high accuracy and low loss in 
image classification. 

Unrealistic for real-world malware (files not 
naturally images). Missing method for converting 

malware into images. 

 

ML model is trained on 
static and dynamic features of malware, 

and a specified interval. 
The model classifies the sample 

as benign or malicious.

The deep learning model CNN classifies images.
Static and dynamic analysis to extract 

malware's features 

Racoon Stealer Malware File
Begin

Malicious

Convert the file into image

Delete the 
sample

Sample < Lower bound

Sample > Upper bound

If the sample 
fall within the 

specified 
interval

Begin

Malicious
Delete the 

sample

 
Fig. 1: Recealer detection model architecture 

 

The proposed approach provides several 
important advantages. It employs a machine learning 
model that combines static and dynamic features to 

achieve rapid classification. In cases where higher 
accuracy is needed, a deep learning model trained on 
grayscale images can be applied for more reliable 
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results. The model also incorporates an interval-
based decision-making method, which categorizes 
files by comparing classification probabilities with 
defined threshold ranges. These thresholds can be 
adjusted and fine-tuned to meet specific 
requirements or performance standards. 
Furthermore, the use of deep learning analysis 
allows for a more comprehensive understanding of 
the files, ensuring that malicious files are quickly 
identified and removed to prevent system or 
network damage. For implementation, Cuckoo 
Sandbox is used to execute the Raccoon Stealer 

malware in an isolated environment, producing a 
JSON report for further analysis. From this report, 
features such as API call frequencies, SHA256 hash 
values, and file entropy are extracted to support both 
static and dynamic analysis. Nested virtualization is 
enabled through hypervisors, including VirtualBox, 
VMware Workstation Pro, and Parallels Desktop, 
while Ubuntu Linux serves as the operating system 
for running the sandbox. The machine learning and 
deep learning models are developed and executed 
using Python within integrated development 
environments such as Spyder and PyCharm. 

 

PE file Binary  to 8 bit vector Convert to matrix

2D Matrix

Image Pixel Grayscale Image
 

Fig. 2: Conversion of a PE file to a grayscale image 

 
3.2. Sample collection  

The collection of samples is an essential step in 
developing effective machine learning (ML) and deep 
learning (DL) models. Since Raccoon Stealer 
malware is relatively new, no publicly available 
datasets exist for it. To address this, this research 
constructs datasets using malware samples obtained 
from "Malware Bazaar," a reliable repository offering 
a variety of malware samples. Additionally, benign 
files are sourced from GitHub to ensure balanced 
datasets. The proposed solution utilized three 
datasets: one for the ML model, another for the DL 
model, and a third to evaluate the integrated ML and 
DL model. The Machine learning dataset contains 
static and dynamic features extracted from 200 
Raccoon Stealer samples and 200 benign samples, 
totaling 400 samples. Feature extraction is 
performed using the Cuckoo Sandbox malware 
analysis tool. This dataset is used for training and 
testing the ML model. For the DL model, the research 
converts 275 raccoon stealer malware files and 275 
benign files into grayscale images (both sizes of 
96x96 and 192x192), creating a dataset of 550 
samples. These images are used to train and test the 
DL model. To test the final integrated model 
combining ML and DL approaches, a separate dataset 
consisting of 60 samples (30 benign and 30 
malware) is used. These datasets enable 
comprehensive experimentation and evaluation of 
the proposed models, ensuring robust performance 
against the Raccoon Stealer malware. 

4. Evaluation and discussion  

4.1. Performance evaluation for standalone ML 
and DL models 

We evaluate the performance of seven different 
machine learning algorithms as part of the process of 

selecting the most efficient algorithm for our 
detection model. These models are Random Forest 
Classifier, Decision Tree Classifier, K-Neighbors 
Classifier, AdaBoost Classifier, Stochastic Gradient 
Descent (SGD) Classifier, Extra Trees Classifier, and 
Gaussian Naive Bayes Classifier. The evaluation is 
conducted using metrics such as precision, recall, F1 
score, accuracy, and the confusion matrix. The 
performance results are summarized in Table 2, 
which shows the performance evaluation results of 
all the ML algorithms used. By observing the values, 
we can conclude that the best-performing models 
were the Random Forest Classifier, Extra Trees 
Classifier, K-Neighbors Classifier, and AdaBoost 
Classifier. It is noteworthy that the accuracy, 
precision, recall, and F1 score of the Extra Trees 
Classifier are like those of the Random Forest 
Classifier. However, the Random Forest Classifier 
was chosen to detect Raccoon Stealer malware due 
to its robustness, consistent high performance, and 
common use in practical malware detection 
scenarios. Its ability to handle imbalanced datasets 
and complex data patterns made it the best choice 
for this research. The random forest classifier 
outperformed the rest of the models based on 
achieving 98.44% overall accuracy, which is like the 
SGD and Extra Trees classifiers. Random forest’s 
precision is 100% for class 0 and 97% for class 1, in 
addition to a recall score of 97% for class 0 and 
100% for class 1. Both metrics ensure the reduction 
of false positives and false negatives. Based on cross-
validation score values, both random forest and SGD 
achieved 97.81%, but Extra Trees yielded a score of 
97.50%. The decision tree classifier achieved 100% 
accuracy on all metrics, which wasn’t selected due to 
overfitting; unlike random forest, it comprises many 
decision trees. Random forest has a feature of tuning 
bootstrapping and tree weights, which makes it the 
most reliable algorithm for machine learning 
malware detection. 
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Both AdaBoost and Decision Tree achieved 100% 
precision, recall, and F1-score for both classes, 
indicating zero false positives and zero false 
negatives. This makes them highly reliable for 
malware detection in this dataset. In the case of 
Random Forest, SGD, and Extra Trees models, these 
models achieved strong precision and recall scores 
(~97–100%) for both classes, but they showed 
minor misclassification. For example, Random Forest 
and SGD had a recall of 97% for class 0, indicating 
that ~3% of benign samples were falsely flagged as 
malware (false positives). Similarly, a precision of 
97% for class 1 implies that ~3% of predicted 
malware samples were benign (false positives for 
class 1). Among the models evaluated, AdaBoost and 
Decision Tree achieved perfect classification, 
minimizing both false positives and false negatives. 
In contrast, Gaussian Naive Bayes demonstrated 
poor performance with high false positive rates and 
limited reliability. 

When evaluating the deep learning model, we 
tested both 96x96 and 192x192 grayscale images of 
benign and malware samples. In the end, both image 
sizes obtained the same accuracy of 95%, as 
indicated in Tables 3 and 4. However, we decided to 
proceed with the 96x96 image size due to its 
superior efficiency, as it significantly reduces 
processing time compared to the 192x192 option. 

The outcomes presented in Table 3 compare a 
Convolutional Neural Network (CNN) trained with 
Spyder on images of 96x96 pixels. Overall accuracy, 
F1 score, precision, and recall are the evaluation 
measures used for this research. In this case, 
malware was classified as class 1, while benign was 
classified as class 0. Every trial shows a significant 
improvement in CNN performance. Trial 3 had the 
highest F1 scores for both classes: 96% for class 0 
and 95% for class 1. Similarly, overall accuracy 
stabilizes at 95% in trials 2 and 3.  

The CNN model’s performance across three trials 
demonstrates strong predictive ability, with overall 
accuracy ranging from 95% to 97%. Trial 3 shows 
the best overall performance. The recall for both 
classes is very high (98% for class 0, 96% for class 
1), indicating minimal false positives and false 
negatives. Trial 3 achieved the best balance between 
precision and recall, minimizing both false positives 
and false negatives. 

4.2. Performance evaluation for combined ML 
and DL models 

Based on the evaluation of each machine learning 
algorithm, the ML algorithm with the best metrics 
will be used (Random Forest), along with the CNN 
deep learning algorithm. By combining these two 
algorithms together, we will evaluate their 
performance using different borderline values 
inspired by research (Prachi et al., 2023) and choose 
the best pair. As shown in Table 5, four pairs of 
values are set in the experiment. The lower bounds 
represent a boundary that, when exceeded by a 
lower percentage, the file is classified by the ML 

algorithm as normal, whereas the file will be 
classified as malicious when the percentage is 
greater than the upper bound. The upper value of 
60% and the lower value of 40% produce the best-
fitting choice as an interval. According to the testing 
results shown in Table 5, the performance metrics 
with 94% accuracy, 92% precision, 97% recall, and 
an F1 score of 94% surpass the rest of the tested 
pairs; therefore, this interval is selected. 

The results presented in Table 5 assess how 
various borderline thresholds (both lower and upper 
bounds) perform when combining machine learning 
(ML) and deep learning (DL) algorithms for 
detecting raccoon stealer malware. The evaluation 
metrics include precision, recall, F1 score, and 
overall accuracy. Here, class 0 denotes benign, while 
class 1 denotes malware. In conclusion, finding an 
optimum borderline range like 40%–60% 
remarkably improves the trade-off between 
Precision and Recall and hence increases the 
robustness of detection. Wider ranges like 10%–90% 
yield poor recall for some classes, while narrower 
but less optimal ranges, such as 20%–80% or 30%–
70% still managed to improve but could not achieve 
the highest performance levels. The optimum range 
was 40%–60%, which has the best trade-off, yielding 
high scores of precision, recall, F1 score, and overall 
accuracy, thus making it the optimum configuration 
for classification in this research. 

5. Discussion 

A malware detection system that combines 
machine learning (ML) and deep learning (DL) 
models provides a reliable way to differentiate 
between harmful and benign files. The proposed 
Recealer model and PROPEDEUTICA (Sun et al., 
2022) show remarkable effectiveness by attaining an 
astounding 94% accuracy rate. The Recealer DL 
model's 94% accuracy was marginally lower than 
the work presented in Pant and Bista (2021), which 
achieves 98.07% accuracy. However, this disparity 
might be mostly caused by differences in the number 
of test samples used, as their model was tested on 
1868 samples compared to the 550 used in our 
study. The comparison of machine learning models 
showed a similar pattern. Singh and Singh (2020) 
claimed a greater accuracy of 99.54%, while our 
machine learning model reached a noteworthy 
accuracy of 97.53%. Again, this disparity can be 
attributed to the much larger dataset they used, 
which included 16,489 malicious files in addition to 
8,422 benign files. Even with varying dataset sizes, 
our models—both machine learning and deep 
learning—performed quite well despite these 
variances, suggesting the potential of these 
techniques in malware detection. 

6. Conclusion 

The Raccoon Stealer and its variant V2 are 
recognized to be the most alarming information-
stealing malware in 2022. After reviewing several 
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studies in malware static and dynamic analysis, the 
integration of ML and DL models proposes an 
assertive solution to distinguishing between a 
benign and a legitimate malicious file. For this 
solution, a dataset is constructed and used to attain 
promising results that lead to the detection of 
Recealer’s malicious behavior by bringing together 
ML and DL using a pretested interval of choice. The 
CNN deep learning model has proved to be reliable 
in terms of ML Random Forest’s unfamiliar interval 
outcome, which was aided by training the model 
using grayscale images. This approach studied the 
Recealer’s behaviors on a deeper level of neural 

networks. Due to the time constraints of 
implementing this research project, the Cuckoo 
Sandbox could’ve served as a tool by integrating it 
into the ML model.  

The mentioned integration serves a purpose in 
the automation of real-time malware detection, 
which enhances a better solution for advanced 
malware detection. For future work, we intend 
to incorporate explainable artificial intelligence 
(XAI) and federated learning (FL) into our malware 
detection framework. This integration will enhance 
the interpretability of our detection processes while 
maintaining data privacy across distributed systems. 

 
Table 2: Performance evaluation of ML algorithms 

Models Cross-validation accuracy Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%) 

Random forest 97.81% 
0 100 97 98 98.44% 
1 97 100 98  

Decision tree 97.81% 
0 100 100 100 100% 
1 100 100 100  

KNeighbors 96.86% 
0 94 97 95 95.31% 
1 97 94 95  

Adaboost 98.12% 
0 100 100 100 100% 
1 100 100 100  

SGD 97.81% 
0 100 97 98 98.44% 
1 97 100 98  

Extra trees 97.50% 
0 100 97 98 98.44% 
1 97 100 98  

Gaussian NB 69.32% 
0 86 38 52 65.62% 
1 94 94 73  

 
Table 3: CNN performance metrics for 96x96 image size trained using Spyder 

Trial Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%) 

1 
0 76 100 86 

83 
1 100 63 77 

2 
0 92 98 95 

95 
1 98 90 94 

3 
0 97 95 96 

95 
1 94 96 95 

 
Table 4: CNN performance metrics for 192x192 image size trained using Spyder 

Trial Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%) 

1 
0 91 100 95 

95 
1 100 88 94 

2 
0 95 98 97 

96 
1 98 94 96 

3 
0 97 98 97 

97 
1 98 96 97 

 
Table 5: Performance evaluation of different borderlines for the combined ML and DL algorithms 

Lower bound Upper bound Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%) 

10% 90% 
0 
1 

100 
51 

3 
100 

6 
67 

52 

20% 80% 
0 
1 

100 
58 

29 
100 

45 
74 

64 

30% 70% 
0 
1 

100 
75 

66 
100 

80 
85 

83 

40% 60% 
0 
1 

97 
92 

92 
97 

94 
94 

94 

 

List of abbreviations 

API Application programming interface 
C2 Command and control 
CFG Control flow graph 
CNN Convolutional neural network 
CTI Cyber threat intelligence 
DL Deep learning 
DT Decision tree 
FL Federate learning 
FNR False negative rate 
FPR False positive rate 

FPR False positive rate 
GB Gradient boosting 
GNB Gaussian naive bayes 
GRR Google rapid response 
IoC Indicators of compromise 
KNN K-nearest neighbors 
MaaS Malware-as-a-service 
MAIL Malware analysis intermediate language 
MAIT Malware analysis and intelligence tool 
ML Machine learning 
NB Naive bayes 
PA Passive-aggressive 
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PE Portable executable 
PSI Printable string information 
RC4 Rivest cipher 4 
RF Random forest 
RNN Recurrent neural network 
SGD Stochastic gradient descent 
SVD Singular value decomposition 
SVM Support vector machine 
XAI Explainable AI 
XGBoost Extreme gradient boosting 
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