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This study aims to forecast future rice production in Malaysia concerning 
national targets by comparing the effectiveness of three models: 
Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing, 
and Long Short-Term Memory (LSTM). Unlike ARIMA and Exponential 
Smoothing, which are based on predefined statistical assumptions, LSTM 
uses deep learning to detect complex, non-linear, and long-term patterns in 
time series data. The performance of these models, applied to Malaysia’s 
annual rice production data from 1960 to 2023, was evaluated using error 
measures such as Root Mean Squared Error (RMSE) and Mean Absolute 
Percentage Error (MAPE). Results showed that Double Exponential 
Smoothing produced the lowest error rates, making it the most accurate 
method for predicting rice production. While LSTM is considered a more 
advanced technique, it did not perform better than Double Exponential 
Smoothing in this case. The study concludes that predicted rice production 
levels are likely to fall below government targets over the next five years. 
This finding emphasizes the need to focus on sustainability strategies, such 
as reducing reliance on imports and enhancing domestic rice production. The 
results can guide policymakers in addressing future challenges, promoting 
sustainable agricultural practices, and ensuring Malaysia's long-term food 
security. Future research could explore using hybrid models in a multivariate 
setting and expanding datasets to compare regional and global rice 
production trends. 
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1. Introduction 

*Rice is significant in Malaysia, ranking third as 
the most vital crop after rubber and palm oil. It plays 
a pivotal role in Malaysians’ daily diet, being the 
country’s most widely cultivated and consumed 
grain (Dorairaj and Govender, 2023). Nonetheless, 
according to the Malaysian Adult Nutrition Survey, 
the adult population in Malaysia eats two and a half 
plates of rice on average per day. Rice production is 
concentrated in the Peninsular and Borneo Islands, 
with approximately 300,500 hectares dedicated to 
cultivation in the Malaysian Peninsular and 190,000 
hectares on Borneo Island. Malaysia has directed its 
self-sufficiency efforts toward the production of rice 
and paddy, crucial components of the nation’s staple 
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food and food crop. Over the Twelfth Malaysian Plan 
(2021–2025), the aim is to enhance the capacity of 
the Agro-food sector towards becoming more 
sustainable, resilient, and high-tech, ensuring 
national food security and driving economic growth. 

Asia has been producing more than 90% of the 
world’s rice, mostly in China, India, Indonesia, and 
Bangladesh, with smaller amounts remaining from 
Japan, Pakistan, and a few countries in  Southeast 
Asia. In addition, there are areas of Europe, South 
America, North America, and Australia where rice is 
also cultivated. After wheat, rice is the second most 
significant crop in the world, and Asia is both its 
greatest producer and consumer. The Malaysian 
government’s 2011–2012 National Agrofood Policy 
made it clear that more local rice production is 
necessary to meet the nation’s projected demands. 
However, it has not yet been demonstrated 
empirically to what extent this guarantees Malaysia’s 
food security. 

Based on Abidin et al. (2018),  the world has been 
facing the challenge of decreasing rice production, 
that influenced the increase in rice prices at the same 
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time. Hence, Malaysia is among the nations that have 
had to deal with the issue of surging rice prices. The 
price and availability of white rice in Malaysia have 
been the subject of discussion since July 2020, when 
India, the world’s largest supplier, declared it would 
immediately cease exporting any non-basmati rice to 
reduce the growing domestic rice price in their 
country. The price of rice soared, and people went 
into panicked buying out of worry that they would 
run out of this fundamental item. As a result, this 
created a fuss among the locals. 

The rising cost of imported rice in Malaysia has 
led consumers to shift toward cheaper locally 
produced rice. This situation has placed additional 
pressure on households that already struggle with 
the increasing cost of food. Since only about 70% of 
the country’s rice demand is met by domestic 
production, the Malaysian government has 
introduced plans to expand local cultivation. 
Recently, 5-kilogram and 10-kilogram bags of locally 
grown white rice have been purchased quickly, 
leaving many smaller shops and supermarkets with 
empty shelves. 

According to the managing director of Mydin 
Mohamed Holdings Bhd, the growing price gap 
between local and imported rice is the main reason 
for these shortages. In the past, imported rice was 
generally more expensive than local rice. Most 
imported white rice came from Thailand, Vietnam, 
India, and Cambodia. However, after Padiberas 
Nasional (Bernas), Malaysia’s main rice distributor, 
raised the retail price of imported rice by 36 percent 
on 1 September 2023, the difference became more 

noticeable, reflecting global price increases. As a 
result, demand for the cheaper local rice grew 
rapidly. At present, the price of 10 kilograms of 
white rice ranges between RM30 and RM70. 

Fig. 1 demonstrates the Global Rice prices rising 
from August 2022 to August 2023. In August, the 
Food and Agriculture Organization’s All Rice Price 
Index reached 142.4, up 31 percent from the 
previous year due to a global insufficiency of white 
rice and India’s rice export ban, which had been in 
place since July. Furthermore, the Agriculture and 
Food Security Minister announced further 
intervention measures to address the nation’s rice 
supply problem, namely giving the Federal 
Agricultural Marketing Authority (FAMA) orders to 
expand domestic white rice distribution to the 
countryside, including through retail establishments. 
In addition to that, the government had decided to 
subsidize imported white rice for Sabah and 
Sarawak by RM950 per metric ton starting on 5 
October 2023. This would allow Beras perintah 
import (BPI) to be purchased at a market price of 
RM31 per 10 kg. Local private-sector rice producers 
and distributors who have been controlling the food 
chain should work with FAMA to expedite the rice 
supply remedy. This implies that whenever 
necessary, such as in situations where there is an 
excess of supply, FAMA will be prepared to assist in 
reducing the expenses and duties associated with 
transportation and warehousing on behalf of the 
private sector. Simultaneously, the government can 
also function as an independent last-resort 
stockpiler. 

 

 
Fig. 1: Global rice prices are rising (FAO all rice price index) 

 
Although rice is a major staple crop and a 

primary source of nutrition for the Malaysian 
population, the industry continues to face challenges 
that limit its growth and efficiency. The 
inconsistency of rice production can be linked to 
factors such as unpredictable weather conditions, 
poor soil fertility, nutrient imbalances, limited 
awareness, and insufficient knowledge among 
farmers. With a growing population, the demand for 
rice has steadily increased. In 2023, Malaysia 
produced only 1.75 million metric tons (MT) of rice, 
while national consumption reached 2.91 million 
MT. This gap highlights the inability of domestic 
production to fully meet local demand, forcing 
greater reliance on imported rice. To safeguard food 

security and maintain economic stability, it is 
necessary to strike a balance between imports and 
domestic supply. Proactive measures must therefore 
be implemented to strengthen local rice production 
and reduce dependence on imports. 

Previous researchers have examined factors in 
agriculture such as meteorological parameters 
(Sharma et al., 2024), climate and soil conditions 
(Stetter and Cronauer, 2024), climate change (Habib-
ur-Rahman et al., 2022), and climate change 
perception and adaptation among farmers (Sassi et 
al., 2024). Unlike previous research that analyzes 
various factors, this research limits its scope to 
univariate time series models to forecast agriculture, 
focusing on model selection and accuracy. Annamalai 
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and Johnson (2023) explained a univariate time 
series analysis. A univariate analysis involves only 
one variable. A time series analysis examines a 
variable throughout time. Univariate time series 
analysis analyzes and forecasts a variable based on 
previous values and error factors. Example models 
that can be used to analyze univariate time series are 
ARIMA (Bezabih et al., 2023), Exponential Smoothing 
(Mgale et al., 2021; Nurviana et al., 2022; Bezabih et 
al., 2023), and Long Short-Term Memory (LSTM) 
(Banerjee et al., 2022; Saini et al., 2020; Wang et al., 
2022). There are also numerous previous articles 
that compare models. For example, Annamalai and 
Johnson (2023) determined that the ARIMA model is 
the best model to use after comparing the ARIMA, 
Holt’s exponential smoothing model, and Neural 
Network Autoregression (NNAR) model to analyze 
and forecast of area under cultivation of rice in India. 
Besides that, Nurviana et al. (2022) found that the 
Double Exponential Smoothing model is the best fit 
model after comparing ARIMA and Exponential 
Smoothing methods to forecast rice paddy 
production in Indonesia. In addition, Adiba et al. 
(2024) found that the LSTM-ARIMA hybrid is the 
best fit model after comparing it to the ARIMA, 
LSTM, and ARIMA-LSTM hybrid models to forecast 
rice production supplies in Indonesia.  

This research uses forecasting techniques to look 
at past and future trends in rice production to ensure 
the long-term sustainability of rice production, 
focusing on Malaysia. Observing the trend helps to 
predict future time series data values and provides 
insights into underlying patterns and relationships 
within the data. Other than that, compared to most of 
the previous researchers in Malaysia, we used 
the ARIMA method to forecast rice production and 
compare it with exponential smoothing and LSTM. 
We employed the exponential smoothing method as 
it is relatively simple and easy to implement. Besides 
that, we chose ARIMA as another model to compare 
because it was capable of handling various patterns, 
including trends, seasonality, and non-stationary 
behavior. Both ARIMA and exponential smoothing 
methods often excel more in handling time series 
data, which is particularly suitable for univariate 
time series data with well-defined patterns, 
requiring less data pre-processing and being more 
interpretable due to their statistical foundations. In 
addition, one of the machine learning models is the 
LSTM model, which was also compared in this 
research. LSTM is a popular technique for time series 
data classification, processing, and prediction since 
its feedback connections and ability to accommodate 
any input sequences (Wang et al., 2022). 

Hence, the research objective is to determine the 
best model to forecast the rice production in 
Malaysia between Box-Jenkins, Exponential 
Smoothing, and Long Short-Term Memory methods. 
Three models were examined to determine the best 
model. The model with the highest accuracy was 
chosen as the best model, as accuracy makes the 
result of forecasting the trend more precise. In 

addition, the objective of this research is to forecast 
the rice production in Malaysia five years ahead. 

2. Methodology 

In this study, two univariate time series methods 
were compared: the Box–Jenkins ARIMA model and 
the exponential smoothing method, which included 
both Single Exponential Smoothing and Double 
Exponential Smoothing. In addition, a machine 
learning approach, LSTM, was applied for 
comparison. The time series data on rice production 
were obtained from Index Mundi, a reliable 
commodity price index, and measured in MT. The 
secondary dataset consisted of annual rice 
production figures, covering 64 observations from 
1960 to 2023. 

2.1. ARIMA model 

The Box-Jenkins methodology is also known as 
the time series modeling approach (Yasmin and 
Moniruzzaman, 2024). It is particularly associated 
with the ARIMA modeling. ARIMA is a commonly 
utilized time series analysis and forecasting method 
that merges autoregressive and moving average 
components through differencing to achieve 
stationarity. In this research, we choose ARIMA due 
to its suitability for predicting future trends in a time 
series by leveraging its historical patterns. A basic 
illustration of the model, described by ARIMA(p, d, 
q), could be expressed as Eq. 1. 
 
𝑌𝑡

′ = 𝜇 + 𝜙1𝑌𝑡−1
′ + 𝜙2𝑌𝑡−2

′ + ⋯ + 𝜙𝑝𝑌𝑡−𝑝
′ + 𝜃1𝜀𝑡−1 +

𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡                    (1) 

 
where, 𝑌𝑡

′ = 𝑌𝑡 − 𝑌𝑡−1 and 𝜇 is constant value. Based 
on Fig. 2, there are three main phases that 
characterize the essential procedure of Box-Jenkins 
modeling, which are: 

 
1. Model Identification 
2. Model Estimation and Validation 
3. Model Application 

 
Before continuing with those steps, data 

partitioning should be done to ensure that the 
models generated are accurate and can be 
implemented on new data, which is essential to 
developing, validating, and assessing models. The 
data partitioning was allocated into two sections, 
specifically 80% of estimation and 20% of 
evaluation. The Autocorrelation function (ACF), 
partial autocorrelation function (PACF), and the Unit 
Root Test using the Augmented Dickey-Fuller (ADF) 
test can all be used to evaluate stationarity. The ADF 
test is employed to examine the stationarity of a time 
series, which is an underlying assumption for many 
statistical models in time series forecasting. 
Stationarity implies that the statistical parameters of 
the series remain unchanged over time. The 
existence of a unit root in a time series indicates non-
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stationarity, and the data series should undergo 
differencing to make the series stationary. 

 

Model Identification

Model Estimation

If pass: Apply Model

If fail: Revise Model
Model Validation:

Diagnostic & Statistical Tests
(Ljung-Box test, AIC, BIC)

 
Fig. 2: General stages in ARIMA modeling (Lazim, 2000)  

 
The hypothesis testing of the ADF test, and the 

decision rule of this test are provided below: 
 

H0: The production of rice yearly is not stationary 
H1: The production of rice yearly is stationary 

2.1.1. Model identification 

In this phase, the most appropriate model class 
was determined through the computation, analysis, 
and plotting of diverse metrics from past data, 
ensuring its suitability for application to the dataset. 
The level of differences necessary to accomplish 
stationarity in the time series was determined in this 
process. If the time series data is not stationary, a 
different process will take place. On the other hand, 
if the time series data is stationary, the procedure 
will proceed to the next step. Differencing is 
important as it helps to eliminate the trend 
component, remove seasonality, and remove 
autocorrelation. Therefore, making the data 
stationary. Listed below are the steps in the 
procedure of the process of model identification: 

 
1. Difference (I): The initial stage involves examining 

whether differencing is necessary to make the time 
series stationary. If the series manifests a trend or 
seasonality, applying differencing can stabilize 
both the mean and variance. The order of 
differencing can be identified when the data 
becomes stationary, and it must be confirmed by 
the ADF test. Based on Solo (1984), typically, the 
second order of differencing suffices for most 
economic time series. Consequently, the first 
differencing order is articulated as Eq. 2. 

 

∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1                     (2) 
 

First-order differencing is usually enough for 
handling time series data. However, second-order 
differencing can be required if the data shows erratic 
fluctuations or non-constant intervals. 

 
2.  ACF and PACF: After differencing, the ACF and 

PACF are examined to detect potential orders for 
the AR and MA components. 

 
3. Identification of orders: 

 
• Order of AR: The number of lag observations 

incorporated into the model 
• Degree of differencing: The number of different 

computations performed on the data to get 
stationarity 

• Order of MA: The window size of the moving 
average. 

2.1.2. Model estimation and validation 

In this phase, the primary goals are to achieve the 
best-fitting model and fulfill two essential objectives. 
The first one is that the predicted values should be 
nearly equivalent to the actual values. Then, the 
models should be parsimonious while providing a 
strong fit. When both objectives were successfully 
met, different statistical tests could be employed to 
evaluate the fitness and adequacy of the model. 
Several standard statistical measures, including 
Akaike’s Information Criterion, known as AIC, 
the Bayesian Information Criterion, known as BIC, 
the Ljung-Box Statistic, the Root Mean Square Error 
(RMSE), and the Mean Absolute Percentage Error 
(MAPE), were employed for the validation of ARIMA 
models. A common statistic used to assess an ARIMA 
model’s fitness is Akaike’s Information Criterion 
(AIC). It calculates how each additional term 
introduced to the model affects the likelihood. Thus, 
if the additional term does not increase the 
likelihood by a factor larger than the penalty, it is not 
justified to include it in the model. An AIC score 
below that of every other competing model indicates 
a greater fit for the model. Eq. 3 can be used to 
determine AIC.  

 

𝐴𝐼𝐶 = 𝑒
2𝑘

𝑇
∑ 𝑒𝑡

2𝑇
𝑡=1

𝑇
                     (3) 

 
where, k is the number of parameters estimated in 
the model; T is total number of observations in the 
data series. 

The Bayesian Information Criterion (BIC) is used 
to decide the models that provide perfect accurate 
prediction accuracy by achieving an equilibrium 
trade-off between the complexity of the model and 
its fitting accuracy. Compared to the AIC, the BIC 
penalizes the degrees of freedom as illustrated by 
the factor much more sharply. Based on the concept 
that the best model is the one with the lowest BIC 
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value, the AIC and BIC are similar. The BIC formula is 
provided as Eq. 4.  

 

𝐵𝐼𝐶 = 𝑇
𝑘

𝑇
∑ 𝑒𝑡

2𝑇
𝑡=1

𝑇
                     (4) 

 
where, k is the number of parameters in the 
estimated model, including the constant; T is total 
number of observations in the data series. 

2.1.3. Model adequacy checking 

Generally, a model is considered adequate if the 
residuals can improve projections. In other words, 
the residuals should be random, also known as white 
noise. The model is classified as inadequate if there 
are significant residual autocorrelations at low or 
seasonal lags, requiring the selection of a new or 
updated model. The Ljung-Box Q statistic provide the 
overall checking of model adequacy. The Q test 
statistics are represented as Eq. 5.  
 

𝑄 = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2(𝑒)

(𝑛−𝑘)
𝑚
𝑘=1                     (5) 

 

where, 𝑟𝑘
2(𝑒) is the residual autocorrelation at lag k; 

n is the number of residuals; k is the time lag; m is 
the amount of time lags to be tested 

It has m−r degrees of freedom and is 
approximately distributed as a chi-square random 
variable. If the p-value for the Q statistic is modest, 
the model can be declared as inadequate. A new or 
modified model should be discovered and analyzed 
until a good model is found. Two simple competing 
models might be able to accurately represent the 
data, and a decision could be made based on the type 
of forecast. Therefore, the hypothesis tests for the 
Ljung-Box test are: 

 
H0: The errors are random (white noise) 
H1: The errors are non-random (not white noise) 

2.1.4. Model application 

The final step involves identifying the best model. 
Additionally, it involves creating a system capable of 
managing the generated forecast values. The final 
model is regarded as suitable when it demonstrates 
randomness, identical distribution, and 
independence, with no serial correlation present in 
the error term. At that point, the model is ready to 
produce value. In the application phase of the ARIMA 
model, the finalized model is used to generate 
forecasts, which are then employed for strategic 
decision-making. 

The smallest value of AIC and BIC is frequently 
used to identify the best model among competing 
models. By weighing the model’s complexity against 
goodness of fit, these criteria assist in avoiding 
overfitting and choosing the model that best 
describes the data. 

The values between models are compared once 
the AIC and BIC for each model have been 
determined. In general, the model that exhibits the 

lowest AIC and BIC values is considered optimal 
since it represents the optimal balance between fit 
and complexity. 

Furthermore, the application of the Box-Jenkins 
methodology assumes that it addresses concerns 
related to the attributes of the original data series. 
Fundamentally, the assumption is made that the data 
is stationary. A series is considered stationary when 
it exhibits no discernible evolution over time. In 
simpler terms, the data series does not show the 
existence of a trendy component. 

2.2. Exponential smoothing 

Based on Fig. 3, the Basic Steps in the Exponential 
Model are as follows: 

 
1. Set the initial value: Firstly, assign the starting 

value of the exponential model. The initial value is 
a start-up value before the computation using 
the formula. Employ the first data point in the 
series as the initial value or the average of the first 
five data points as the starting point. 

2. Select parameter value: Then, determine the 
parameter values that are the best to minimize the 
error. 

3. Generate the error terms and error measures: Use 
statistical techniques to generate error terms and 
error measures. 

4. Calculate the error terms and error measures: 
Next, calculate the error terms such as MSE, RMSE, 
and MAPE for each forecasted value by subtracting 
the actual observed value from the forecasted 
value. Then, compare the collected error measure 
to appropriate benchmarks or thresholds. More 
accurate forecasts are shown by lower values of 
MSE, RMSE, and MAPE. 

 

Set the initial value(s)

Select the parameters value

Generate the error terms and error 
measures

Calculate the error terms and error 
measures

 
Fig. 3: General stages in exponential smoothing modelling 

(Lazim, 2000)  

 
This research used 2 techniques of Exponential 

Smoothing: 
 

1. Single Exponential Smoothing 
2. Double Exponential Smoothing 
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2.2.1. Single exponential smoothing 

A time series forecasting technique called Single 
Exponential Smoothing, also known as simple 
exponential smoothing, will forecast future values by 
utilizing a weighted average of historical 
observations. In modeling time series data, the most 
extensively utilized category of univariate methods 
is the exponential smoothing technique. This 
technique is particularly useful when the time series 
data shows a constant level with random 
fluctuations around that level. One of the advantages 
of using this technique is that it is easy to implement 
and computationally efficient. Single Exponential 
Smoothing is a simple yet effective technique for 
short-term forecasting when the time series data 
does not exhibit strong trends or seasonality. The 
single exponential smoothing equation can be 
derived by: 

 
1. Set the initial forecast value 
2. The forecast for the next period (t+1) is based on 

the current forecast Ft. The new forecast Ft+1 can 
be computed as Eq. 6. 

 
𝐹𝑡+1 = 𝛼𝑌𝑡 + (1 − 𝛼)𝐹𝑡                    (6) 
 

3. For any period (t+m), the forecast can be 
formulated as Eq. 7. 

 
 
𝐹𝑡+𝑚 = 𝛼𝑌𝑡+𝑚−1 + (1 − 𝛼)𝐹𝑡+𝑚−1                   (7) 
 

However, in practice, 𝐹𝑡+𝑚 for m > 1 is typically 
computed using the original equation. Therefore, the 
general equation for a single exponential smoothing 
method is given by Eq. 8. 

 
𝐹𝑡+𝑚 = 𝛼𝑌𝑡 + (1 − 𝛼)𝐹𝑡                    (8) 

 
where, 𝑌𝑡  is the actual value for the period of t, alpha 
is the unknown smoothing constant to be 
determined with a value range between 0 to 1, or 
0 ≤ 𝑎 ≤ 1 which is selected by the forecaster or 
determined by the data, and 𝐹𝑡+𝑚  is the single 
exponentially smoothed value in the period t+m, 
which is also defined as the forecast value when 
generated out of sample for m=1,2,3,... 

2.2.2. Double exponential smoothing 

Double Exponential Smoothing is a time series 
forecasting technique that extends basic exponential 
smoothing to address trends in data. It’s particularly 
useful when the time series exhibits both a level 
(average) and a trend component. This method 
involves two smoothing formulas, one for the level `t 
and one for the trend bt. When applying Double 
Exponential Smoothing for forecasting rice prices, 
historical rice price data will be used as the time 
series. The model would then update its estimates of 
the level and trend over time, thus providing 
forecasts for future periods. 

This method consists of four main equations. The 
equations were listed in Eqs. 9-12 as follows. Eq. 9 
represents the single exponentially smoothed value, 
while Eq. 10 evaluates the double exponentially 
smoothed value, which is denoted as 𝑆𝑡  and 𝑆𝑡

′, 
respectively. Eq. 11 measures the difference between 
the smoothed values, a and b, while Eq. 12 calculates 
the adjustment factor. 
 
𝑆𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡−1                    (9) 
𝑆𝑡

′ =  𝛼𝑆𝑡 + (1 − 𝛼)𝑆𝑡−1                   10) 
𝛼𝑡 =  2𝑆𝑡 − 𝑆𝑡

′                   (11) 

𝑏𝑡 =
𝛼

1−𝛼
𝑆𝑡 − 𝑆𝑡

′                   (12) 

 

From Eqs. 9-12, for each time, t, let 𝑆𝑡   be the 
exponentially smoothed value of 𝑌𝑡 , and 𝑆𝑡

′ be the 
double exponentially smoothed value of 𝑌𝑡  at 
the time, t. Determining the size of a constitutes an 
enormous difficulty when employing this technique. 
Thus, the solver is used to determine the value of a. 
Forecasts for m-step-ahead are calculated using Eq. 
13 for forecasting purposes.  

 
𝐹𝑡+1 = 𝛼𝑡 + 𝑏𝑡 × 𝑚               (13) 
 
where, 𝐹𝑡+1 is the forecast made period m made in 
period t, for m = 1,2,3,4, …. Therefore, for example, pf 
m=1, m=2, and so forth. When m initially starts with 
1, the forecast value is  

 
𝐹𝑡+1 = 𝛼𝑡 + 𝛽𝑡 × 1  

 
while for m=2,  

 
𝐹𝑡+1 = 𝛼𝑡 + 𝛽𝑡 × 2 

2.3. LSTM 

The LSTM model fully utilizes memory for 
forecasting time series data. The LSTM model’s gated 
and feedback-based cell architecture enables long-
term memory. Using autocorrelation in the time 
series allows for highly accurate and exact forecasts. 
LSTM is like Recurrent neural network (RNN) in that 
both use a feedback network to propagate 
information from past states, but their feedback 
networks differ. RNN processes all information 
recorded in previous memory cells, whereas LSTM 
prioritizes information depending on its importance 
for the next memory cell. There are three gates in the 
unit cell of LSTM, which are the input gate, output 
gate, and forget gate, along with one memory cell, as 
shown in Fig. 4.  

All gates and memory cells work together to 
transmit information to the next LSTM cell. The 
input gate determines that the information from the 
current state input must be added to the memory 
cell.  

The output gate selects useful information from 
the current memory state for the LSTM cell, while 
the forget gate selects relevant information from 
previous memory cells to keep in the current 
memory cell and discard unnecessary information. 
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The mathematical model describing the behavior of a 
single LSTM cell is shown in Eqs. 14-19.  

 
𝑓𝑡 = 𝜎(𝑊𝑓 . 𝑋𝑡 + 𝑈𝑓. 𝑆𝑡−1 + 𝑏𝑓)                 (14) 

𝑖𝑡 = 𝜎(𝑊𝑖 . 𝑋𝑡 + 𝑈𝑖 . 𝑆𝑡−1 + 𝑏𝑖)                 (15) 
𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . 𝑋𝑡 + 𝑈𝑐 . 𝑆𝑡−1 + 𝑏𝑐)                 (16) 

𝐶𝑡 = (𝑓𝑡 × 𝐶𝑡−1)(𝑖𝑡 + 𝐶̂𝑡 )                  (17) 

𝑂𝑡 = 𝜎(𝑊𝑂 . [𝑆𝑡−1, 𝑋𝑡] + 𝑏𝑜)                  (18) 
𝑆𝑡 = 𝑂𝑡  × tanh (𝐶𝑡)                  (19) 
 

where, 𝑓𝑡 , 𝑖𝑡 , 𝑂𝑡   represents the gate output of the 
LSTM cell; 𝑊𝑡 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑜  represents the weights of 
the LSTM cell; 𝑏𝑡 , 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜  represents the biases of 
the LSTM cell; 𝐶𝑡  represents the cell state; 𝜎 

represent a sigmoid activation function which 
squeezes the values between [0,1].  

The LSTM network’s weights are changed during 
training to achieve optimal results and minimize 
training errors. LSTM can transmit sequential 
historical patterns by keeping crucial information 
from the data. This research was carried out in 
Google Colab using Python coding. The data was 
preprocessed by normalizing it with Min-Max scaling 
to ensure numerical stability and organizing it into 
overlapping 5-year sequences with the target year as 
the output. The model was trained on 80% of the 
data, and the remaining 20% was evaluated using 
RMSE and MAPE. 

 

 
Fig. 4: LSTM cell architecture (Saini et al., 2020)  

 
2.4. Model comparison 

The assessment models will partition the data 
series into two segments. The initial segment, 
referred to as the estimation part, was employed for 
model estimation. The second segment is termed the 
validation segment, which is utilized to forecast the 
data series using the most accurately estimated 
model. One-fourth or twenty-five percent of the data 
is considered in the evaluation. The best-fitted model 
was found utilizing the RMSE and MAPE. 

The magnitude of forecast errors is the standard 
criterion used to assess the performance of 
prediction accuracy. The discrepancy between the 
observed value and the forecasted value produced 
by the model is known as an error or residual. It is 
defined mathematically as Eq. 20. 

 
𝑒𝑡 = 𝑌𝑡 − 𝐹𝑡                   (20) 

 
Error measures are employed to distinguish 

between a well-performing forecast and an 
inadequately modeled one. These metrics allocate a 
numerical evaluation of the model’s precision by 
measuring the difference between expected values 
and actual results. A tighter match between forecasts 
and actual data is indicated by a smaller error 
measure, which denotes a more dependable and 
efficient forecasting algorithm. On the other hand, a 
larger error measure indicates possible weaknesses 

in the model’s predictive ability by suggesting that 
the model’s forecasts deviate noticeably from the 
observed values. Therefore, error measures are 
essential for analyzing the effectiveness and 
performance of forecasting models. Various types of 
error metrics exist; however, this research 
concentrated more on the two famous metrics, 
which are RMSE as Eq. 21 and MAPE as Eq. 22.  

 

𝑅𝑀𝑆𝐸 =  √
∑ 𝑒𝑡

2

𝑛
                   (21) 

 

where, 𝑒 = 𝑦𝑖 − 𝑦̂𝑡; 𝑦𝑖  is the actual measurement at 
time, t; 𝑦̂𝑡  is the fitted value at time, t. 
 

𝑀𝐴𝑃𝐸 = ∑
|(

𝑒𝑡
𝑦𝑡

)×100|

𝑛
  𝑛

𝑡=1                   (22) 

 

where, |(
𝑒𝑡

𝑦𝑡
) × 100| is described as the fitted value’s 

absolute percentage error; 𝑛 is the useful data 
points.  

3. Results and discussion 

In Fig. 5, a trend line shows that rice production 
in Malaysia follows a positive linear trend. Thus, the 
trend analysis of rice production in Malaysia shows 
several distinct periods of change. The linear trend 
of average rice production in Malaysia from 1960 to 
2023 is captured by the equation y = 
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15.734x+792.99. On average, Malaysia’s rice 
production has increased by about 15.734 metric 
tons each year. The data is split into two parts, which 
are the estimation and evaluation parts. The first 

80% of the data is used for estimation, and the 20% 
for evaluation. After that, the ACF, PACF, and the 
Dicky-Fuller stationary test were used to assess 
the stationarity condition (Fig. 5). 

 

 
Fig. 5: Trend analysis for average production of rice in Malaysia 

 
Based on Fig. 6, the ACF plot shows coefficients 

steadily fade to zero, indicating a potential non-
stationary series. The PACF plot also suggests non-
stationarity as the initial lags are significantly 
different from zero. Thus, Fig. 6 confirms non-
stationarity. Hence, to address the non-stationarity, 
the initial differencing order known as d=1 was 
carried out to achieve stationarity. This process 
typically transforms the time series so that the mean 
and variance are constant over time, making it 
suitable for time series modeling techniques of 
ARIMA. 

 

 

 
Fig. 6: ACF and PACF of the time series production of rice 

data 

 
Fig. 7 shows the ACF and PACF results after the 

first order of differencing. The order of AR and MA 
was determined through a correlogram of ACF and 
PACF after the first order of differencing. The rice 
production fluctuates quickly at lag 1 for PACF, 
where the partial autocorrelation values turn 
negative, while for ACF, it fluctuates at lag 2, where 
the autocorrelation values turn negative. 

The ACF shows 2 significant spikes at lag 1 and 
lag 2, while the PACF shows 3 spikes at lag 1, lag 2, 
and lag 3, where it exceeds the 2 standard error 

lines. Since the PACF shows 3 spikes, the p-value for 
AR for the ARMA model is AR(3), which is p = 3, 
while the q-value for MA for the ARMA model is 
MA(2), which is q = 2 since the ACF shows 2 spikes. 
Since the difference is done once before, the value of 
d is 1. The ordering of p and q for AR and MA might 
vary. We tested only 5 models out of 10 models of 
ARIMA that have the lowest AIC and BIC, which are 
ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(1,1,1), 
ARIMA(2,1,1), ARIMA(2,1,2) ARIMA(2,1,3). 

 

 

 
Fig. 7: ACF and PACF of time series production of rice data, 

1st order differencing 

 
The Ljung-Box Q statistic are used to check 

whether there is any serial correlation among the 
residuals for each model based on the 5% level of 
significance. It is assumed that the residuals from a 
well-fitted model exhibit white noise properties. If 
the residuals are white noise, there should be no 
significant ACF and no significant PACF. As a result, 
in Table 1, the residuals satisfy the stationarity 
condition. The best model is selected from the lowest 
AIC and BIC values. From Table 1, ARIMA(0,1,1) 
shows the lowest AIC and BIC values compared to 
the other models. Therefore, ARIMA(0,1,1) is 
selected as the best model for fitting the rice 
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production with AIC and BIC of 566.0447 and 
562.49, respectively. Table 2 shows that Double 
Exponential Smoothing has the smallest value of 
MSE and RMSE when compared with Single 
Exponential Smoothing and ARIMA(0,1,1). Despite 
having the biggest MAPE value, the MAPE value for 

Double Exponential Smoothing is still relatively close 
to the other two methods, resulting in only a small 
difference. Therefore, Double Exponential Smoothing 
was chosen as the best model as it has the lowest 
overall error measures when compared with the 
other two models. 

 
Table 1: Summary of Ljung-Box, error, AIC, and BIC values 

Number Ljung-Box (p-value) Errors AIC BIC 
ARIMA(0,1,1) 0.19 White noise 566.04 562.39 
ARIMA(1,1,0) 0.08 White noise 567.67 564.01 
ARIMA(1,1,1) 0.13 White noise 569.87 565.31 
ARIMA(2,1,1) 0.20 White noise 570.79 563.47 
ARIMA(2,1,2) 0.09 White noise 792.29 808.01 
ARIMA(2,1,3) 0.25 White noise 576.55 565.58 

 
Table 2: Comparison of error measures between Box-

Jenkins and exponential smoothing 
Model RMSE MAPE 

Single exponential 24.61 60543.65 
Double exponential 22.3746 0.43 

ARIMA(0,1,1) 359.63 9.26 
LSTM 105.62 6.71 

 

The value and the plot of actual and forecasted 
yearly rice production in Malaysia using the Double 
Exponential Smoothing technique are stated in Table 
3 and Fig. 8. As we can see, the actual and the 
forecasted value of rice production do not much 
differ, and they were quite close to each other 
indicating that double exponential smoothing is an 
effective method for predicting the future trend of 
rice production. Nurviana et al. (2022) applied 
Exponential Smoothing and the ARIMA Box-Jenkins 
method to analyze rice paddy production in Aceh, 
Indonesia. The research found that the Double 
Exponential Smoothing model provided the best fit 
for the data pattern and was used to calculate Aceh’s 

rice paddy productivity. Therefore, Double 
exponential smoothing’s ability to account for trends 
makes it a powerful tool for forecasting in contexts 
where data exhibit clear trends, such as rice 
production in Aceh, Indonesia. The research 
supports this by demonstrating that this method 
best fits their data, leading to more accurate and 
reliable forecasts. Hence, the result is equivalent to 
supporting our result, as we get Double Exponential 
Smoothing as the best model. LSTM is not the best 
model for this data since the data is not large. Based 
on Staudemeyer and Morris (2019), LSTM can 
handle long time-dependent data with more than 
1000 time steps. 

 
Table 3: Forecast values for rice production in five years 

Year Forecast (MT) 
2024 1735.82 
2025 1740.69 
2026 1745.57 
2027 1750.45 
2028 1755.32 

 

 
Fig. 8: Time series plot of the actual values and the forecasted values (2024 – 2028) by using double exponential smoothing 

 
This research projects the values through 2028 

because the Ministry of Agriculture and Food 
Security stated the desired value in that year. The 
Agriculture and Food Security Ministry has 
established specific production targets for white rice, 
with a gradual increase expected to reach 2,224,229 
metric tons by 2028. However, the model forecasts 

indicate a lower production output than the 
ministry’s targets. This suggests that potential 
obstacles such as inefficiency in agricultural 
techniques, climate variability, or resource limits 
may impede the attainment of these goals. This will 
enable better planning and resource allocation, 
helping to increase production and reduce reliance 
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on imported rice. To overcome the inconsistencies 
and ensure sustainable rice production, this model 
offers accurate projections that aid in understanding 
and anticipating future rice production.  

The projected developments have important 
ramifications for stakeholders. Farmers can use 
these projections to enhance planting schedules and 
implement new techniques, while governments can 
use them to steer investments and reforms. 
Furthermore, agricultural supply chain participants 
can use forecasts to optimize operations, resulting in 
efficient distribution and market stability. By 
incorporating these findings, this study helps to 
promote sustainable agriculture methods and 
supports Malaysia’s long-term food security goals. 

4. Conclusions 

The main objective of the research was to 
determine the best model to forecast the rice 
production in Malaysia between ARIMA, Exponential 
Smoothing method, and Long Short-Term Memory 
Techniques throughout the year. Therefore, the 
models were fitted, and their performance was 
assessed via several error measures. Double 
Exponential Smoothing was found to outperform the 
other models in fitting rice production in Malaysia, 
compared to the other three models, since it has the 
smallest error measure value of RMSE and MAPE. 
This research also manages to forecast the future 
values of the production of rice for the next five 
years ahead using the best model obtained, which is 
Double Exponential Smoothing. The forecasted 
steady increase in rice production from 2024 to 
2028, rising from around 1800 metric tons to close 
to 1950 metric tons, provides significant benefits for 
investors, entrepreneurs, farmers, policymakers, 
consumers, and companies. By using both historical 
data and forecasts for the future, these stakeholders 
may maximize their operations and make well-
informed decisions. This research recommends 
analyzing using hybrid models and expanding the 
dataset to include regional and global rice 
production data. 

List of abbreviations 

ACF Autocorrelation function 
ADF Augmented Dickey-Fuller 
AIC Akaike's information criterion 
ARIMA Autoregressive integrated moving average 
BIC Bayesian information criterion 
BPI Beras perintah import 
FAMA Federal agricultural marketing authority 
FAO Food and agriculture organization 
LSTM Long short-term memory 
MAPE Mean absolute percentage error 
MSE Mean squared error 
MT Metric tons 
NNAR Neural network autoregression 
PACF Partial autocorrelation function 
RMSE Root mean squared error 
RNN Recurrent neural network 
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