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The study of Bäcklund transformations and solutions for (3+1)-dimensional 
nonlinear evolution equations is important in integrability research, as there 
are only a few existing studies on this topic. In this paper, we present a 
Bäcklund transformation (BT) for a newly generalized (3+1)-dimensional 
Kadomtsev–Petviashvili (3dKP) equation by introducing new Hamiltonian 
vector fields. Using the derived BT and a given formal solution, we obtain 
several new soliton solutions. Finally, we propose a new superposition 
formula, based on the BT, that combines different solutions. 
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1. Introduction 

*Nonlinear evolution equations are fundamental 
to understanding wave phenomena in modern 
physics, including optical solitons and plasma 
turbulence (Lonngren, 1998; Seadawy, 2014; Dai 
and Wang, 2020; Lü et al., 2016). Researchers have 
developed effective methods to solve important 
(1+1)-dimensional systems. These methods include 
the inverse scattering transform (Zakharov and 
Shabat, 1972; Ma and Fan, 2011; Ma et al., 2012) and 
Bäcklund transformations (Wahlquist and 
Estabrook, 1973; 1975; Li et al., 2018; Ma and 
Abdeljabbar, 2012; Chen, 1974; Zhang and Zhang, 
2001). Examples of solved systems are the 
Korteweg-de Vries (KdV) equation and the nonlinear 
Schrödinger equation (Zakharov and Shabat, 1972;  
Lü and Chen, 2021; Ma, 2015). However, extending 
these methods to physically essential (3+1)-
dimensional systems remains an unsolved challenge. 
Recent advances in (2+1)-dimensional cases (Lü et 
al., 2015; Konopelchenko et al., 1992; Chen, 1975), 
such as Chen’s (1975) Bäcklund transformation (BT) 
for a simplified KP-type equation derived from Lax 
pairs, suggest the potential for higher dimensions 
but fail to address full spatial anisotropy. This critical 
gap motivates our work. 
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Here, we bridge this divide by introducing a 
universal (3+1)-dimensional generalized KP 
equation: 

 
𝑢𝑥𝑥𝑥𝑥 + (3𝑢2)𝑥𝑥 + 𝑢𝑥𝑡 + 3𝑚2𝑢𝑦𝑦 + 6𝑚𝜎𝑢𝑧𝑦 + 3𝜎2𝑢𝑧𝑧 

+𝛾𝑢𝑥𝑥 + 𝜆𝑢𝑥𝑦 + ℎ𝑢𝑧𝑥 = 0,                                                         (1) 

 
which parametric flexibility 𝑚, 𝜎, 𝛾, 𝜆, ℎ unifies 
classical systems: 
 

1. KP equation (𝑚 = ±1, 𝜎 = 0, 𝛾 = 0, 𝜆 = 0, ℎ = 0): 
 
𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑥𝑡 + (3𝑢2)𝑥𝑥 + 3𝑢𝑦𝑦 = 0; 

 

2. KdV equation (via 𝑥𝑡-projection):  
 
𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥 = 0; 
 

3. Boussinesq systems (via 𝑥𝑦-projection): 
 
𝑢𝑡𝑡 − 𝑢𝑥𝑥 − (𝑢2)𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥 = 0,  
𝑢𝑡𝑡 − 𝑢𝑥𝑥 + (𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0. 
 

Eq. 1 solves an important problem in studying 
complex systems with multiple dimensions and 
directional properties. By tackling its mathematical 
and computational difficulties, scientists can develop 
new methods and better understand waves in 
structured materials. Studying this equation may 
lead to new theories and real-world advances in 
engineering and physics. 

This work achieves three groundbreaking 
advances: First, we establish the first complete 
(3+1)-dimensional Bäcklund transformation 
framework through an innovative reformulation of 
Lax pairs, overcoming the long-standing obstacle of 
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non-commutative operators in 3D systems. Second, 
our parametric control mechanism allows precise 
manipulation of 𝑦 − 𝑧 directional coupling through 
𝑚 and σ adjustments, a crucial breakthrough for 
modeling real-world asymmetric media. Third, the 
developed nonlinear superposition formula 
successfully achieves targeted synthesis of multi-
soliton solutions, breaking the single-soliton limit in 
Chen (1975) and providing new tools for wave 
dynamics research in complex systems.  

These advances solve key theoretical problems in 
high-dimensional integrable systems. They also 
create new ways to control 3D nonlinear waves in 
real-world applications. Our results answer a 30-
year-old question about integrability. They also 
allow scientists to control 3D wave behavior in 
plasmas and nonlinear optics with new precision.  

The structure of the paper is as follows: In 
Section 2, the Bäcklund transformation is 
constructed using the Lax pair transformation. 
Section 3 obtains a superposition formula for 
solutions via the Bäcklund transformation. In Section 
4, a new solution is derived. 

2. A new BT 

Consider the three-dimensional Hamiltonian 
vector fields: 
 
 𝐴1̃ = 𝜕𝑥

2 + 𝑢(𝑥, 𝑦, 𝑡) − 𝑚𝜕𝑦 − 𝜎𝜕𝑧 ,  

 𝐴2̃ = 4𝑖𝜕𝑥
3 + 6𝑖𝑢𝜕𝑥 + 3𝑖𝜕𝑥𝑢 + 3𝑖𝑚 ∫ 𝑢𝑦

𝑥
𝑑𝑥  

      +3𝑖𝜎 ∫ 𝑢𝑧
𝑥

𝑑𝑥 + 𝑖𝛾𝜕𝑥 + 𝑖𝜕𝑡 + 𝜆𝑖𝜕𝑦 + ℎ𝑖𝜕𝑧,                      (2) 

 
where, 𝑚, 𝜎, 𝛾, 𝜆, ℎ are constants independent of 
𝑥, 𝑦, 𝑧, 𝑡. It is easy to calculate the commutativity 
condition of the Lax pair 
 
𝐴1̃𝑓 = 𝛼𝑓 𝑎𝑛𝑑 𝐴2̃𝑓 = 𝛽𝑓,                                                      (3) 
  

implies that Eq. 1. From Eqs. 2 and 3, it can be 
deduced that 
 
𝜕𝑥

2𝑓 + 𝑢𝑓 − 𝑚𝜕𝑦𝑓 − 𝜎𝜕𝑧𝑓 = 𝛼𝑓, 

4𝑖𝜕𝑥
3𝑓 + 6𝑖𝑢𝜕𝑥𝑓 + 3𝑖𝜕𝑥𝑢𝑓 + 3𝑖𝑚 ∫ 𝑢𝑦

𝑥
𝑑𝑥𝑓  

+3𝑖𝜎 ∫ 𝑢𝑧
𝑥

𝑑𝑥𝑓 + 𝑖𝛾𝜕𝑥𝑓 + 𝑖𝜕𝑡𝑓 + 𝑖𝜆𝜕𝑦𝑓 + 𝑖ℎ𝜕𝑧𝑓 = 𝛽𝑓.    (4) 

 

This set of equations can be regarded as a 
transformation equation between 𝑢 and 𝑓, where 𝑢 
is a solution to Eq. 1. It will be demonstrated in the 
following that 𝑓 is related to another solution, 
denoted by 𝑢́, to Eq. 1. It is thus demonstrated that 
Eq. 4 establishes a relationship between two 
solutions, 𝑢 and 𝑢́, of the same Eq. 1, i.e., a Bäcklund 
transformation. We let 𝛷 ≡ 𝑙𝑛𝑓 and 𝑆𝑥 ≡ 𝑢, then we 
have got: 
 
𝑓 = 𝑒𝛷 , 𝜕𝑥𝑓 = 𝑒𝛷𝛷𝑥 , 𝜕𝑦𝑓 = 𝑒𝛷𝛷𝑦, 𝜕𝑧𝑓 = 𝑒𝛷𝛷𝑧,  

𝜕𝑥
2𝑓 = 𝑒𝛷𝛷𝑥

2 + 𝑒𝛷𝛷𝑥𝑥, 
𝜕𝑥

3𝑓 = 𝑒𝛷𝛷𝑥
3 + 3𝑒𝛷𝛷𝑥𝛷𝑥𝑥 + 𝑒𝛷𝛷𝑥𝑥𝑥.  

 

Then Eq. 4 can be rewritten as follows: 
 
𝛷𝑥

2 + 𝛷𝑥𝑥 + 𝑆𝑥 − 𝑚𝛷𝑦 − 𝜎𝛷𝑧 = 𝛼, 

4𝛷𝑥
3 + 12𝛷𝑥𝛷𝑥𝑥 + 4𝛷𝑥𝑥𝑥 + 6𝑆𝑥𝛷𝑥 + 3𝑆𝑥𝑥 + 3𝑚𝑆𝑦  

+3𝜎𝑆𝑧 + 𝛾𝛷𝑥 + 𝛷𝑡 + 𝜆𝛷𝑦 + ℎ𝛷𝑧 = −𝑖𝛽.                               (5) 

 

The elimination of 𝑆 from Eq. 5 results in the 
subsequent nonlinear evolution equation for 𝛷: 
 
𝛷𝑥𝑥𝑥 + 6𝛼𝛷𝑥 − 2𝛷𝑥

3 + 𝛷𝑡 + 6𝑚𝛷𝑥𝛷𝑦 + 6𝜎𝛷𝑥𝛷𝑧  

+3𝑚2 ∫ 𝛷𝑦𝑦
𝑥

𝑑𝑥 + 6𝑚𝜎 ∫ 𝛷𝑧𝑦
𝑥

𝑑𝑥 − 6𝑚 ∫ 𝛷𝑥
𝑥

𝛷𝑥𝑦𝑑𝑥  

+3𝜎2 ∫ 𝛷𝑧𝑧
𝑥

𝑑𝑥 − 6𝜎 ∫ 𝛷𝑥
𝑥

𝛷𝑥𝑧𝑑𝑥 + 𝛾𝛷𝑥 + 𝜆𝛷𝑦  

+ℎ𝛷𝑧 = −𝑖𝛽..                                                                                  (6) 
 

It can be demonstrated that, for every solution Φ 
to Eq. 5, there exists a solution 𝑆𝑥 ≡ 𝑢 to Eq. 1. 
Furthermore, it can be observed that for every pair 
(𝛷, 𝛽, 𝑚, 𝜎, 𝛾, 𝜆, ℎ) of solutions to the equation that 
satisfy the equation, there exists a pair 
(−Φ, −𝛽, −𝑚, −𝜎, 𝛾, 𝜆, ℎ)  of solutions to the equation 
that are equivalent to them, but with a sign change in 
the fourth term. For this new pair, denoted by 
(−𝛷, −𝛽, −𝑚, −𝜎, 𝛾, 𝜆, ℎ), there is a corresponding 
solution, denoted by 𝑢́ ≡ 𝑆𝑥́ of Eq. 1 such that 
 
−𝛷𝑥𝑥 + 𝛷𝑥

2 + 𝑆́𝑥 − 𝑚𝛷𝑦 − 𝜎𝛷𝑧 = 𝛼,  

−4𝛷𝑥𝑥𝑥 + 12𝛷𝑥𝛷𝑥𝑥 − 4𝛷𝑥
3 − 6𝑆́𝑥𝛷𝑥 + 3𝑆́𝑥𝑥                     

−3𝑚𝑆́𝑦 − 3𝜎𝑆́𝑧 − 𝛾𝛷𝑥 − 𝛷𝑡 − 𝜆𝛷𝑦 − ℎ𝛷𝑧 = 𝑖𝛽.                  (7) 

 

The difference between Eqs. 5 and 7 are 
calculated as follows: 
 
2𝛷𝑥𝑥 = 𝑆́𝑥 − 𝑆𝑥,  
8𝛷𝑥𝑥𝑥 + 8𝛷𝑥

3 + 6𝛷𝑥(𝑆́ + 𝑆)𝑥 + 3(𝑆 − 𝑆́)𝑥𝑥  
+3𝑚(𝑆́ + 𝑆)𝑦 +3𝜎(𝑆́ + 𝑆)𝑧 + 2𝛾𝛷𝑥 + 2𝛷𝑡 

+2𝜆𝛷𝑦 + 2ℎ𝛷𝑧 = −2𝑖𝛽.                                                              (8) 

 

Eq. 5 in conjunction with Eq. 7:  
 
2𝛷𝑥

2 + (𝑆 + 𝑆́)𝑥 − 2𝑚𝛷𝑦 − 2𝜎𝛷𝑧 = 2𝛼,  

24𝛷𝑥𝛷𝑥𝑥 + 6𝛷𝑥(𝑆 − 𝑆́)𝑥 + 3(𝑆́ + 𝑆)𝑥𝑥 + 3𝑚(𝑆 − 𝑆́)𝑦 

+3𝜎(𝑆 − 𝑆́)𝑧 = 0.                                                                          (9) 
 

By the first equation of Eq. 8, we can choose 
 

𝛷 =
1

2
∫ (

𝑥
𝑆́ − 𝑆)𝑑𝑥. 

 
It can be demonstrated that this will cancel out 

the constants 𝛼 and 𝛽 in the Bäcklund 
transformation. This, in turn, implies that these two 
constants 𝛼 and 𝛽 are not essential in constructing 
solutions. Subsequently, by substituting the relation 

between 𝛷 and 𝑆́ into Eqs. 8 and 9, the Bäcklund 
transformation is obtained: 
 

(𝑆́ − 𝑆)2 + 2(𝑆́ + 𝑆)𝑥 − 2𝑚 ∫ (
𝑥

𝑆́ − 𝑆)𝑦𝑑𝑥 

−2𝜎 ∫ (
𝑥

𝑆́ − 𝑆)𝑧𝑑𝑥 = 0,  

(𝑆́ − 𝑆)𝑥𝑥 + (𝑆́ − 𝑆)3 + (𝑆́ − 𝑆)(𝑆́ + 𝑆)𝑥 +3𝑚(𝑆 +

𝑆́)𝑦 + 3𝜎(𝑆 + 𝑆́)𝑧 + 𝛾(𝑆́ − 𝑆) 

+ ∫ (
𝑥

𝑆́ − 𝑆)𝑡𝑑𝑥 + 𝜆 ∫ (
𝑥

𝑆́ − 𝑆)𝑦𝑑𝑥  

+ℎ ∫ (
𝑥

𝑆́ − 𝑆)𝑧𝑑𝑥 = 0.                                                             (10) 
 

The double sign present in the transformation 
equations signifies that wave propagation is possible 
in both directions, positive and negative, in the 𝑦 
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dimension. Subsequently, Eq. 10 can be utilized to 
formulate a particular solution of Eq. 1. Beginning 
from a known solution, 𝑆 = 0, numerous solutions, 
denoted here as 𝑆́, can be derived from Eq. 10 
through integration or more conveniently, by 
reverting to Eq. 4, 
 
𝜕𝑥

2𝑓 − 𝑚𝜕𝑦𝑓 − 𝜎𝜕𝑧𝑓 = 0,  

4𝜕𝑥
3𝑓 + 𝛾𝜕𝑥𝑓 + 𝜕𝑡𝑓 + 𝜆𝜕𝑦𝑓 + ℎ𝜕𝑧𝑓 = 0.                             (11)  

 

If 𝑓 = 𝐵𝑒𝑥𝑝(−𝑘𝑥 + 𝑀𝑦 + 𝑁𝑧 + 𝑃𝑡) is a solution 
of Eq. 11, where 𝐵, 𝑘, 𝑀, 𝑁 are undetermined 
constants, then 
 
𝜕𝑥𝑓 = −𝑘𝑓,  𝜕𝑦𝑓 = 𝑀𝑓,  𝜕𝑡𝑓 = 𝑁𝑓, 𝜕𝑥

2𝑓 = −𝑘2𝑓,   

𝜕𝑥
3𝑓 = −𝑘2𝜕𝑥𝑓 = −𝑖𝑘3𝑓  

 

substitute them into Eq. 11, we get 
 

𝑀 =
𝑘2

2𝑚
, 𝑁 =

𝑘2

2𝜎
, 𝑃 = 4𝑘3 + 𝛾𝑘 −

𝜆𝑘2

2𝑚
−

ℎ𝑘2

2𝜎
.  

 

Therefore, the most general solution of 𝑓 is 
 

𝑓 = ∑ 𝑎𝑘𝑘 𝑒𝑥𝑝 [−𝑘𝑥 +
𝑘2

2𝑚
𝑦 +

𝑘2

2𝜎
𝑧 + (4𝑘3 + 𝛾𝑘 −        

𝜆𝑘2

2𝑚
−

ℎ𝑘2

2𝜎
)𝑡]  

≡ ∑ 𝑎𝑘𝑘 𝑒𝑥𝑝(𝜉𝑘),                                                                         (12) 
 

where, 
 

 𝜉𝑘 = −𝑘𝑥 +
𝑘2

2𝑚
𝑦 +

𝑘2

2𝜎
𝑧 + (4𝑘3 + 𝛾𝑘 −

𝜆𝑘2

2𝑚
−

ℎ𝑘2

2𝜎
)𝑡.       (13) 

 

The solution is applicable to all complex values of 
𝑘 and 𝑎𝑘  is a spectral function. When 𝑆 = 0 in Eq. 8, 
the relation 
 

𝑢́ = 𝑆́𝑥 = 2𝛷𝑥𝑥 = 2(
𝑓𝑥

𝑓
)𝑥 = 2

𝑓𝑥𝑥𝑓−𝑓𝑥
2

𝑓2
  

=
−2 ∑ 𝑎𝑘𝑘 𝑘2𝑒𝑥𝑝(𝜉𝑘) ∑ 𝑎𝑘𝑘 𝑒𝑥𝑝(𝜉𝑘)−[∑ 𝑎𝑘𝑘 𝑘𝑒𝑥𝑝(𝜉𝑘)]2

[∑ 𝑎𝑘𝑘 𝑒𝑥𝑝(𝜉𝑘)]2                       (14) 

 

is a solution of Eq. 1. It is evident that a specific 
selection of  𝑎𝑘  will yield particular solutions. To 
illustrate this point, consider the following example: 
let 𝑎𝑘 = 𝛿𝑘,𝑘1

+ 𝛿𝑘,𝑘2
, where, 

 

𝛿𝑘,𝑘𝑗
= {

1, 𝑘 = 𝑘𝑗 , 𝑗 = 1,2,

0, 𝑘 ≠ 𝑘𝑗 , 𝑗 = 1,2.
                   (15) 

 

We have  
 

𝑢1́ =
2[(𝑘1)2𝑒𝑥𝑝𝜉𝑘1+(𝑘2)2𝑒𝑥𝑝𝜉𝑘2](𝑒𝑥𝑝𝜉𝑘1+𝑒𝑥𝑝𝜉𝑘2)

(𝑒𝑥𝑝𝜉𝑘1+𝑒𝑥𝑝𝜉𝑘2)2   

        −
2[(𝑘1)𝑒𝑥𝑝𝜉𝑘1+(𝑘2)𝑒𝑥𝑝𝜉𝑘2]2

(𝑒𝑥𝑝𝜉𝑘1+𝑒𝑥𝑝𝜉𝑘2)2   

        =
2(𝑘1−𝑘2)2𝑒𝑥𝑝(𝜉𝑘1+𝜉𝑘2)

(𝑒𝑥𝑝𝜉𝑘1+𝑒𝑥𝑝𝜉𝑘2)2   

        =
2(𝑘1−𝑘2)2

(𝑒𝑥𝑝
𝜉𝑘1

−𝜉𝑘2
2

+𝑒𝑥𝑝
−𝜉𝑘1

−𝜉𝑘2
2

)2
  

        =
1

2
(𝑘1 − 𝑘2)2𝑠𝑒𝑐ℎ2 𝜉𝑘1−𝜉𝑘2

2
,                  (16) 

 
here, 

 

𝜉𝑘1
= −𝑘1𝑥 +

𝑘1
2

2𝑚
𝑦 +

𝑘1
2

2𝜎
𝑧 + (4𝑘1

3 + 𝛾𝑘1 −
𝜆𝑘1

2

2𝑚
−

ℎ𝑘1
2

2𝜎
)𝑡, 

𝜉𝑘2
= −𝑘2𝑥 +

𝑘2
2

2𝑚
𝑦 +

𝑘2
2

2𝜎
𝑧 + (4𝑘2

3 + 𝛾𝑘2 −
𝜆𝑘2

2

2𝑚
−

ℎ𝑘2
2

2𝜎
)𝑡,  (17) 

 
therefore 
 
𝜉𝑘1−𝜉𝑘2

2
= (𝑘2 − 𝑘1)𝑥 +

𝑘1
2−𝑘2

2

4𝑚
𝑦 +

𝑘1
2−𝑘2

2

4𝜎
𝑧  

+[2𝑘1
3 − 2𝑘2

3 +
𝛾

2
(𝑘1 − 𝑘2) +

𝛾

4𝑚
(𝑘2

2 − 𝑘1
2)  

+
ℎ

4𝜎
(𝑘2

2 − 𝑘1
2)]𝑡.    

 
We get 
 

𝑢1́ =
1

2
(𝑘1 − 𝑘2)2𝑠𝑒𝑐ℎ2{(𝑘2 − 𝑘1)𝑥 +

𝑘1
2−𝑘2

2

4𝑚
𝑦  

+
𝑘1

2−𝑘2
2

4𝜎
𝑧 + [2𝑘1

3 − 2𝑘2
3 +

𝛾

2
(𝑘1 − 𝑘2)  

+
𝛾

4𝑚
(𝑘2

2 − 𝑘1
2) +

ℎ

4𝜎
(𝑘2

2 − 𝑘1
2)]𝑡}.                   (18) 

 
It is a two-dimensional soliton with amplitude 

1

2
(𝑘1 − 𝑘2)2 and velocity 

 

𝑣𝑥 =
2𝑘1

3−2𝑘2
3+

𝛾

2
(𝑘1−𝑘2)+

𝛾

4𝑚
(𝑘2

2−𝑘1
2)+

ℎ

4𝜎
(𝑘2

2−𝑘1
2)

1

2
(𝑘2−𝑘1)

   

= −4(𝑘1
2 + 𝑘1𝑘2 + 𝑘2

2) − 𝛾 +
𝜆

2𝑚
(𝑘1 + 𝑘2)   

     +
ℎ

2𝜎
(𝑘1 + 𝑘2),  

𝑣𝑦 =
2𝑘1

3−2𝑘2
3+

𝛾

2
(𝑘1−𝑘2)+

𝛾

4𝑚
(𝑘2

2−𝑘1
2)+

ℎ

4𝜎
(𝑘2

2−𝑘1
2)

𝑘1
2−𝑘2

2

4𝑚

  

     =
8𝑚(𝑘1

2+𝑘1𝑘2+𝑘2
2)

𝑘1+𝑘2
+

2𝛾𝑚

𝑘1+𝑘2
− 𝜆 −

ℎ𝑚

𝜎
,  

𝑣𝑧 =
2𝑘1

3−2𝑘2
3+

𝛾

2
(𝑘1−𝑘2)+

𝛾

4𝑚
(𝑘2

2−𝑘1
2)+

ℎ

4𝜎
(𝑘2

2−𝑘1
2)

𝑘1
2−𝑘2

2

4𝜎

  

    =
8𝜎(𝑘1

2+𝑘1𝑘2+𝑘2
2)

𝑘1+𝑘2
+

2𝛾𝜎

𝑘1+𝑘2
− ℎ −

𝜆𝜎

𝑚
.  

 
In a similar fashion, if we let 𝑎𝑘  equal 𝛿𝑘,𝑘1

− 𝛿𝑘,𝑘2
 

we may similarly arrive at 
 

𝑢2́ = −
1

2
(𝑘1 − 𝑘2)2𝑐𝑠𝑐ℎ2{(𝑘2 − 𝑘1)𝑥 +

𝑘1
2−𝑘2

2

4𝑚
𝑦  

 +
𝑘1

2−𝑘2
2

4𝜎
𝑧 + [2𝑘1

3 − 2𝑘2
3 +

𝛾

2
(𝑘1 − 𝑘2)   

 +
𝛾

4𝑚
(𝑘2

2 − 𝑘1
2) +

ℎ

4𝜎
(𝑘2

2 − 𝑘1
2)]𝑡}.                   (19) 

 

The equation describes a new type of wave 
(solitons) in materials that behave differently 
depending on direction and have complex structures. 
These waves appear in diverse systems like layered 
fluids, plasmas, and engineered materials, with 
shapes such as blocks, spirals, or mixed patterns. 
Studying them helps improve models for predicting 
wave behavior in systems where direction and 
nonlinear effects are tightly linked. 

3. A new superposition formula 

To derive the superposition formula, it is 
necessary to let 𝑆1 be a solution generated by the 
Bäcklund transformation. From a known solution, 
designated as 𝑆0 and characterized by a specific 
spectral function, denoted by 𝑎1,𝑘 , a second solution, 

denoted by 𝑆2, is generated from 𝑤0 with a spectral 
function, denoted by 𝑎2,𝑘 . 𝑆3 constitutes a third 

solution that has been derived from 𝑆1 with a 
spectral function of 𝑎2,𝑘 . In accordance with the 
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established definition and the application of the 
Bäcklund transformation Eq. 10, we have 
 

(𝑆1 − 𝑆0)2 + 2(𝑆1 + 𝑆0)𝑥 − 2𝑚 ∫ (
𝑥

𝑆1 − 𝑆0)𝑦𝑑𝑥 −

2𝜎 ∫ (
𝑥

𝑆1 − 𝑆0)𝑧𝑑𝑥 = 0,                   (20) 

(𝑆2 − 𝑆0)2 + 2(𝑆2 + 𝑆0)𝑥 − 2𝑚 ∫ (
𝑥

⬚
𝑆2 − 𝑆0)𝑦𝑑𝑥 −

2𝜎 ∫ (
𝑥

⬚
𝑆2 − 𝑆0)𝑧𝑑𝑥 = 0,                   (21) 

(𝑆3 − 𝑆1)2 + 2(𝑆3 + 𝑆1)𝑥 − 2𝑚 ∫ (
𝑥

𝑆3 − 𝑆1)𝑦𝑑𝑥 −

2𝜎 ∫ (
𝑥

𝑆3 − 𝑆1)𝑧𝑑𝑥 = 0,                   (22) 

(𝑆3 − 𝑆2)2 + 2(𝑆3 + 𝑆2)𝑥 − 2𝑚 ∫ (
𝑥

𝑆3 − 𝑆2)𝑦𝑑𝑥 −

2𝜎 ∫ (
𝑥

𝑆3 − 𝑆2)𝑧𝑑𝑥 = 0.                   (23) 
 

The sum of Eqs. 20 and 23 is given by: 
 
(𝑆3 − 𝑆2)2 + (𝑆1 − 𝑆0)2 + 2(𝑆1 + 𝑆0 + 𝑆3 + 𝑆2)𝑥   

−2𝑚 ∫ (
𝑥

𝑆1 − 𝑆0 + 𝑆3 − 𝑆2)𝑦𝑑𝑥 − 2𝜎 ∫ (
𝑥

𝑆1 − 𝑆0 + 𝑆3 −

𝑆2)𝑧𝑑𝑥 = 0.                                     (24) 

 
The sum of Eqs. 21 and 22 is given by: 

 
(𝑆2 − 𝑆0)2 + (𝑆3 − 𝑆1)2 + 2(𝑆1 + 𝑆0 + 𝑆3 + 𝑆2)𝑥   

−2𝑚 ∫ (
𝑥

𝑆2 − 𝑆0 + 𝑆3 − 𝑆1)𝑦𝑑𝑥  

−2𝜎 ∫ (
𝑥

𝑆2 − 𝑆0 + 𝑆3 − 𝑆1)𝑧𝑑𝑥 = 0.                   (25) 
 

The difference between Eqs. 24 and 26 is given 
by: 
 
(𝑆3 − 𝑆2)2 + (𝑆1 − 𝑆0)2 − (𝑆2 − 𝑆0)2 − (𝑆3 − 𝑆1)2   

−4𝑚 ∫ (
𝑥

𝑆1 − 𝑆2)𝑦𝑑𝑥 − 4𝜎 ∫ (
𝑥

𝑆1 − 𝑆2)𝑧𝑑𝑥 = 0,   

i.e,  

 𝑆0𝑆2 − 𝑆3𝑆2 + 𝑆3𝑆1 − 𝑆0𝑆1 − 2𝑚 ∫ (
𝑥

𝑆1−𝑆2)𝑦𝑑𝑥 −

2𝜎 ∫ (
𝑥

𝑆1 − 𝑆2)𝑧𝑑𝑥 = 0.                   (26)  

 
Taking the difference of Eqs. 20 and 21, we get 

 
𝑆1

2 − 2𝑆1𝑆0 − 𝑆2
2 + 2𝑆2𝑆0 + 2(𝑆1 − 𝑆2)𝑥 + 

2𝑚 ∫ (
𝑥

𝑆2 − 𝑆1)𝑦𝑑𝑥 + 2𝜎 ∫ (
𝑥

𝑆2 − 𝑆1)𝑧𝑑𝑥 = 0.                 (27) 

 

Finally, taking the difference of Eqs. 26 and 27, 
we get 
 
𝑆0𝑆2 − 𝑆3𝑆2 + 𝑆3𝑆1 − 𝑆0𝑆1  
= 𝑆1

2 − 2𝑆1𝑆0 − 𝑆2
2 + 2𝑆2𝑆0 + 2(𝑆1 − 𝑆2)𝑥 ,  

i.e,   𝑆0 + 𝑆3 = 𝑆1 + 𝑆2 + 2
(𝑆1−𝑆2)𝑥

𝑆1−𝑆2
                  (28) 

 

is therefore the superposition formula we are 
searching for. 

It is evident that commencing from the initial 
state of 𝑆0 = 0, the subsequent states 𝑆1 and 𝑆2 are 
obtained through the application of the given 
equations, specifically Eq. 14. These states are 
characterized by the presence of spectral functions 
𝑎1,𝑘  and 𝑎2,𝑘 , respectively. These are designated as 

single-spectrum solutions. Subsequent insertion of 
these into the formula given by Eq. 28 yields a 
solution. The solution thus obtained is denoted by 𝑆3 
and comprises two spectral functions, both of which 
are 𝑎1,𝑘  and 𝑎2,𝑘 . This configuration is designated as 

a two-spectra solution. When we choose 𝑎1,𝑘  and 𝑎2,𝑘  

to be the special form that generates 2D solitary 
waves in Eqs. 18 and 19 are obtained, resulting in 𝑆3 

being a two-soliton solution in two dimensions. This 
solution constitutes a two-straight-line wavefront. 

4. A new soliton solution 

The Eq. 11 not only possesses the soliton 
solutions such as Eqs. 16 and 19, but also does the 
following solution 
 

𝑓 = ∑
𝑔𝑗𝑒

𝜃𝑗

1+𝑏𝑒
𝜃𝑗𝑗 ,                                                                   (29) 

 
where 𝑏 is a constant. When 𝑔𝑗 = 𝛿𝑗,𝑗1

+ 𝛿𝑗,𝑗2
, it is 

easy to find 
 
𝑓 = 𝐻 + 𝐺,  
𝑓𝑥 = 𝑗1𝑏𝐻2 − 𝑗1𝐻 + 𝑗2𝑏𝐺2 − 𝑗2𝐺,  
𝑓𝑥𝑥 = 2𝑗1

2𝑏2𝐻3 − 3𝑗1
2𝑏𝐻2 + 𝑗1

2𝐻 + 2𝑗2
2𝑏2𝐺3 − 3𝑗2

2𝑏𝐺2  
+𝑗2

2𝐺,                                       (30) 

 
where,  
 

𝐻 =
𝑒

𝜃𝑗1

1+𝑏𝑒
𝜃𝑗1

, 𝐺 =
𝑒

𝜃𝑗2

1+𝑏𝑒
𝜃𝑗2

.  

 

The solution in Eq. 29 describes a new type of 
organized wave patterns in materials where 
behavior depends on direction and dimensions. Its 
mathematical terms extend known solitons and 
kinks, allowing waves to move directionally, form 
combined shapes, and stay stable in complex 
materials. This research connects two fields 
(integrable systems and directional equations), 
helping control waves in engineered materials and 
natural systems like oceans or plasmas. Future work 
could study how these waves collide and test them in 
adjustable lab systems. 

Therefore, a new solution to Eq. 11 is given by 
 

𝑢3́ = 𝑆́𝑥 = 2Φ𝑥𝑥 = 2(
𝑓𝑥

𝑓
)𝑥 = 2

𝑓𝑥𝑥𝑓−𝑓𝑥
2

𝑓2   

=
2(2𝑗1

2𝑏2𝐻3−3𝑗1
2𝑏𝐻2+𝑗1

2𝐻+2𝑗2
2𝑏2𝐺3−3𝑗2

2𝑏𝐺2+𝑗2
2𝐺)

H+G
  

−2(
𝑗1𝑏𝐻2−𝑗1𝐻+𝑗2𝑏𝐺2−𝑗2𝐺

𝐻+𝐺
)2.                   (31) 

 

Similarly, when 𝑔𝑗 = 𝛿𝑗,𝑗1
− 𝛿𝑗,𝑗2

, it is easy to find 

𝑓 = 𝐻 − 𝐺, another new solution to Eq. 11 is given 
by 
 

𝑢4́ =
2(2𝑗1

2𝑏2𝐻3−3𝑗1
2𝑏𝐻2+𝑗1

2𝐻−2𝑗2
2𝑏2𝐺3+3𝑗2

2𝑏𝐺2−𝑗2
2𝐺)

𝐻+𝐺
  

−2(
𝑗1𝑏𝐻2−𝑗1𝐻−𝑗2𝑏𝐺2+𝑗2𝐺

𝐻+𝐺
)2.                   (32) 

5. Conclusions 

This paper constructs a Bäcklund transformation 
for the 3dKP equation using the Lax Pair and derives 
several soliton solutions and superposition formulas. 
The Lax Pair involves five arbitrary parameters, and 
by appropriately setting these parameters, the 
studied equation can be reduced to the KdV 
equation, the Boussinesq equation, and the KP 
equation.  
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Extending low-dimensional equations to high-
dimensional ones through the Bäcklund 
transformation method may become one of the 
future research directions. In summary, this paper 
obtains and discusses the Bäcklund transformation 
of a (3+1)-dimensional nonlinear evolution equation, 
along with several soliton solutions and iterative 
formulas, providing useful reference methods for 
related research.  

Our findings may offer valuable insights for 
solving similar high-dimensional nonlinear 
equations, contribute to understanding nonlinear 
phenomena, and have potential applications in fluid 
mechanics. 
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