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The Internet of Things (IoT) has transformed the connection between 
physical and digital systems by enabling continuous data exchange and 
communication. However, the rapid increase in IoT devices brings significant 
challenges due to limited memory, processing power, and low-energy 
communication standards. Addressing these resource constraints is essential 
for improving system performance. This review explores existing parallel 
processing techniques specifically developed for resource-limited IoT 
devices, including hardware and software approaches that aim to enhance 
efficiency and speed. A comprehensive analysis of the literature highlights 
the importance of parallel processing in overcoming these limitations. The 
paper also discusses key challenges, potential benefits, and future directions, 
aiming to guide further research toward more efficient use of computational 
resources in IoT environments. 
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1. Introduction 

*The Internet of Things (IoT), a term introduced 
by Kevin Ashton in 1999 (Ashton, 2009), describes a 
network of physical devices equipped with sensors, 
software, and related technologies that enable data 
collection and exchange (Chander and Kumaravelan, 
2019). While the idea was originally associated with 
RFID tags, it has since expanded to include a wide 
variety of distinct devices capable of autonomous 
communication. Through their integration, these 
smart devices form an intelligent system in which 
continuous data sharing improves performance and 
efficiency. As a major technological development, IoT 
extends the traditional Internet into a new 
computing model, supporting widespread 
connectivity and intelligent interaction among 
diverse devices (Atzori et al., 2017). IoT has received 
substantial recognition in recent years because of its 
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great potential across multiple sectors, notably 
automated transport, logistics, homes, cities, 
healthcare, environmental monitoring, 
infrastructure, Industry 4.0, and agriculture (Raj et 
al., 2021; Malik et al., 2021; Bibri, 2018; 
Krishnamoorthy et al., 2023). The devices are 
important to every IoT solution, as they are 
equipped with sensors, processors, and actuators 
that sense, gather, transmit, process, and react to 
input. These devices communicate with other 
devices, networks, and services based on data 
regulation and oversight, improving the 
effectiveness and performance of many enterprises 
and activities. IoT devices may exchange data and 
information with other computing systems and with 
one another, allowing for the monitoring, control, 
and optimization of activities, including energy 
management, manufacturing, logistics, and 
transportation (Ahmad and Zhang, 2021; Nižetić et 
al., 2020).  

IoT devices enable automated decision-making 
by combining data from many sources, further 
increasing production and effectiveness across 
various industries. IoT devices can be categorized 
into two types: resource-abundant devices, such as 
servers, PCs, tablets, and cellphones, and resource-
scarce devices, including industrial sensors, RFID 
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tags, and actuators (Fig. 1). The proliferation of IoT is 
expected to significantly impact the market by 
enhancing the efficiency of data exchange between 
all parties involved. As IoT technology becomes 

increasingly prevalent, it will lead to a more effective 
and seamless data transfer process across various 
sectors, optimizing communication and operational 
workflows. 

 

IoT Devices

Resource Abound Resource Constrained

HMI

 
Fig. 1: Two major kinds of IoT devices (Deep et al., 2022) 

 
However, by design, IoT devices are constrained 

by limited computational power, memory, energy, 
and bandwidth, presenting significant challenges for 
executing complex tasks. These devices often 
operate on low-power processors and have 
restricted memory capacities to maintain a small 
form factor and cost-effectiveness, limiting their 
ability to handle intensive computational processes. 
Due to reliance on batteries or energy-harvesting 
methods, energy constraints necessitate efficient 
power management strategies to prolong 
operational lifespan and maintain functionality in 
remote or inaccessible locations (Ijemaru et al., 
2022; Sanislav et al., 2021). Additionally, limited 
bandwidth hampers the ability to transmit large 
volumes of data, requiring optimized communication 
protocols to ensure data integrity and timely 
transmission (Makhdoom et al., 2019). Addressing 
these challenges necessitates innovative approaches 
such as edge computing, where data processing is 
offloaded to nearby edge servers, reducing the 
computational burden on individual devices. 

In this case, parallel processing emerges as a 
potent solution to address these challenges. By 
distributing computational tasks across multiple 
processing units, parallel processing can significantly 
improve the efficiency and speed of operations in 
resource-constrained IoT devices (Shuvo et al., 
2022). This approach not only accelerates data 
processing but also optimizes energy consumption, 
which is crucial for the prolonged operation of 
battery-powered IoT devices. The integration of 
parallel processing in IoT devices requires careful 
consideration of various factors. These include the 
architectural design of the devices, the nature of the 
tasks to be parallelized, and the communication 
overhead between processing units. Furthermore, 
strategies such as lightweight parallel algorithms, 
energy-efficient scheduling, and task offloading to 
more capable edge or cloud servers play a critical 
role in enhancing the capabilities of IoT devices. 

Despite significant advancements in parallel 
processing techniques for resource-constrained IoT 
devices, there remains a critical research gap in 

optimizing energy efficiency while maintaining high 
performance. Current literature predominantly 
focuses on enhancing computational speed and task 
distribution across multiple nodes; however, these 
approaches often neglect the substantial energy 
overhead associated with parallel processing in 
constrained environments. Moreover, the existing 
studies primarily address theoretical models or 
simulations rather than real-world applications, 
which leads to a need for more practical, scalable 
solutions for diverse IoT deployments. Addressing 
this gap requires a holistic approach that integrates 
energy-aware parallel processing algorithms with 
adaptive power management strategies explicitly 
tailored for IoT devices with limited computational 
and energy resources. 

The rest of the paper is structured as follows: 
Section 2 reviews the existing literature on resource-
constrained IoT and parallel processing. Section 3 
explores resource constraints and parallel 
processing techniques specific to IoT devices. Section 
4 presents detailed case studies and practical 
applications. Section 5 discusses the challenges and 
limitations faced in this domain, while Section 6 
outlines future research directions. Lastly, Section 7 
offers concluding remarks and summarizes the key 
findings. 

2. Literature review 

2.1. IoT 

An important step towards the development of 
IoT devices was the 1996 definition of IPv6, 
addressed by the Internet Engineering Task Force 
(IETF) (Deep et al., 2022). Meeting the ever-
increasing demands of the modern internet has been 
made possible by this breakthrough, and others like 
IPv6 low power wireless personal area network 
(6LoWPAN), and IEEE 802.15.4 (Khattak et al., 2023; 
Al-Kashoash et al., 2019). Ziegler et al. (2015) 
claimed that IPv6, with its vastly expanded address 
space, provides the scalability needed to 
accommodate the billions of IoT devices expected to 



Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35 

23 

 

come online. Additionally, IEEE 802.15.4 offers a 
reliable framework for low-rate wireless personal 
area networks, which are essential for IoT 
connectivity as exhibited by Fuentes-Samaniego et 
al. (2019). Meanwhile, 6LoWPAN enables IPv6 
packets to be sent and received over IEEE 802.15.4 
networks, bridging the gap between traditional IP 
networks and the resource-constrained networks 
typical of IoT environments. Together, these 
technologies form the backbone of the IoT, 
supporting a seamless and efficient network that can 
handle the complexity and scale of present-day 
Internet applications, as illustrated in Fig. 2. 
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Fig. 2: Background of IoT (Deep et al., 2022) 

However, the proliferation of IoT applications is 
revolutionizing industries, with enterprises 
increasingly recognizing their value. IoT will 
generate $14.4 trillion in value from 2013 to 2024, 
primarily through increased revenues and cost 
reductions. Manufacturing, retail trade, information 
services, and finance and insurance sectors are the 
primary beneficiaries, accounting for over half of this 
value. In the U.S., the services sector is poised to 
capture $4.6 trillion, while China's $1.8 trillion share 
is driven by its robust manufacturing growth.  

Advancements in foundational IoT technologies, 
including networks, software, hardware, and data 
processing, underpin this transformation (Allioui 
and Mourdi, 2023). Networks are evolving towards 
unobtrusive, wire-free communication, enhancing 
device-to-device interactions. IoT software 
development is increasingly focused on 
interoperability, security, and distributed 
intelligence, exemplified by Google’s $3.2 billion 
acquisition of Nest (Lee and Lee, 2015). Hardware 
innovations prioritize miniaturization and energy 
efficiency, while data processing techniques are 
becoming more context-aware and cognitive. These 
advances enable real-time analysis of vast data 
streams, which are crucial for applications like smart 
grids, environmental monitoring, and smart 
manufacturing. Optimized data processing is 
essential for making timely, informed decisions, 
underscoring its importance in the expanding IoT 
ecosystem. 

The evolution of IoT technologies across network 
architecture, software, hardware, and data 
processing is presented in Table 1, showing 
significant milestones from before 2010 through 
projections beyond 2024. 

 
Table 1: Advancement of IoT (Lee and Lee, 2015)   

 Before 2010 2010-2015 2015-2024 Beyond 2024 

Network Sensor networks 

Networks respond to their own needs 
Accuracy in monitoring network 

locations 
Networks that can withstand delays 

Utility and data storage networks 
Connectivity methods that combine 

Network context awareness 
Cognition in networks 

Networks that learn and fix 
themselves 

     

Software 
and 

algorithms 

Relational database integration 
IoT-oriented RDBMS 
Event-based platform 

Sensor middleware 
Sensor network middleware 

Proximity/Localized algorithms 

Transparent massive software 
components 

Programs that can be composed 
Social technology built on the IoT Next-

gen business apps built on IoT 

Goal-oriented software 
Distributed intelligence, 

problem-solving 
Things-to-Things 

collaboration environments 

Software tailored to users 
The invisible IoT 

Software that is easy to deploy 
Collaboration between things 

and humans 
The IoT for all 

     

Hardware 

RFID tags and some sensors 
Sensors are built into mobile 

devices 
NFC in mobile phones 

Smaller and cheaper MEMs 
technology 

Readers that support many protocols 
and standards. More sensors and 

actuators 
Safe, inexpensive tags (like Silent Tags) 

An increase in the number of sensors 
and operators 

Smart sensors (biochemical) 
More sensors and actuators 

(tiny sensors) 

Nanotechnology and novel 
materials 

     

Data 
processing 

Serial data processing 
Parallel data processing 

Quality of services 

Managing information while being 
mindful of energy, frequency, and 

spectrum 
Data processing setting adaptability 

Context-aware data 
processing and data 

responses 

Thinking things through and 
making improvements 

 

2.2. Constrained devices 

Embedded devices on the IoT ecosystem must 
possess both computational capabilities to perform 
their designated tasks and networking abilities to 
facilitate Internet integration. These devices, 

designed to be cost-effective, are often equipped 
with low-power embedded computational units, 
typically with limited storage and memory 
capacities. For instance, the RedBee EconoTAG, a 
representative low-power constrained device, offers 
96 KB of RAM (Sehgal et al., 2012). However, the 
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execution model of this device requires that the 
contents of its flash memory (excluding the 
bootloader) be copied to RAM before execution, 
further reducing the available memory for data 
storage. 

Given these stringent memory constraints, 
networking technologies for IoT devices must be 
designed with these limitations in mind (Amadeo et 
al., 2016). Therefore, identifying a minimal IP-based 
protocol set that can efficiently manage IoT devices 
is crucial. This protocol set must retain the essential 
features that ensure protocols remain recognizable 
and compatible with existing tools, thus enabling 
true interoperability across diverse devices. The 
challenge lies in balancing functionality with 
resource efficiency, ensuring that even with 
constrained memory and processing power, the 

devices can still communicate effectively within the 
IoT framework. 

To achieve this, protocols such as 6LoWPAN and 
CoAP (Constrained Application Protocol) are often 
employed (Devasena, 2016). Fossati and Tschofenig 
(2016) outlined TLS and DTLS profiles specifically 
designed for secure communication in IoT 
environments. He explained that DTLS (Datagram 
Transport Layer Security) is used to provide secure 
communication over UDP, maintaining a lightweight 
footprint suitable for constrained devices. By 
focusing on these minimal yet essential protocol sets, 
IoT devices can achieve the necessary functionality 
and interoperability while operating within their 
limited resource environments. Table 2 provides a 
summary of a few common low-power limited 
devices.  

 
Table 2: An overview of various devices with low power consumption (Sehgal et al., 2012) 

Type CPU RAM Flash/ROM 
Crossbow TelosB 16-Bit MSP430 10 KB 48 KB 

RedBee EconoTAG 32-Bit MC13224v 96 KB 128 KB 
Atmel AVR Raven 8-Bit ATMega1284P 16 KB 128 KB 
Crossbow Mica2 8-Bit ATMega 128L 4 KB 128 KB 

 

2.3. Parallel processing 

In the past decade, parallel computing has 
become a critical approach for optimizing 
performance in resource-constrained devices within 
the IoT sector. Unlike serial processing, which 
handles tasks sequentially, parallel computing 
divides tasks into smaller units that are processed 
simultaneously across multiple processing units, 
significantly reducing computation time, as 
illustrated in Kan et al. (2018). As shown in Fig. 3, 
Parallel computing using off-the-shelf methodologies 
like multi-threading and single-instruction-multiple-
data (SIMD) has been made much easier with the 
introduction of multi-core CPUs, GPUs, and cloud 
computing infrastructure. An example of such a 
framework is the one created by Raghavan and 
Waghmare (2002) for use in manufacturing 
applications; it combines a work-stealing scheduler 

with a tree-structured model to dynamically manage 
worker participation and integrates different, 
restricted computer resources. Mourtzis et al. (2016) 
presented that cloud computing improves process 
planning in decentralized assembly lines through 
real-time monitoring and task assignment. To 
efficiently decompose services and choose the best 
ones, (Tao et al., 2012), a parallel computing 
technique that outperformed conventional serial 
algorithms was presented. In the IoT sector, Sehgal 
et al. (2012) paralleled processing was utilized to 
manage resource-constrained devices while creating 
a model-driven parallel processing system based on 
user-defined functions to address similar challenges. 
These advancements underscore the transformative 
impact of parallel computing in managing and 
optimizing complex tasks in constrained 
environments. 
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Fig. 3: Parallel computing across multiple processors (Sehgal et al., 2012) 

 

Consequently, picking the correct system is 
crucial for implementing and testing a set of 
management for devices with limited resources. 
Parallel processing in the context of IoT for resource-

constrained environments involves the simultaneous 
execution of multiple tasks to optimize performance 
and efficiency (Jeyaraj et al., 2023; Khalil et al., 
2020). IoT devices, which frequently have 
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constrained memory, processing, and power 
resources, necessitate this strategy. By leveraging 
parallel processing, tasks such as data collection, 
processing, and transmission can be distributed 
across multiple nodes or cores, thus reducing latency 
and enhancing throughput. Efficient algorithms and 
protocols are designed to manage and synchronize 
these parallel tasks, ensuring the limited resources 
are utilized effectively without overwhelming the 
device. This not only improves the responsiveness 
and reliability of IoT systems but also extends the 
operational lifespan of devices by minimizing energy 
consumption and optimizing resource allocation. 

3. Parallel processing fundamentals and concepts 

3.1. Parallel processing architecture 

In parallel processing, numerous computations or 
processes are executed concurrently, making use of 
the processing capability of numerous processors to 
resolve issues more effectively. This approach is 
essential in modern computing to handle complex 
tasks and large data sets efficiently. There are 
several architectures within parallel processing, each 
designed to optimize specific types of workloads. 
The primary architectures include SIMD (Single 
Instruction, Multiple Data), MIMD (Multiple 
Instruction, Multiple Data), and SPMD (Single 
Program, Multiple Data). Each of these architectures 
has distinct characteristics and applications. 

3.1.1. SIMD 

SIMD is a parallel computing architecture that 
excels in concurrently applying a single instruction 
to numerous data points. This design is particularly 
advantageous for tasks requiring uniform operations 
on extensive data sets, such as image processing, 
matrix multiplication, and scientific simulations. 
SIMD is integrated into various hardware 
implementations, including vector processors and 
modern graphics processing units (GPUs) (Zhang et 
al., 2022), making it highly versatile. The key 
characteristics of SIMD include its ability to perform 
identical operations on all elements of a data set 
simultaneously, thereby achieving substantial data 
parallelism. This architecture is highly efficient in 
vector and matrix operations, delivering high 
throughput by processing large volumes of data 
swiftly. Additionally, the inclusion of SIMD units in 
processors enhances hardware efficiency with 
minimal overhead, significantly boosting 
performance without considerable complexity 
increases. 

3.1.2. MIMD 

MIMD architecture represents a highly flexible 
and scalable approach to parallel computing, 
allowing multiple processors to execute different 
instructions on different data simultaneously. This 

architecture excels in handling a broad spectrum of 
applications, ranging from complex simulations to 
running various programs concurrently on multi-
core processors. Key characteristics of MIMD include 
instruction parallelism, where different processors 
execute distinct instructions at the same time, and 
task parallelism, which is ideal for dividing tasks into 
independent subtasks, each requiring unique 
processing. The advantages of MIMD are notable: its 
flexibility accommodates complex, non-uniform 
workloads, while its scalability permits expansion by 
adding more processors, whether in a shared-
memory configuration like multi-core processors or 
within a distributed system such as clusters. This 
makes MIMD architecture a powerful choice for 
modern computing environments demanding high 
performance and versatility (Yuan et al., 2013). 

3.1.3. SPMD 

SPMD is a model for parallel computing in which 
numerous processors run the same program on 
separate data sets. Predominantly utilized in 
distributed memory systems, SPMD is a subset of the 
MIMD model. It allows each processor to run 
identical code while operating on distinct data 
segments, which facilitates significant parallelism. 
This approach is particularly advantageous for large-
scale numerical simulations and similar problems 
that can benefit from data partitioning. The 
uniformity in program execution simplifies the 
development and debugging processes compared to 
the more complex MIMD model. Consequently, SPMD 
offers a balance of simplicity and efficiency, making 
it a practical choice for achieving effective 
parallelism in various computational tasks. 

3.2. Parallel processing framework 

Parallel processing frameworks are essential for 
handling large-scale data processing tasks efficiently 
by distributing the workload across multiple 
computing nodes. Three prominent frameworks in 
this domain are MapReduce, Apache Spark, and 
Hadoop (Farhan et al., 2018). Each framework offers 
unique features and capabilities tailored to different 
types of data processing requirements. 

3.2.1. MapReduce 

To manage and generate massive data sets across 
vast clusters of computers, Google created the 
sophisticated programming paradigm and 
processing approach known as MapReduce. This 
approach breaks down distributed data processing 
into its two main components, Map and Reduce, 
which makes the process much easier to understand 
and implement. The input data is processed by the 
Map function, which then produces a set of 
intermediate key-value pairs. The final output is 
generated by merging all the intermediate values 
associated with the same key, which is done by the 
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Reduce function (Yang et al., 2007). Because of its 
famed scalability and fault tolerance, the MapReduce 
framework is ideal for processing data on a massive 
scale. Optimizing data distribution and parallel 
computation, MapReduce guarantees stability in the 
face of machine failures while efficiently processing 
massive amounts of data. 

3.2.2. Apache Spark 

Apache Spark is a powerful open-source unified 
analytics engine designed for large-scale data 
processing, enhancing the traditional MapReduce 
model to support a broader array of computations, 
including interactive queries and real-time stream 
processing. One of its standout features is in-
memory computing, which significantly accelerates 
data processing tasks compared to disk-based 
alternatives, making it capable of executing batch-
processing jobs up to 100 times faster than Hadoop 
MapReduce. Spark's ease of use is evident through 
its intuitive APIs available in Java, Scala, Python, and 
R, catering to a diverse group of developers. 
Additionally, Spark excels in advanced analytics, 
supporting complex operations such as machine 
learning, graph processing, and SQL queries (Ketu et 
al., 2020). This versatility and efficiency make 
Apache Spark a preferred choice for contemporary 
data engineering and analytics tasks, enabling 
organizations to handle diverse and large-scale data 
workloads with remarkable speed and simplicity. 

3.2.3. Hadoop 

Hadoop, developed by the Apache Software 
Foundation, is an open-source framework tailored 
for the distributed storage and processing of 
extensive datasets. It excels in scalability, seamlessly 
expanding from single servers to thousands of 
machines, each contributing local computation and 
storage capabilities. At its core, Hadoop comprises 
key components like the Hadoop Distributed File 
System (HDFS), which facilitates high-throughput 
data access by distributing large files across multiple 
machines (Ketu et al., 2020).  

YARN (Yet Another Resource Negotiator) 
efficiently manages cluster resources, ensuring 
optimal allocation and scheduling of users' 
applications. Additionally, Hadoop pioneered the 
MapReduce model, enabling parallel processing of 
massive data sets. Beyond its foundational elements, 
Hadoop boasts a rich ecosystem encompassing tools 
such as Hive for SQL queries, Pig for high-level data 
flows, and HBase for NoSQL database functionality 
(Ketu et al., 2020). This comprehensive suite makes 
Hadoop a robust solution for organizations seeking 
to manage, process, and derive insights from big data 
on scale. 

Fig. 4 shows a comparison between MapReduce 
tasks in Hadoop and the CEP operator chain used in 
Spark, demonstrating differences in data flow and 
processing logic (Kotenko et al., 2017). 

 

(src_ip,mac,src_port...) →

((src_ip,dst_ip,dst_port), 1)

Map 1

((src_ip,dst_ip,dst_port),(1,1,1,1))

→ ((src_ip,dst_ip,dst_port),4)

Reduce 1

((src_ip,dst_ip,dst_port),4)

→ ((src_ip,dst_ip),4)

Map 2

((src_ip,dst_ip),(4,3,1,2,4))→ 

((src_ip,dst_ip),5)

Reduce 2

Packets count

Ports count

(src_ip,mac,src_port...)

→ (src_ip,1)

Map 1

((src_ip,dst_ip),dst_port),(1,1,1,1))
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0, value>5.

Filter 1

Value (packets count)

((src_ip,dst_ip,dst_port),4)

→ ((src_ip,dst_ip),4)

Map 2

((src_ip,dst_ip),(4,3,1,2,4))→ 

((src_ip,dst_ip),5)

ReduceByKey2

((src_ip,dst_ip),5) →  { ((src_ip,dst_ip),5), value >10;
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Filter 2

Value (ports count)

a

b

 
Fig. 4: (a) MapReduce tasks for Hadoop data analysis, (b) CEP operator chain for Spark data analysis 

 

3.3. Parallel processing algorithms 

3.3.1. Parallel sorting algorithms 

Parallel sorting algorithms are tailored to 
efficiently handle the sorting of large datasets by 
leveraging concurrent processing across multiple 

processors or cores. Examples of such algorithms 
include Parallel Quicksort, which divides the array 
into smaller sub-arrays that are sorted concurrently 
and then merged to achieve the final sorted result 
(Amrahov et al., 2024). Another method, Parallel 
Mergesort, partitions the array into segments that 
are independently sorted in parallel and 
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subsequently merged into a fully sorted array. 
Additionally, Parallel Bitonic Sort employs a divide-
and-conquer approach, utilizing a specific sequence 
of comparisons to sort elements in parallel 
(Liyanage, 2017). These algorithms optimize sorting 
performance by distributing the computational load, 
thereby harnessing the capabilities of modern 
parallel computing architectures effectively. 

3.3.2. Parallel search algorithms 

Parallel search algorithms leverage the power of 
parallel processing to efficiently locate specific 
elements within datasets or graph structures. Among 
these algorithms, Parallel Binary Search stands out 
for its ability to distribute the search operation 
across multiple processors, employing binary search 
principles to swiftly pinpoint the target element. In 
contrast, Parallel Depth-First Search (DFS) harnesses 
parallelism to explore multiple paths concurrently 
within graph or tree structures, facilitating effective 
traversal and element discovery. Similarly, Parallel 
Breadth-First Search (BFS) operates by exploring 
nodes or elements level by level in parallel, ensuring 
comprehensive coverage of the graph or tree while 
optimally utilizing the computational resources (Liu 
and Huang, 2015). These algorithms exemplify the 
versatility and efficiency achieved through parallel 

processing techniques in the realm of search 
operations, catering to diverse application scenarios 
where speed and scalability are paramount. 

3.3.3. Parallel machine learning algorithms 

Parallel machine learning algorithms harness the 
power of distributed computing to expedite model 
training on extensive datasets. For instance, Parallel 
Gradient Descent distributes gradient computations 
across multiple processors, enabling simultaneous 
optimization of model parameters (Kennedy et al., 
2019). Similarly, Parallel Random Forest trains 
decision trees concurrently across multiple 
processors, amalgamating their outputs to achieve 
heightened accuracy. In the realm of deep learning, 
Parallel Neural Networks leverage parallel 
processing for batch training and inference, 
significantly enhancing the efficiency of training 
large-scale models (Kahira et al., 2021). These 
approaches not only accelerate computation but also 
facilitate handling vast amounts of data, making 
them pivotal in modern machine-learning 
applications where speed and scalability are 
paramount. Fig. 5 presents the overall concept of 
parallel processing using Hadoop and Spark, 
showing how data is collected, stored, and visualized 
for security analysis (Kotenko et al., 2017). 
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Fig. 5: Concept of parallel processing 

 

3.4. Comparative evaluation of parallel 
processing methods in IoT 

Existing parallel processing methods for IoT 
devices vary in architecture, efficiency, and 
suitability for constrained environments. Among the 
widely adopted paradigms are task parallelism, data 
parallelism, and model parallelism. Task parallelism 
divides the application into independent subtasks 

that run concurrently, often yielding high flexibility 
but requiring careful task scheduling to avoid load 
imbalance.  

Data parallelism, in contrast, is highly scalable 
and suitable for sensor data processing and real-time 
analytics but may incur significant communication 
overhead if data distribution is not optimized. The 
comparison is shown in Table 3.  

 
Table 3: Trade-offs of parallel processing methods in IoT 

Method/framework Strengths Limitations Suitability for IoT 

Task parallelism Flexible; simple logic separation Load imbalance; scheduling complexity Moderate 

Data parallelism 
High scalability; efficient for large data 

streams 
Communication overhead; data partitioning 

complexity 
High 

Model parallelism Enables large ML models in limited memory Synchronization issues; inter-device latency Moderate to High (Edge ML) 
MapReduce Fault-tolerant; reliable for batch jobs High latency; disk-based processing Low (edge/real-time apps) 

Apache Spark In-memory speed; rich analytics 
Memory-intensive; not suitable for low-power 

devices 
Moderate to High 

(Edge/Cloud) 
GPU acceleration High throughput for parallel tasks Power hungry; hardware dependency Low to Moderate 

Cloud offloading 
Vast resources; offloads computation from 

the device 
Latency; data privacy concerns High (non-real-time IoT) 
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3.5. Parallel processing techniques for IoT 
devices 

In the realm of IoT, where devices are often 
resource-constrained yet tasked with handling large 
amounts of data and complex computations, parallel 
processing techniques play a pivotal role in 
optimizing performance and efficiency. This section 
delves into several key methodologies employed in 
parallel processing for IoT devices. 

3.5.1. Task partitioning and offloading 

Task partitioning and offloading are crucial 
strategies in optimizing computational tasks across 
heterogeneous IoT devices. In IoT environments, 
where devices vary significantly in processing 
capabilities and memory, task partitioning enables 
efficient utilization of resources by breaking down 
complex tasks into smaller sub-tasks. These sub-
tasks can then be executed concurrently or 
sequentially across multiple devices or servers. This 
approach not only enhances performance but also 
balances the workload across the network, 
leveraging the strengths of each device or server 
involved. Offloading, on the other hand, involves 
transferring computationally intensive tasks from 
IoT devices to more powerful edge or cloud servers. 
This strategy helps alleviate the burden on IoT 
devices, reduces latency, and capitalizes on the 
superior computational capacity of centralized 

servers. The decision to offload tasks depends on 
dynamic factors such as network conditions, real-
time requirements, and energy constraints, ensuring 
optimal task execution efficiency. 

The framework for task partitioning and 
offloading typically includes three essential 
components: a profiler, a decision engine, and an 
offloading agent. The profiler plays a critical role in 
assessing the hardware conditions of IoT devices, 
network connectivity status, and energy 
consumption metrics required for task execution. 
This information forms the basis for decision-making 
within the framework. The decision engine utilizes 
models derived from application dependencies and 
optimization goals to determine the most effective 
partitioning and offloading strategy. By modeling 
task dependencies and evaluating cost models based 
on performance requirements, the decision engine 
selects appropriate algorithms for optimal task 
distribution. Subsequently, the offloading agent 
facilitates the actual transfer of tasks to remote 
servers, manages data exchange between devices 
and servers, and ensures seamless integration of 
results back into the application. Together, these 
components form a cohesive framework that 
enhances the efficiency, responsiveness, and 
scalability of IoT applications through intelligent 
task management and resource utilization. Fig. 6 
shows the general framework and workflow of task 
partitioning and offloading. 
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Fig. 6: Framework and workflow of task partitioning and offloading 

 

3.5.2. Data parallelism 

Data parallelism focuses on distributing extensive 
datasets across multiple processing units, enabling 
simultaneous computations on various data subsets. 
In the realm of IoT applications, where data streams 
are often immense and continuous, such as sensor 
readings and video feeds, data parallelism 
significantly enhances throughput and scalability. 
Dividing data processing tasks among numerous 
computing nodes or devices accelerates analytics 
and facilitates real-time decision-making. Common 
techniques for implementing data parallelism in IoT 
environments include map-reduce frameworks, 
distributed processing libraries like Apache Spark, 
and stream processing architectures. These 
methodologies allow for the concurrent execution of 

the same operation on different pieces of distributed 
data, resulting in substantial performance 
improvements in handling large datasets. 

The benefits of data parallelism are manifold. 
Firstly, it dramatically speeds up computation by 
processing multiple data points simultaneously, 
which is crucial for the timely analysis of vast IoT 
data streams. Secondly, it ensures efficient resource 
utilization by leveraging the processing capabilities 
of all available devices, thereby maximizing 
throughput. Finally, data parallelism offers 
impressive scalability; as data volumes grow, the 
parallel processing capacity can be expanded to 
maintain optimal performance. This scalability is 
essential in IoT environments where data influx is 
continuous and increasing, ensuring that processing 
power can keep pace with data generation rates. 
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3.5.3. Model parallelism 

Model parallelism provides a crucial solution for 
executing large machine learning (ML) models on 
resource-constrained IoT devices. Partitioning the 
model across multiple computing units allows for the 
parallel computation of different model segments, 
such as layers in neural networks. This distribution 
of tasks enables each device or server to handle a 
smaller portion of the model, thereby reducing the 
memory load and enhancing the speed of inference 
tasks. As a result, complex analytics become feasible 
at the edge of IoT networks, where individual 
devices might lack the capacity to process entire 
models independently (Kasarapu et al., 2023). This 
approach not only makes sophisticated ML 
applications accessible in resource-limited 
environments but also optimizes the utilization of 
available computational resources. 

The primary benefits of model parallelism 
include the ability to handle extremely large models 
that would otherwise exceed the memory capacity of 
a single device. By splitting the model into 
manageable parts, each device only needs to store 
and process a fraction of the overall model, leading 
to significant memory efficiency. Additionally, this 
distribution enhances performance by reducing 
training times, as multiple devices work 
concurrently on different parts of the model. This 
parallel processing capability is particularly valuable 
for training large-scale neural networks, where the 
demands for memory and computational power are 
substantial. Consequently, model parallelism not 
only enables the development and deployment of 
advanced ML models in memory-constrained 
settings but also fosters faster and more efficient 
training processes.  

3.5.4. A novel framework for adaptive parallel 
processing in IoT (APP-IoT) 

In the present work, we have proposed a new 
framework called Adaptive Parallel Processing for 
IoT (APP-IoT) (Deb et al., 2022). This framework is 
developed to address the limitations of traditional 
static processing techniques. The method enables 
context-aware, dynamic parallelism to deal with the 
constraints and capabilities of IoT environments. 
Unlike conventional models that rigidly apply a 
single type of parallelism, APP-IoT dynamically 
selects and adjusts parallel processing strategies, 
such as task, data, and model parallelism, based on 
real-time parameters including device memory, CPU 
load, battery levels, and network latency. The core of 
this framework is a lightweight context profiler that 
continuously monitors the status of each device and 
updates its execution profiles (Li et al., 2023). The 
profiles are then used by a parallel strategy selector, 
which determines the most energy-efficient and 
performance-optimized approach for a given 
computational task. The flowchart of APP-IoT is 
shown in Fig. 7. A resource-aware scheduler within 
APP-IoT maps subtasks to appropriate devices or 

edge/cloud nodes, factoring in limitations like 
battery life and communication overhead. Moreover, 
the framework combines a feedback optimization 
loop that refines task allocation strategies using 
performance metrics such as processing time, energy 
consumption, and latency (Mohammadabadi et al., 
2024). This loop introduces an element of adaptive 
learning, allowing the system to evolve its behavior 
across multiple execution cycles. As part of its 
classification, APP-IoT distinguishes between static, 
reactive, predictive, and collaborative parallelism 
models. Static parallelism is suited for predictable 
workloads with fixed topology, while reactive 
parallelism responds to real-time changes such as 
energy depletion or bandwidth drops. Predictive 
parallelism utilizes historical data and machine 
learning models to forecast optimal strategies, and 
collaborative parallelism enables multiple devices to 
jointly execute tasks and share partial results 
(Kushwaha et al., 2023). 
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Fig. 7: Adaptive parallel processing in IoT 

3.5.5. Energy-efficient parallel processing 
strategies 

Energy efficiency is a critical concern in IoT 
environments where devices often operate on 
constrained power sources such as batteries or 
energy-harvesting modules. The detailed analysis is 
shown in Table 4. When implementing parallel 
processing in such devices, traditional methods may 
inadvertently increase energy consumption due to 
increased processor usage, memory access, and 
inter-process communication. Therefore, specialized 
power-aware strategies are essential to balance 
performance with energy efficiency. One widely 
adopted method is dynamic voltage and frequency 
scaling (DVFS), which adjusts the processor’s 
operating frequency and voltage based on the 
computational load. The relationship is shown in Fig. 
8. Another effective approach is task offloading 
combined with energy profiling. Further, 
heterogeneous core utilization in multicore IoT 
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devices, where tasks are mapped based on energy 
profiles of individual cores, can minimize energy use. 
For example, high-load computations are assigned to 
high-performance cores, while background or less 
time-sensitive parallel tasks are executed on low-
power cores. Memory access also plays a major role 

in power consumption. Data locality optimization 
techniques such as loop tiling or memory-aware task 
partitioning reduce cache misses and DRAM 
accesses, which are major contributors to static 
power draw in parallel architectures (Kushwaha et 
al., 2023; Yang and Luo, 2023). 

 
Table 4: Energy-efficient parallel processing strategies 

Strategy Power saving Complexity Suitability 

DVFS High Low Sensor hubs 
Task offloading Moderate Moderate Edge devices 

Energy-aware scheduling High High Gateways 
Heterogeneous core usage Moderate Moderate Multicore IoT 

Memory optimization High Moderate All devices 
Energy-aware compiler Moderate High Advanced systems 
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Fig. 8: Energy-efficient strategies 

4. Case studies 

4.1. Big data processing 

The rapid expansion of IoT networks across 
various domains has underscored the necessity for 
robust security monitoring systems tailored to the 
unique requirements of these networks. Traditional 
security solutions often fall short due to the real-
time data analysis and minimal computational 
overhead demands inherent in IoT environments. 
Addressing this challenge, Kotenko et al. (2017) 
proposed a novel architecture leveraging Hadoop 
and Spark platforms for distributed parallel 
processing of big data to enhance resource-
constrained IoT network security. The architecture 
encompasses key components for data collection, 
storage, aggregation, normalization, analysis, and 
visualization, all of which operate "on-the-fly." 
Utilizing the Hadoop Distributed File System (HDFS) 
ensures reliable storage and swift data request 
processing, crucial for maintaining the system's 
efficiency within the computational constraints 
typical of IoT networks. 

An extensive experimental evaluation was 
conducted to assess the performance of the 
proposed system. Input data streams were 

synthesized from security events in a segment of an 
IoT network and an external database of real 
computer network traffic. Results demonstrated that 
the Hadoop-based implementation of the system 
achieved high-performance levels, often surpassing 
existing solutions.  

Furthermore, when deployed on the Spark 
platform, the system's performance surged 
approximately tenfold, provided adequate RAM was 
available. This significant improvement highlights 
the effectiveness of parallel processing in managing 
and analyzing vast amounts of IoT-generated data, 
offering a scalable and efficient solution for 
enhancing IoT network security. Table 5 displays the 
findings of the comparative evaluation conducted by 
Kotenko et al. (2017). 

4.2. Malware detection and resource 
optimization 

The widespread integration of IoT devices has 
significantly enhanced connectivity and 
computational capabilities, fostering seamless 
communication across networks. Despite their global 
deployment, IoT devices are frequently targeted for 
security breaches due to inherent vulnerabilities. 
Malware poses a particularly significant risk, 
exacerbated by the lack of built-in security features 
and limited resources, which complicate the 
implementation of effective detection techniques. 
Traditional methods often assume access to all 
device resources, an assumption impractical for IoT 
devices in critical real-world scenarios. Addressing 
this challenge, a novel approach to malware 
detection has been introduced by Kasarapu et al. 
(2024), leveraging resource and workload 
awareness inspired by model parallelism. Initially, a 
lightweight regression model assesses available 
resources for malware detection. Based on resource 
availability, ongoing workload, and communication 
costs, the detection task is dynamically allocated 
either on-device or offloaded to neighboring IoT 
nodes with sufficient resources. To ensure data 
integrity and user privacy, the classifier is divided 
and distributed across multiple nodes, integrating at 
the parent node for final detection. Experimental 
results demonstrate a substantial speedup of 9.8x 
compared to on-device inference while maintaining 
a high malware detection accuracy of 96.7%. 
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Table 5: Comparative evaluation of findings 
Considered systems Configuration of the computing 

platform 
Throughput of big data processing (events/sec) Solved tasks 

Vehicle traffic management system 
(Zygouras et al., 2015) 

Hadoop, Storm, and Esper; 3, 5, or 
7 VMs in the virtual cluster 

7.0×10⁴ to 9.0×10⁴ Managing the flow of 
commuting public vehicles 

Experimental system SASE++ 
(Zhang et al., 2014) 

Hadoop, optimizer 3.0×10⁵ to 7.0×10⁶ Ordering sets 

Medical information analysis 
system (Kim and Yu, 2015) 

Hadoop 1.2×10⁴ Analysis of medical records 

System of Kotenko et al. (2017) 
Hadoop, Spark; 3, 5, or 7 VMs in the 

virtual cluster 
Hadoop: 1.1×10⁵ to 2.1×10⁵; Spark: 2.7×10⁵ to 

1.5×10⁶ 
Network safety for the IoT 

 

Furthermore, the proposed approach combines 
adaptive model parallelism with resource 
optimization to enhance the performance of deep 
learning-based malware detection on IoT devices 
(Fig. 9).  

By converting IoT device firmware into image 
representations, the researchers utilize deep 
learning models for malware detection, tailored to 
the resource constraints of IoT devices. An adaptive 
model parallelism strategy dynamically partitions 

the deep learning model across multiple processing 
units, optimizing the use of available computing 
resources. Additionally, memory and energy 
optimization techniques further improve the 
system's overall performance. Comparative 
experiments reveal that this innovative approach 
significantly enhances the accuracy and efficiency of 
malware detection on IoT devices, outperforming 
traditional methods that do not leverage these 
advanced techniques. 
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Fig. 9: Model parallelism process (Kasarapu et al., 2024) 

 
5. Challenges and limitations 

The parallel processing of resource-constrained 
IoT devices poses several unique challenges, 
particularly in terms of scalability. As the number of 
IoT devices and sensors in a network increases, 
managing resource constraints becomes a critical 
issue. IoT devices often have limited processing 
power, memory, and energy, making it difficult to 
efficiently scale the network. Moreover, the increase 
in devices leads to higher data traffic, which can 
overwhelm network infrastructure, resulting in 
latency and potential data loss. Efficient data 
management is also a significant challenge, as 
handling the vast amount of data generated by 
numerous devices requires robust data processing 
and storage solutions. To address scalability, 
optimizing resource usage, employing edge 
computing strategies, and designing hierarchical 

architectures to distribute the processing load are 
essential (Hong and Varghese, 2019). 

Communication overhead is another major 
challenge in parallel processing for IoT devices. 
Frequent communication between devices can 
introduce network latency, especially in low-power 
and lossy networks typical of IoT environments. 
Communication is also the most energy-intensive 
operation for IoT devices, and excessive 
communication can quickly deplete the limited 
battery life of these devices (Sathish Kumar et al., 
2022; Tao et al., 2016). Additionally, ensuring data 
consistency and synchronization across multiple 
devices can be complex and resource-intensive, 
leading to potential delays and errors. To mitigate 
communication overhead, it is crucial to optimize 
communication protocols, reduce the frequency of 
data exchanges, and employ local processing to 
minimize the need for inter-device communication. 
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Programming complexity further complicates 
parallel processing tasks for resource-constrained 
IoT devices. The heterogeneity of IoT devices, which 
vary widely in hardware capabilities, operating 
systems, and communication protocols, makes 
developing standardized and interoperable software 
solutions challenging. Managing concurrent tasks 
and data flows on limited hardware requires 
advanced programming techniques and careful 
resource management. Debugging and testing are 
also more complex due to the interactions between 
multiple devices and the potential for non-
deterministic behavior. To address these 
complexities, developers can use middleware 
platforms, standardized protocols, and development 
frameworks specifically designed for IoT 
environments (Razzaque et al., 2015). Additionally, 
employing simulation tools can help in testing and 
debugging parallel processing applications before 
deployment. 

6. Future directions 

Edge computing offers a promising solution for 
enhancing parallel processing in IoT resource-
constrained devices. By processing data closer to the 
source, edge computing reduces latency, bandwidth 
usage, and the need for centralized data processing. 
This is particularly beneficial for IoT devices, which 
often operate in environments with limited 
connectivity and computational power. Integrating 
edge computing allows IoT devices to perform more 
complex parallel processing tasks locally, improving 
real-time decision-making and overall system 
efficiency (Escamilla-Ambrosio et al., 2018; Ray et 
al., 2019). Furthermore, edge computing can 
distribute workloads across multiple devices, 
optimizing resource utilization and enabling more 
robust parallel processing capabilities. 

Hardware acceleration is a critical avenue for 
enhancing parallel processing in IoT devices. 
Utilizing specialized hardware components, such as 
Graphics Processing Units (GPUs) and Field-
Programmable Gate Arrays (FPGAs), can 
significantly boost the processing power of IoT 
devices (Molanes et al., 2018). These components 
are designed to handle parallel tasks more efficiently 
than general-purpose CPUs, offering substantial 
performance improvements for compute-intensive 
applications (Teodoro et al., 2009). Implementing 
hardware acceleration in IoT devices can enable 
faster data processing, lower power consumption, 
and the ability to handle more complex tasks. This 
approach is particularly advantageous for resource-
constrained environments, where maximizing 
efficiency and performance is crucial. 

Energy efficiency is a paramount concern in IoT 
devices due to their often-limited power sources. 
Future advancements in parallel processing for IoT 
devices must prioritize energy efficiency to extend 
device lifespan and ensure sustainable operation. 
Techniques such as dynamic voltage and frequency 
scaling (DVFS), energy-aware scheduling, and low-

power design methodologies can be employed to 
optimize energy consumption during parallel 
processing tasks (Calore et al., 2017). Additionally, 
leveraging energy-efficient algorithms and hardware 
architectures tailored for IoT applications can 
further reduce power usage. By focusing on energy-
efficient parallel processing, IoT devices can achieve 
higher performance while maintaining low power 
consumption, making them more viable for long-
term deployment in diverse environments. 

Future research should also focus on developing 
lightweight and adaptive parallel processing 
frameworks specifically designed for embedded IoT 
hardware. Incorporating edge AI and federated 
learning can enable privacy-preserving model 
execution while reducing reliance on centralized 
infrastructure. Efforts should also target minimizing 
communication latency through optimized 
scheduling and protocol design, as well as leveraging 
hardware accelerators like GPUs, TPUs, and TinyML 
platforms for energy-aware execution. 

7. Conclusions 

The exploration of parallel processing techniques 
specifically tailored for resource-constrained IoT 
devices reveals significant advancements and 
notable research gaps. While existing methods have 
made strides in enhancing computational speed and 
task distribution, there remains a critical need to 
optimize energy efficiency without compromising 
performance. Current literature often focuses on 
theoretical models or simulations, with insufficient 
emphasis on practical, scalable solutions for diverse 
IoT deployments. 

To address this gap, a holistic approach 
integrating energy-aware parallel processing 
algorithms with adaptive power management 
strategies is essential. This approach should be 
tailored to the limited computational and energy 
resources of IoT devices. Key strategies such as task 
partitioning and offloading, data parallelism, and 
model parallelism offer promising avenues for 
improving performance and efficiency. Task 
partitioning and offload balance workloads across 
heterogeneous IoT environments, leveraging the 
strengths of both edge and cloud servers. Data 
parallelism enhances throughput and scalability by 
distributing extensive datasets across multiple 
processing units, facilitating real-time analytics. 
Model parallelism allows for the execution of large 
machine-learning models by partitioning tasks 
across multiple devices, optimizing memory load and 
inference speed. 

Case studies underscore the practical 
applications and benefits of these techniques. For 
instance, employing Hadoop and Spark platforms for 
distributed parallel processing significantly 
improves IoT network security, while adaptive 
model parallelism enhances malware detection 
efficiency and accuracy on IoT devices. Despite these 
advancements, challenges such as scalability, 
communication overhead, and programming 
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complexity persist. Addressing these issues requires 
optimizing resource usage, reducing communication 
frequency, and employing standardized protocols 
and development frameworks. 

Future research directions should focus on 
integrating edge computing to process data closer to 
the source, utilizing hardware acceleration for 
performance boosts, and prioritizing energy-efficient 
techniques to extend device lifespan. By advancing 
these areas, we can develop practical, scalable 
solutions that fully harness the potential of parallel 
processing for resource-constrained IoT devices, 
ensuring their viability for long-term deployment 
across diverse environments. 

List of abbreviations 

6LoWPAN 
IPv6 over low-power wireless personal area 
networks 

APP-IoT Adaptive parallel processing for IoT 
BFS Breadth-first search 
CEP Complex event processing 
CPU Central processing unit 
CoAP Constrained application protocol 
DFS Depth-first search 
DRAM Dynamic random-access memory 
DTLS Datagram transport layer security 
DVFS Dynamic voltage and frequency scaling 
FPGA Field-programmable gate array 
GPU Graphics processing unit 
HDFS Hadoop distributed file system 
IETF Internet engineering task force 
IP Internet protocol 
IPv6 Internet protocol version 6 
IoT Internet of Things 
MIMD Multiple instruction, multiple data 
ML Machine learning 
NFC Near-field communication 
PC Personal computer 
RAM Random-access memory 
RFID Radio-frequency identification 
ROM Read-only memory 
SIMD Single instruction, multiple data 
SPMD Single program, multiple data 
SQL Structured query language 
TLS Transport layer security 
TPU Tensor processing unit 
UDP User datagram protocol 
VM Virtual machine 
YARN Yet another resource negotiator 
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