
 International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

36

Recealer: A malware detection method based on machine learning and
deep learning models

Asia Othman Aljahdali *, Elaf Maqadmi, Atouf Ghabashi, Deem Alsuoilme, Bayader Alluhaybi, Edmy Alboqami

College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 22 April 2025
Received in revised form
26 August 2025
Accepted 3 September 2025

Raccoon Stealer malware is difficult to detect as it actively evades traditional
methods. This study proposes Recealer, a hybrid detection model that
integrates machine learning (ML) and deep learning (DL). The model applies
static and dynamic analysis to extract features from sample files, which are
first classified using an ML algorithm. Files with uncertain classification
results are then transformed into grayscale images and analyzed by a
convolutional neural network for improved precision. Experimental results
demonstrate that Recealer achieves 94% overall detection accuracy, with the
random forest algorithm attaining 97.53% in the ML stage and the DL stage
reaching 95%. These findings indicate that Recealer is both efficient and
reliable for detecting Raccoon Stealer malware.

Keywords:
Malware detection
Machine learning
Deep learning
Hybrid model
Feature extraction

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*In the late 1980s, malware began spreading
rapidly across computer and network systems,
enabling attackers to carry out various malicious
activities. Malware, short for malicious software, is
software designed with the intent of disrupting or
acquiring unauthorized access to a computer system.
As a result, it is critical to detect and respond to
malware accurately and swiftly. Raccoon Stealer is
an indistinct info-stealer malware that was first
discovered in 2019 and sold as Malware-as-a-service
(MaaS) on underground forums. MaaS is a business
model used by cybercriminals to charge users for
access to malicious software and support
infrastructure. A new version of the malware, known
as Raccoon StealerV2, was released in 2022, but
considering it is relatively new, it hasn't been
properly identified and eliminated. This malware is a
trojan that infiltrates a system to capture an
immense amount of data, including credit cards,
usernames, passwords, history, cookies, auto-filled
browser passwords, cryptocurrency wallets, and
other sensitive data. The victim's information is
often collected with the intent to sell it on the dark
web. For instance, one marketplace sold off
4,368,909 units of victim data between January 2021

* Corresponding Author.
Email Address: aoaljahdali@uj.edu.sa (A. O. Aljahdali)
https://doi.org/10.21833/ijaas.2025.10.005

 Corresponding author's ORCID profile:
https://orcid.org/0000-0002-9013-9465
2313-626X/© 2025 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

and March 2022. Info-stealer victims get infected by
malicious actors; they use phishing emails (most
commonly), cracked and pirated software, cheating
packages for games, browser extensions, and
cryptocurrency-related software. For example, one
info-stealer spreads phishing emails by sending
Excel spreadsheets through emails that contain
macros, which results in downloading a persistent
executable (Nurmi et al., 2023).

To reduce the malware's impact, the structure of
the malware must be recognized to fully
comprehend its characteristics and behaviours; this
can be achieved by thoroughly analysing the
malware. Comprehending the actions and intentions
of a malware structure to stop further cyberattacks
is known as malware analysis.

This research is being conducted to analyze and
detect Raccoon Stealer malware. Since most
detection methods are signature-based, many of
them cannot discover the behavior of the malware.
Research indicates that malware lacking a signature
exhibits certain behavioral traits at a higher level
and is more accurate in exposing the true intention
of the malware. Static analysis, which will assist in
learning the characteristics and structure of the
malware without running it, and dynamic analysis,
which will be used to execute the malware and
observe its functionality in the test environment
(Yucel et al., 2021), In order to detect new malware
efficiently, both static and dynamic analyses will be
used, and the features generated from them will be
used to train the machine learning (ML) model. In
addition, deep learning will be implemented to
guarantee a higher level of malware detection.

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aoaljahdali@uj.edu.sa
https://doi.org/10.21833/ijaas.2025.10.005
https://orcid.org/0000-0002-9013-9465
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2025.10.005&domain=pdf&

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

37

According to a study, Windows is one of the most
widely used operating systems, and an excessive
amount of malware targets it compared to other
operating systems. Consequently, it is now more
crucial than ever to create efficient methods for
detecting Windows malware (Prachi et al., 2023).
The Raccoon Stealer's payload is intended to infect
Windows-based 32-bit and 64-bit PCs. This research
proposes a Recealer malware detection technique
model, which performs the following:

• Taking advantage of both dynamic and static

features of the malware to understand the
malware behavior.

• Utilizing the properties of machine learning for
faster detection and deep learning for precise and
accurate results.

• Providing a brief report or alert after handling the
file.

The proposed model aims to assist in malware

detection by enhancing established techniques and
methods used by previous researchers.

Malicious software, or malware, is designed to
damage computer systems and programs. Trojan
horses, worms, viruses, and malware are just a few
of the various forms it can take. Viruses are a
segment of code that attaches to a file or program.
Viruses replicate themselves by altering other
computer programs and infecting them with their
bits of code. This happens silently when a user runs
an infected program. Worms are programs that
duplicate themselves, run separately from other
programs, and move from computer to computer
across a network without human interaction. The
primary difference between worms and viruses is
that worms function independently, whereas viruses
always hide within software and need human
interaction to be activated. Spyware is installed on a
computer; it gathers data about users' online and
offline activities and sends it back to a central
location (Saeed, 2020). A Trojan horse is hidden
within another program that seems innocuous; a
Trojan horse can take control of the computer
(Sreekumari, 2020). Because Trojans are not
identical in any way, it can be challenging to tell the
difference between files that could be risky and ones
that are not. Also, new Trojans are being written
continuously, and because of that, their signatures
differ from the ones that are already identified.

Raccoon Stealer first emerged in 2019, acting as
one of the most impactful information-stealing
malware. A new enhanced version in 2022 was
released, which has become more sophisticated and
cumbersome to detect by security technologies.
Recealer is initially delivered to the target user by
applying manipulative techniques that urge the
victim to click, download, and execute received
attachments on which the malware resides. This
transmission could be done through phishing emails,
fake websites, and other allurement tactics. Once the
Recealer arrives in the Windows system, it
establishes its command and control (C2) channels

that are used for extracting valuable information and
data from the victim. C2’s channel-specific source
and destination information are hidden in the
executable of the Recealer itself by Rivest cipher 4
(RC4) encryption and Base64 encoding. The raccoon
will then be injected into the process level of the
computer to execute itself by seeming benign, as
these locations are mostly run by the operating
system. To further proceed with the information
extractions, dynamic link libraries are going to be
imported and used to find application cache default
locations that store credentials such as usernames
and passwords, browser cookies, email agents,
digital currencies, and other sensitive data. These
caches are copied to a temporary file location that
can be encrypted and extracted to the C2 covert
channels. Detecting and stopping those actions
conducted by the raccoon stealer is essential to
mitigating further attacks that were initially aided by
the collected information, as this will also help
protect the victims’ privacy.

 Malware detection refers to the collection of
defensive methods and tools needed to identify and
prevent the negative impacts of malware. Depending
on the kind of malware that infected the device, this
preventive strategy consists of a wide variety of
techniques that are strengthened by different
technologies. Such techniques include behavior-
based detection and signature-based detection.
Signature-based detection is a technique that utilizes
a database of known malware signatures and
compares them with suspicious files or network
traffic. A signature is a unique byte pattern, or
fingerprint, that identifies a specific malware.
Despite its rapid and precise identification of known
malware variants, it has several drawbacks. To start,
it is unable to identify brand-new or unidentified
malware that does not yet have a signature in the
database.

To stay up to speed with the ever-changing
environment of malware, the signature database
needs to be updated frequently. Secondly, malware
that modifies or obscures its signature to evade
detection can successfully deceive signature-based
detection. Behavior-based detection is a novel
approach for cybersecurity that uses user behavior
monitoring to identify and block malicious activity.
It's a proactive strategy that keeps a watchful eye on
every relevant activity to swiftly spot and handle any
alterations to typical behavior patterns. Beyond
identifying specific attack signatures, behavior-based
detection can discover and examine unusual or
malicious patterns of behavior. This kind of
technology analyzes immense amounts of data and
network traffic using machine learning, artificial
intelligence, and statistics to identify anomalies.
Behavior-based detection increases the probability
of discovering and terminating a malicious action
before the network becomes compromised by
monitoring behaviors that may be linked to the
attacker, as opposed to looking for patterns
associated with types of attacks. Although both
techniques can have satisfying results, especially

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

38

when combined, malware detection techniques can
be enhanced by applying these two approaches:
threat intelligence and threat hunting.

Threat hunting is a proactive approach to
cybersecurity in which specially trained personnel,
referred to as threat hunters, actively seek out,
identify, and isolate sophisticated threats that evade
existing security measures. Instead of waiting for a
warning to act, it actively looks for any hidden
threats that may be present in the system. Threat
hunting's primary objective is to identify and
eliminate threats before they have a chance to cause
damage. It's about reducing the possible damage of
an intrusion and remaining one step ahead of the
attackers. Whereas threat intelligence, a reactive
approach, is the information gathered that gives the
ability to stop or mitigate cyber threats. It's all about
getting to know the enemy—who they are, what
motivates them, and what techniques they employ.
Having this knowledge is essential for creating
proactive security plans and techniques. The goal of
threat intelligence is to comprehend the threat
environment. It's about being aware of possible
attackers, understanding their strategies, and being
prepared for their attacks.

 Analyzing malware is the first step towards
stopping it and has several benefits, including
obtaining sufficient data regarding the malware,
implementing adequate defense and response
mechanisms, assessing the capability of detecting
malware, and understanding the risks associated
with malware and its intentions. It is possible to
analyze malware in many ways, including static code
analysis, where the analysis is performed without
execution; dynamic code analysis, in which the code
line is executed with the help of the debugger; and
behavioral/dynamic analysis, in which malware is
executed, and a variety of information is gathered
based on its interactions with the environment.

CUCKOO SANDBOX is a dynamic malware
analysis tool that provides a secure and isolated
environment. Additionally, it provides detailed
reports on malware samples, and its design allows
for integration with external tools and platforms.
Using ANY.RUN, researchers can interact with
malware samples and analyze their activities
through this powerful interactive malware analysis
platform. It has many features, such as network
tracking, process monitoring, and so much more.
PROCESS HACKER is an open-source malware
analysis tool that helps identify the processes
affected by malware in the system and provides real-
time data on the system and network usage. GHIDRA
is also an open-source static analysis tool that was
recently released. It is used to disassemble malware,
allowing users to examine malware's functionality to
gain a better understanding of it. Lastly, X64DBG for
Windows systems is a dynamic code analysis tool
with a debugger that can be used to disassemble
malware and execute it line by line (Bermejo Higuera
et al., 2020).

Over the last few years, machine learning has
been increasingly utilized to assist people in a

variety of fields, including healthcare to detect
diseases, streets to detect speeding cars, finance to
predict the stock market, and many others. Future
predictions, automation of numerous tools, and
reducing human error are some of its main benefits.
As a result of its integration into the cybersecurity
field, many tools and devices have been improved.
Deep learning (DL) is a specific area of machine
learning that uses artificial neural networks to
interpret raw data directly. In fact, deep neural
networks make it possible to create end-to-end
prediction models by handling every processing
step, including feature extraction and learning that is
often required to create a classic machine learning
model. DL models can automatically extract imaging
features to optimize the model's performance for the
given task. Representation-learning algorithms
known as deep neural networks are made up of a
stack of processing layers with a finite number of
nonlinear units (Castiglioni et al., 2021). Some of the
deep learning methods are recurrent neural network
(RNN) and convolutional neural network (CNN).
Recurrent Neural Networks: at any input stage, the
RNN considers the results of earlier calculations
along with the present circumstances. By using these
techniques, the model can be trained with the least
amount of data loss possible (Elsayed et al., 2020).
Convolutional Neural Networks (CNNs) are neural
networks that combine deep learning functionality.
It possesses the self-adaptive ability to encode the
combination of less important data aspects into
more important ones, and the feature extraction
process is integrated into the calibration procedures
(Chen et al., 2020).

2. Literature review

The malware analysis and intelligence tool
(MAIT) tool (Yucel et al., 2021) consists of 4 main
parts: the analysis package, the reporting package,
the cyber threat intelligence (CTI) generator, and the
dispatcher, which will connect the packages. What
concerns this project most is the analysis package,
which includes the interfaces with the chosen tools
for sandboxing and analysis, as well as scripts for
administering the sandboxing virtualization tool.

A system that combines static analysis and
machine learning to detect malware in Windows
operating systems existed in past research (Hussain
et al., 2022). The system is divided into four layers:
data acquisition layer, pre-processing layer,
prediction layer, and performance evaluation layer.
The malware data used from static analysis is the PE
header information that will be used to train the
models. The models' performance was assessed
using a variety of measures, such as accuracy,
precision, recall, F-score, and support. Random
forest (RF) and decision tree (DT) algorithms gave
the best results compared to other algorithms.

Sun et al. (2022) presented a novel approach
with the ability to detect malware based on system
calls in real-time, where both machine learning and
deep learning have been combined to get fast

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

39

detection features of ML and accurate results of DL.
In this research, the performance was based on
accuracy, precision, recall, F1 score, and FP rate. The
first step was to measure performance without
combining the DL and ML algorithms using different
hyperparameter values. The DL model
DEEPMalware, among the different models,
performed the best. Secondly, the performance
evaluation was conducted when combining both ML
and DL algorithms; the performance evaluation was
based on using specific interval values. As a first
step, ML will be used to classify a sample, and if the
value received by the classifier is less than the lower
bound, then the sample is considered benign; if it is
higher than the upper bound, it will be considered
malicious; and if it is within the interval, the DL
model will be used to evaluate it.

Rabadi and Teo (2020) proposed a malware
detection and type classification approach that
includes four main components as follows: 1.
Behavior monitoring: The behavior of the malicious
and benign samples is monitored while executing
them in an isolated virtual machine using Cuckoo
Sandbox3. 2. Feature extraction and generation: This
component aims to extract API (application
programming interface)-based features and prepare
them for the next step (e.g., machine learning). There
are two methods for extracting API-based features.
In Method 1, each API call and its arguments are
treated as one token. Method 2, on the other hand,
treats each argument element of each API call as a
separate token. 3. Malware detection using machine
learning algorithms: This component includes five
different machine learning algorithms (e.g., Support
Vector Machine (SVM), Extreme Gradient Boosting

(XGBoost), Random Forest (RF), DT, and Passive-
aggressive (PA)) that are trained using the API-based
dynamic features (i.e., bit-vectors from the previous
step), resulting in classifying samples as benign or
malicious. 4. Malware type classification using
machine learning algorithms: After detecting the
malware samples in the previous step, the bit
vectors from Methods 1 and 2 are utilized to train
the same five machine learning algorithms (SVM,
XGBoost, RF, DT, and PA), which result in the
classification of malicious samples into their
respective classes.

The malware detection technique in Singh and
Singh (2020) consisted of four primary components:
runtime behavior, feature extraction, feature
processing, and classifier training. The runtime
activities describe the behavior of an executing file.
Both benign and malicious samples are run in a
controlled setting. Using the Cuckoo Sandbox, the
activities are recorded while the binary files are
being executed. The runtime features are chosen by
the feature extraction module from the generated
analysis reports. It has been observed that malicious
files differ from benign ones in terms of printable
strings. Additionally, they discovered several odd
strings in behavior reports, such as earning money,
winning a lucky present, or downloading free
software or movie content. Processing of the

extracted features results in the following feature
sets: (i) Printable string information (PSI); (ii) API
calls; and (iii) registry, file, and network activities.
Many machine learning algorithms are applied
across the feature sets to construct the malware
detection system. The proposed strategy is assessed
using the 10-fold cross-validation method. Ten
sections make up the original dataset in this
evaluation method. The first nine are used for
training, while the tenth is used to test the outcomes.
To consider every aspect of the feature set for
training and testing, this process is repeated ten
times. This assessment method prevents the
classifier's overfitting and underfitting issues.
Several performance indicators, including F-scores,
accuracy, recall, and precision, are utilized to assess
the effectiveness of the suggested strategy.

Malware analysis intermediate language (MAIL)
(Alam et al., 2013) is a new proposed intermediate
language for malware analysis, which can improve
the detection of metamorphic malware. The majority
of malware enters a computer system through
binaries, which are computer-interpretable and
executable instructions. Any assembly language has
hundreds of different instructions. To maximize the
static analysis of any such assembly program for
malware detection, we must significantly decrease
and simplify these instructions. MAIL gives an
assembly program an abstract representation,
enabling a tool to automatically analyze and detect
malware. Annotated patterns are included in every
MAIL statement, which a tool might exploit to
maximize malware analysis and detection.

Pant and Bista (2021) have used a grayscale
malware images dataset to train and validate
different deep learning models to be able to classify
malware samples into different families. Table 1
presents a comparison of the current studies that
use the same components suggested in this research
technique.

3. Proposed solution

3.1. System architecture

The proposed model architecture and its details
are depicted in Fig. 1, which is implemented through
two different stages. Two datasets are constructed,
one for ML and the other for DL.

In the first stage, static and dynamic analysis are
conducted on the raccoon stealer samples to create
the dataset needed for training and testing the
machine learning model. Cuckoo Sandbox is used for
conducting such analysis. The ML model will
eventually classify the input file as malware if the
value generated by the classifier is higher than the
maximum assigned interval value; otherwise, if it is
less than the minimum assigned interval value, it will
be classified as benign. These interval values are
going to be defined based on many performance
metrics, and the chosen pair with the best values is
used. In the second stage, if the value generated by
the ML classifier has fallen between the lower and

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

40

the upper interval value, the file would be converted
to a grayscale image and further subjected to the
CNN deep learning model to identify the image as
malware or benign. The dataset that is used in the
training and testing of the CNN model is generated
and consists of malware and benign file images. The
model’s workflow is described below:

• Step 1: Collect Recealer malware samples from the

"Malware Bazaar" website.
• Step 2: Run the Cuckoo Sandbox tool to collect

static and dynamic features from the collected
samples that will be used to form datasets.

• Step 3: For the development of the deep learning
dataset, we will convert the Raccoon Stealer
malware samples along with benign files into
images and use these images to create the dataset
to train and test the CNN model.

• Step 4: The ML datasets will be divided into two
parts; one will be used for training the model, and
the other will be used for testing. For the ML
model, a classification probability will be
generated, from which a decision will be made.
Depending on an interval value (lower, upper),
three different scenarios can occur. If the value
generated by the classifier is less than the lower
value, it will be considered a benign sample; else, if

it is higher than the upper value, it will be
malicious, and action will be taken to delete it.

• Step 5: The sample would be further subjected to
the deep learning model if its value was located
within the interval. The best interval value will be
decided based on many performance evaluation
metrics, such as accuracy, precision, recall, and F1
score.

• Step 6: The file will be converted to a grayscale
image for the deep learning model that has already
been trained on benign and Raccoon Stealer
malware images. Portable Executable (PE) files,
which are usually associated with Windows
operating systems, can be represented by binary
code that can be translated as an 8-bit unsigned
integer vector. This vector may be organized into a
2-dimensional array to generate a grayscale
picture that represents the malware. This
representation assigns grayscale tones inside the
(0, 255) range, where 0 represents black and 255
represents white (Fig. 2).

• Step 7: The deep learning model will identify if the
file is benign or malicious, and if it is malicious, it
will take action to delete it.

• Step 8: A report is generated for the user, giving
information such as whether the file was malware
or benign, etc.

Table 1: Current malware detection analysis

Reference Components/methods Strengths Limitations

Yucel et al.
(2021)

Dynamic and static analysis (Cuckoo Sandbox,
Radare2, Regular Expressions)

Automated tool integrating static and
dynamic analysis. Radare2 extracts static

features. Regex identifies indicators of
compromise (IoC).

Generates enormous data, causing overhead for
analysts.

Hussain et
al. (2022)

Static analysis, ML algorithms (RF, DT, GB,
AdaBoost, SVM, Gaussian naive bayes (GNB))

Random Forest achieved 99.4% accuracy.
Provides real-time scanning of

executables.

Lacks integration with dynamic analysis, which
could improve outcomes.

Sun et al.
(2022)

ML (RF, XGBoost, AdaBoost), DL
(DEEPMalware), Dynamic analysis

Real-time malware detection. Efficient
combination of ML and DL under

resource constraints.

Complex framework; risk of recurrent loops
between ML and DL algorithms.

Rabadi and
Teo (2020)

Ml algorithms (SVM, XGBoost, RF, DT, PA),
Cuckoo sandbox, Hashing vectorizer

Resilient to mutation/obfuscation (not
reliant on API call order/frequency).

Small number of misclassifications leading to
false positives.

Singh and
Singh

(2020)

Cuckoo sandbox, Text mining, Singular value
decomposition (SVD), Shannon entropy, Ml
(K-nearest neighbors (KNN), Naive Bayes

(NB), SVM, RF, DT, AdaBoost, GB)

High accuracy (99.54%) using string
components + SVD for classification.

Limited prior use of string features →
uncertainties in scalability/resilience. Accuracy

only reported, lacking detailed False Positive Rate
(FPR) and the False Negative Rate (FNR)

evaluation.

Alam et al.
(2013)

Google rapid response (GRR), Wireshark,
Virustotal, Static analysis

Control flow graph (CFG)-based
behavioral signatures improve malware

classification.

Only static analysis, not dynamic. Patterns alone
insufficient—unknown malware may go

undetected.
Pant and

Bista
(2021)

Malware as gray-scale images, CNN models
(VGG16, ResNet-18, InceptionV3, Custom)

Achieved high accuracy and low loss in
image classification.

Unrealistic for real-world malware (files not
naturally images). Missing method for converting

malware into images.

ML model is trained on
static and dynamic features of malware,

and a specified interval.
The model classifies the sample

as benign or malicious.

The deep learning model CNN classifies images.
Static and dynamic analysis to extract

malware's features

Racoon Stealer Malware File
Begin

Malicious

Convert the file into image

Delete the
sample

Sample < Lower bound

Sample > Upper bound

If the sample
fall within the

specified
interval

Begin

Malicious
Delete the

sample

Fig. 1: Recealer detection model architecture

The proposed approach provides several
important advantages. It employs a machine learning
model that combines static and dynamic features to

achieve rapid classification. In cases where higher
accuracy is needed, a deep learning model trained on
grayscale images can be applied for more reliable

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

41

results. The model also incorporates an interval-
based decision-making method, which categorizes
files by comparing classification probabilities with
defined threshold ranges. These thresholds can be
adjusted and fine-tuned to meet specific
requirements or performance standards.
Furthermore, the use of deep learning analysis
allows for a more comprehensive understanding of
the files, ensuring that malicious files are quickly
identified and removed to prevent system or
network damage. For implementation, Cuckoo
Sandbox is used to execute the Raccoon Stealer

malware in an isolated environment, producing a
JSON report for further analysis. From this report,
features such as API call frequencies, SHA256 hash
values, and file entropy are extracted to support both
static and dynamic analysis. Nested virtualization is
enabled through hypervisors, including VirtualBox,
VMware Workstation Pro, and Parallels Desktop,
while Ubuntu Linux serves as the operating system
for running the sandbox. The machine learning and
deep learning models are developed and executed
using Python within integrated development
environments such as Spyder and PyCharm.

PE file Binary to 8 bit vector Convert to matrix

2D Matrix

Image Pixel Grayscale Image

Fig. 2: Conversion of a PE file to a grayscale image

3.2. Sample collection

The collection of samples is an essential step in
developing effective machine learning (ML) and deep
learning (DL) models. Since Raccoon Stealer
malware is relatively new, no publicly available
datasets exist for it. To address this, this research
constructs datasets using malware samples obtained
from "Malware Bazaar," a reliable repository offering
a variety of malware samples. Additionally, benign
files are sourced from GitHub to ensure balanced
datasets. The proposed solution utilized three
datasets: one for the ML model, another for the DL
model, and a third to evaluate the integrated ML and
DL model. The Machine learning dataset contains
static and dynamic features extracted from 200
Raccoon Stealer samples and 200 benign samples,
totaling 400 samples. Feature extraction is
performed using the Cuckoo Sandbox malware
analysis tool. This dataset is used for training and
testing the ML model. For the DL model, the research
converts 275 raccoon stealer malware files and 275
benign files into grayscale images (both sizes of
96x96 and 192x192), creating a dataset of 550
samples. These images are used to train and test the
DL model. To test the final integrated model
combining ML and DL approaches, a separate dataset
consisting of 60 samples (30 benign and 30
malware) is used. These datasets enable
comprehensive experimentation and evaluation of
the proposed models, ensuring robust performance
against the Raccoon Stealer malware.

4. Evaluation and discussion

4.1. Performance evaluation for standalone ML
and DL models

We evaluate the performance of seven different
machine learning algorithms as part of the process of

selecting the most efficient algorithm for our
detection model. These models are Random Forest
Classifier, Decision Tree Classifier, K-Neighbors
Classifier, AdaBoost Classifier, Stochastic Gradient
Descent (SGD) Classifier, Extra Trees Classifier, and
Gaussian Naive Bayes Classifier. The evaluation is
conducted using metrics such as precision, recall, F1
score, accuracy, and the confusion matrix. The
performance results are summarized in Table 2,
which shows the performance evaluation results of
all the ML algorithms used. By observing the values,
we can conclude that the best-performing models
were the Random Forest Classifier, Extra Trees
Classifier, K-Neighbors Classifier, and AdaBoost
Classifier. It is noteworthy that the accuracy,
precision, recall, and F1 score of the Extra Trees
Classifier are like those of the Random Forest
Classifier. However, the Random Forest Classifier
was chosen to detect Raccoon Stealer malware due
to its robustness, consistent high performance, and
common use in practical malware detection
scenarios. Its ability to handle imbalanced datasets
and complex data patterns made it the best choice
for this research. The random forest classifier
outperformed the rest of the models based on
achieving 98.44% overall accuracy, which is like the
SGD and Extra Trees classifiers. Random forest’s
precision is 100% for class 0 and 97% for class 1, in
addition to a recall score of 97% for class 0 and
100% for class 1. Both metrics ensure the reduction
of false positives and false negatives. Based on cross-
validation score values, both random forest and SGD
achieved 97.81%, but Extra Trees yielded a score of
97.50%. The decision tree classifier achieved 100%
accuracy on all metrics, which wasn’t selected due to
overfitting; unlike random forest, it comprises many
decision trees. Random forest has a feature of tuning
bootstrapping and tree weights, which makes it the
most reliable algorithm for machine learning
malware detection.

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

42

Both AdaBoost and Decision Tree achieved 100%
precision, recall, and F1-score for both classes,
indicating zero false positives and zero false
negatives. This makes them highly reliable for
malware detection in this dataset. In the case of
Random Forest, SGD, and Extra Trees models, these
models achieved strong precision and recall scores
(~97–100%) for both classes, but they showed
minor misclassification. For example, Random Forest
and SGD had a recall of 97% for class 0, indicating
that ~3% of benign samples were falsely flagged as
malware (false positives). Similarly, a precision of
97% for class 1 implies that ~3% of predicted
malware samples were benign (false positives for
class 1). Among the models evaluated, AdaBoost and
Decision Tree achieved perfect classification,
minimizing both false positives and false negatives.
In contrast, Gaussian Naive Bayes demonstrated
poor performance with high false positive rates and
limited reliability.

When evaluating the deep learning model, we
tested both 96x96 and 192x192 grayscale images of
benign and malware samples. In the end, both image
sizes obtained the same accuracy of 95%, as
indicated in Tables 3 and 4. However, we decided to
proceed with the 96x96 image size due to its
superior efficiency, as it significantly reduces
processing time compared to the 192x192 option.

The outcomes presented in Table 3 compare a
Convolutional Neural Network (CNN) trained with
Spyder on images of 96x96 pixels. Overall accuracy,
F1 score, precision, and recall are the evaluation
measures used for this research. In this case,
malware was classified as class 1, while benign was
classified as class 0. Every trial shows a significant
improvement in CNN performance. Trial 3 had the
highest F1 scores for both classes: 96% for class 0
and 95% for class 1. Similarly, overall accuracy
stabilizes at 95% in trials 2 and 3.

The CNN model’s performance across three trials
demonstrates strong predictive ability, with overall
accuracy ranging from 95% to 97%. Trial 3 shows
the best overall performance. The recall for both
classes is very high (98% for class 0, 96% for class
1), indicating minimal false positives and false
negatives. Trial 3 achieved the best balance between
precision and recall, minimizing both false positives
and false negatives.

4.2. Performance evaluation for combined ML
and DL models

Based on the evaluation of each machine learning
algorithm, the ML algorithm with the best metrics
will be used (Random Forest), along with the CNN
deep learning algorithm. By combining these two
algorithms together, we will evaluate their
performance using different borderline values
inspired by research (Prachi et al., 2023) and choose
the best pair. As shown in Table 5, four pairs of
values are set in the experiment. The lower bounds
represent a boundary that, when exceeded by a
lower percentage, the file is classified by the ML

algorithm as normal, whereas the file will be
classified as malicious when the percentage is
greater than the upper bound. The upper value of
60% and the lower value of 40% produce the best-
fitting choice as an interval. According to the testing
results shown in Table 5, the performance metrics
with 94% accuracy, 92% precision, 97% recall, and
an F1 score of 94% surpass the rest of the tested
pairs; therefore, this interval is selected.

The results presented in Table 5 assess how
various borderline thresholds (both lower and upper
bounds) perform when combining machine learning
(ML) and deep learning (DL) algorithms for
detecting raccoon stealer malware. The evaluation
metrics include precision, recall, F1 score, and
overall accuracy. Here, class 0 denotes benign, while
class 1 denotes malware. In conclusion, finding an
optimum borderline range like 40%–60%
remarkably improves the trade-off between
Precision and Recall and hence increases the
robustness of detection. Wider ranges like 10%–90%
yield poor recall for some classes, while narrower
but less optimal ranges, such as 20%–80% or 30%–
70% still managed to improve but could not achieve
the highest performance levels. The optimum range
was 40%–60%, which has the best trade-off, yielding
high scores of precision, recall, F1 score, and overall
accuracy, thus making it the optimum configuration
for classification in this research.

5. Discussion

A malware detection system that combines
machine learning (ML) and deep learning (DL)
models provides a reliable way to differentiate
between harmful and benign files. The proposed
Recealer model and PROPEDEUTICA (Sun et al.,
2022) show remarkable effectiveness by attaining an
astounding 94% accuracy rate. The Recealer DL
model's 94% accuracy was marginally lower than
the work presented in Pant and Bista (2021), which
achieves 98.07% accuracy. However, this disparity
might be mostly caused by differences in the number
of test samples used, as their model was tested on
1868 samples compared to the 550 used in our
study. The comparison of machine learning models
showed a similar pattern. Singh and Singh (2020)
claimed a greater accuracy of 99.54%, while our
machine learning model reached a noteworthy
accuracy of 97.53%. Again, this disparity can be
attributed to the much larger dataset they used,
which included 16,489 malicious files in addition to
8,422 benign files. Even with varying dataset sizes,
our models—both machine learning and deep
learning—performed quite well despite these
variances, suggesting the potential of these
techniques in malware detection.

6. Conclusion

The Raccoon Stealer and its variant V2 are
recognized to be the most alarming information-
stealing malware in 2022. After reviewing several

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

43

studies in malware static and dynamic analysis, the
integration of ML and DL models proposes an
assertive solution to distinguishing between a
benign and a legitimate malicious file. For this
solution, a dataset is constructed and used to attain
promising results that lead to the detection of
Recealer’s malicious behavior by bringing together
ML and DL using a pretested interval of choice. The
CNN deep learning model has proved to be reliable
in terms of ML Random Forest’s unfamiliar interval
outcome, which was aided by training the model
using grayscale images. This approach studied the
Recealer’s behaviors on a deeper level of neural

networks. Due to the time constraints of
implementing this research project, the Cuckoo
Sandbox could’ve served as a tool by integrating it
into the ML model.

The mentioned integration serves a purpose in
the automation of real-time malware detection,
which enhances a better solution for advanced
malware detection. For future work, we intend
to incorporate explainable artificial intelligence
(XAI) and federated learning (FL) into our malware
detection framework. This integration will enhance
the interpretability of our detection processes while
maintaining data privacy across distributed systems.

Table 2: Performance evaluation of ML algorithms

Models Cross-validation accuracy Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%)

Random forest 97.81%
0 100 97 98 98.44%
1 97 100 98

Decision tree 97.81%
0 100 100 100 100%
1 100 100 100

KNeighbors 96.86%
0 94 97 95 95.31%
1 97 94 95

Adaboost 98.12%
0 100 100 100 100%
1 100 100 100

SGD 97.81%
0 100 97 98 98.44%
1 97 100 98

Extra trees 97.50%
0 100 97 98 98.44%
1 97 100 98

Gaussian NB 69.32%
0 86 38 52 65.62%
1 94 94 73

Table 3: CNN performance metrics for 96x96 image size trained using Spyder

Trial Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%)

1
0 76 100 86

83
1 100 63 77

2
0 92 98 95

95
1 98 90 94

3
0 97 95 96

95
1 94 96 95

Table 4: CNN performance metrics for 192x192 image size trained using Spyder

Trial Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%)

1
0 91 100 95

95
1 100 88 94

2
0 95 98 97

96
1 98 94 96

3
0 97 98 97

97
1 98 96 97

Table 5: Performance evaluation of different borderlines for the combined ML and DL algorithms

Lower bound Upper bound Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%)

10% 90%
0
1

100
51

3
100

6
67

52

20% 80%
0
1

100
58

29
100

45
74

64

30% 70%
0
1

100
75

66
100

80
85

83

40% 60%
0
1

97
92

92
97

94
94

94

List of abbreviations

API Application programming interface
C2 Command and control
CFG Control flow graph
CNN Convolutional neural network
CTI Cyber threat intelligence
DL Deep learning
DT Decision tree
FL Federate learning
FNR False negative rate
FPR False positive rate

FPR False positive rate
GB Gradient boosting
GNB Gaussian naive bayes
GRR Google rapid response
IoC Indicators of compromise
KNN K-nearest neighbors
MaaS Malware-as-a-service
MAIL Malware analysis intermediate language
MAIT Malware analysis and intelligence tool
ML Machine learning
NB Naive bayes
PA Passive-aggressive

Aljahdali et al/International Journal of Advanced and Applied Sciences, 12(10) 2025, Pages: 36-44

44

PE Portable executable
PSI Printable string information
RC4 Rivest cipher 4
RF Random forest
RNN Recurrent neural network
SGD Stochastic gradient descent
SVD Singular value decomposition
SVM Support vector machine
XAI Explainable AI
XGBoost Extreme gradient boosting

Data availability

The datasets generated and analyzed during the
current study are available in the GitHub repository,
https://github.com/ElafFayk/RecealerMalwareDete
ction.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Alam S, Horspool RN, and Traore I (2013). MAIL: Malware
Analysis Intermediate Language: A step towards automating
and optimizing malware detection. In the Proceedings of the
6th International Conference on Security of Information and
Networks, ACM, Aksaray, Turkey: 233-240.
https://doi.org/10.1145/2523514.2527006

Bermejo Higuera J, Abad Aramburu C, Bermejo Higuera JR, Sicilia
Urban MA, and Sicilia Montalvo JA (2020). Systematic
approach to malware analysis (SAMA). Applied Sciences,
10(4): 1360. https://doi.org/10.3390/app10041360

Castiglioni I, Rundo L, Codari M et al. (2021). AI applications to
medical images: From machine learning to deep learning.
Physica Medica, 83: 9-24.
https://doi.org/10.1016/j.ejmp.2021.02.006
PMid:33662856

Chen A, Chen H, Xu L, Xie H, Qiao H, Lin Q, and Cai K (2020). A
deep learning CNN architecture applied in smart near-
infrared analysis of water pollution for agricultural irrigation
resources. Agricultural Water Management, 240: 106303.
https://doi.org/10.1016/j.agwat.2020.106303

Elsayed MS, Le-Khac NA, Dev S, and Jurcut AD (2020). DDoSNet: A
deep-learning model for detecting network attacks. In the
IEEE 21st International Symposium on a World of Wireless,
Mobile and Multimedia Networks, IEEE, Cork, Ireland: 391-
396. https://doi.org/10.1109/WoWMoM49955.2020.00072

Hussain A, Asif M, Ahmad MB, Mahmood T, and Raza MA (2022).
Malware detection using machine learning algorithms for
Windows platform. In: Ullah A, Anwar S, Rocha Á, and Gill S
(Eds.), Proceedings of International Conference on
Information Technology and Applications. Lecture Notes in
Networks and Systems, 350: 619–632. Springer, Singapore,
Singapore. https://doi.org/10.1007/978-981-16-7618-5_53

Nurmi J, Niemelä M, and Brumley BB (2023). Malware Finances
and operations: A data-driven study of the value chain for
infections and compromised access. In the Proceedings of the
18th International Conference on Availability, Reliability and
Security, ACM, Benevento, Italy: 1-12.
https://doi.org/10.1145/3600160.3605047

Pant D and Bista R (2021). Image-based malware classification
using deep convolutional neural network and transfer
learning. In the Proceedings of the 3rd International
Conference on Advanced Information Science and System,
ACM, Sanya, China: 1-6.
https://doi.org/10.1145/3503047.3503081 PMid:33929876

Prachi, Dabas N, and Sharma P (2023). MalAnalyser: An effective
and efficient Windows malware detection method based on
API call sequences. Expert Systems with Applications, 230:
120756. https://doi.org/10.1016/j.eswa.2023.120756

Rabadi D and Teo SG (2020). Advanced Windows methods on
malware detection and classification. In the Proceedings of the
36th Annual Computer Security Applications Conference,
ACM, Austin, USA: 54-68.
https://doi.org/10.1145/3427228.3427242

Saeed MAH (2020). Malware in computer systems: Problems and
solutions. International Journal on Informatics for
Development, 9(1): 1-8.
https://doi.org/10.14421/ijid.2020.09101

Singh J and Singh J (2020). Detection of malicious software by
analyzing the behavioral artifacts using machine learning
algorithms. Information and Software Technology, 121:
106273. https://doi.org/10.1016/j.infsof.2020.106273

Sreekumari P (2020). Malware detection techniques based on
deep learning. In the IEEE 6th Intl Conference on Big Data
Security on Cloud (BigDataSecurity), IEEE Intl Conference on
High Performance and Smart Computing, (HPSC) and IEEE Intl
Conference on Intelligent Data and Security (IDS), IEEE,
Baltimore, USA: 65-70.
https://doi.org/10.1109/BigDataSecurity-HPSC-
IDS49724.2020.00023

Sun R, Yuan X, He P, Zhu Q, Chen A, Gregio A, Oliveira D, and Li X
(2022). Learning fast and slow: Propedeutica for real-time
malware detection. IEEE Transactions on Neural Networks
and Learning Systems, 33(6): 2518-2529.
https://doi.org/10.1109/TNNLS.2021.3121248
PMid:34723811

Yucel C, Lockett A, Chalkias K, Mallis D, and Katos V (2021). MAIT:
Malware analysis and intelligence tool. Information &
Security, 50(1): 49-65. https://doi.org/10.11610/isij.5024

https://github.com/ElafFayk/RecealerMalwareDetection
https://github.com/ElafFayk/RecealerMalwareDetection
https://doi.org/10.1145/2523514.2527006
https://doi.org/10.3390/app10041360
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.1016/j.agwat.2020.106303
https://doi.org/10.1109/WoWMoM49955.2020.00072
https://doi.org/10.1007/978-981-16-7618-5_53
https://doi.org/10.1145/3600160.3605047
https://doi.org/10.1145/3503047.3503081
https://doi.org/10.1016/j.eswa.2023.120756
https://doi.org/10.1145/3427228.3427242
https://doi.org/10.14421/ijid.2020.09101
https://doi.org/10.1016/j.infsof.2020.106273
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00023
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00023
https://doi.org/10.1109/TNNLS.2021.3121248
https://doi.org/10.11610/isij.5024

	Recealer: A malware detection method based on machine learning and deep learning models
	1. Introduction
	2. Literature review
	3. Proposed solution
	3.1. System architecture
	3.2. Sample collection

	4. Evaluation and discussion
	4.1. Performance evaluation for standalone MLand DL models
	4.2. Performance evaluation for combined ML and DL models

	5. Discussion
	6. Conclusion
	List of abbreviations
	Data availability
	Compliance with ethical standards
	Conflict of interest
	References

