
 International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

21

A review of parallel processing in resource-constrained Internet of Things
(IoT) devices

Nasser S. Albalawi 1, *, Abdulaziz Ghabash Alanazi 2, Sami Alshammari 3, Fahd Alhamazani 1, Amnah A.
Alshammari 2

1Department of Computer Science, Faculty of Computing and Information Technology, Northern Border University, Rafha, Saudi
Arabia
2Department of Information Systems, Faculty of Computing and Information Technology, Northern Border University, Rafha,
Saudi Arabia
3Department of Information Technology, Faculty of Computing and Information Technology, Northern Border University, Rafha,
Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 10 February 2025
Received in revised form
24 June 2025
Accepted 5 August 2025

The Internet of Things (IoT) has transformed the connection between
physical and digital systems by enabling continuous data exchange and
communication. However, the rapid increase in IoT devices brings significant
challenges due to limited memory, processing power, and low-energy
communication standards. Addressing these resource constraints is essential
for improving system performance. This review explores existing parallel
processing techniques specifically developed for resource-limited IoT
devices, including hardware and software approaches that aim to enhance
efficiency and speed. A comprehensive analysis of the literature highlights
the importance of parallel processing in overcoming these limitations. The
paper also discusses key challenges, potential benefits, and future directions,
aiming to guide further research toward more efficient use of computational
resources in IoT environments.

Keywords:
Internet of Things
Parallel processing
Resource constraints
IoT efficiency
Embedded systems

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*The Internet of Things (IoT), a term introduced
by Kevin Ashton in 1999 (Ashton, 2009), describes a
network of physical devices equipped with sensors,
software, and related technologies that enable data
collection and exchange (Chander and Kumaravelan,
2019). While the idea was originally associated with
RFID tags, it has since expanded to include a wide
variety of distinct devices capable of autonomous
communication. Through their integration, these
smart devices form an intelligent system in which
continuous data sharing improves performance and
efficiency. As a major technological development, IoT
extends the traditional Internet into a new
computing model, supporting widespread
connectivity and intelligent interaction among
diverse devices (Atzori et al., 2017). IoT has received
substantial recognition in recent years because of its

* Corresponding Author.
Email Address: nasser.albalawi@nbu.edu.sa (N. S. Albalawi)
https://doi.org/10.21833/ijaas.2025.09.003

 Corresponding author's ORCID profile:
https://orcid.org/0000-0002-5948-4260
2313-626X/© 2025 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

great potential across multiple sectors, notably
automated transport, logistics, homes, cities,
healthcare, environmental monitoring,
infrastructure, Industry 4.0, and agriculture (Raj et
al., 2021; Malik et al., 2021; Bibri, 2018;
Krishnamoorthy et al., 2023). The devices are
important to every IoT solution, as they are
equipped with sensors, processors, and actuators
that sense, gather, transmit, process, and react to
input. These devices communicate with other
devices, networks, and services based on data
regulation and oversight, improving the
effectiveness and performance of many enterprises
and activities. IoT devices may exchange data and
information with other computing systems and with
one another, allowing for the monitoring, control,
and optimization of activities, including energy
management, manufacturing, logistics, and
transportation (Ahmad and Zhang, 2021; Nižetić et
al., 2020).

IoT devices enable automated decision-making
by combining data from many sources, further
increasing production and effectiveness across
various industries. IoT devices can be categorized
into two types: resource-abundant devices, such as
servers, PCs, tablets, and cellphones, and resource-
scarce devices, including industrial sensors, RFID

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nasser.albalawi@nbu.edu.sa
https://doi.org/10.21833/ijaas.2025.09.003
https://orcid.org/0000-0002-5948-4260
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2025.09.003&domain=pdf&

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

22

tags, and actuators (Fig. 1). The proliferation of IoT is
expected to significantly impact the market by
enhancing the efficiency of data exchange between
all parties involved. As IoT technology becomes

increasingly prevalent, it will lead to a more effective
and seamless data transfer process across various
sectors, optimizing communication and operational
workflows.

IoT Devices

Resource Abound Resource Constrained

HMI

Fig. 1: Two major kinds of IoT devices (Deep et al., 2022)

However, by design, IoT devices are constrained

by limited computational power, memory, energy,
and bandwidth, presenting significant challenges for
executing complex tasks. These devices often
operate on low-power processors and have
restricted memory capacities to maintain a small
form factor and cost-effectiveness, limiting their
ability to handle intensive computational processes.
Due to reliance on batteries or energy-harvesting
methods, energy constraints necessitate efficient
power management strategies to prolong
operational lifespan and maintain functionality in
remote or inaccessible locations (Ijemaru et al.,
2022; Sanislav et al., 2021). Additionally, limited
bandwidth hampers the ability to transmit large
volumes of data, requiring optimized communication
protocols to ensure data integrity and timely
transmission (Makhdoom et al., 2019). Addressing
these challenges necessitates innovative approaches
such as edge computing, where data processing is
offloaded to nearby edge servers, reducing the
computational burden on individual devices.

In this case, parallel processing emerges as a
potent solution to address these challenges. By
distributing computational tasks across multiple
processing units, parallel processing can significantly
improve the efficiency and speed of operations in
resource-constrained IoT devices (Shuvo et al.,
2022). This approach not only accelerates data
processing but also optimizes energy consumption,
which is crucial for the prolonged operation of
battery-powered IoT devices. The integration of
parallel processing in IoT devices requires careful
consideration of various factors. These include the
architectural design of the devices, the nature of the
tasks to be parallelized, and the communication
overhead between processing units. Furthermore,
strategies such as lightweight parallel algorithms,
energy-efficient scheduling, and task offloading to
more capable edge or cloud servers play a critical
role in enhancing the capabilities of IoT devices.

Despite significant advancements in parallel
processing techniques for resource-constrained IoT
devices, there remains a critical research gap in

optimizing energy efficiency while maintaining high
performance. Current literature predominantly
focuses on enhancing computational speed and task
distribution across multiple nodes; however, these
approaches often neglect the substantial energy
overhead associated with parallel processing in
constrained environments. Moreover, the existing
studies primarily address theoretical models or
simulations rather than real-world applications,
which leads to a need for more practical, scalable
solutions for diverse IoT deployments. Addressing
this gap requires a holistic approach that integrates
energy-aware parallel processing algorithms with
adaptive power management strategies explicitly
tailored for IoT devices with limited computational
and energy resources.

The rest of the paper is structured as follows:
Section 2 reviews the existing literature on resource-
constrained IoT and parallel processing. Section 3
explores resource constraints and parallel
processing techniques specific to IoT devices. Section
4 presents detailed case studies and practical
applications. Section 5 discusses the challenges and
limitations faced in this domain, while Section 6
outlines future research directions. Lastly, Section 7
offers concluding remarks and summarizes the key
findings.

2. Literature review

2.1. IoT

An important step towards the development of
IoT devices was the 1996 definition of IPv6,
addressed by the Internet Engineering Task Force
(IETF) (Deep et al., 2022). Meeting the ever-
increasing demands of the modern internet has been
made possible by this breakthrough, and others like
IPv6 low power wireless personal area network
(6LoWPAN), and IEEE 802.15.4 (Khattak et al., 2023;
Al-Kashoash et al., 2019). Ziegler et al. (2015)
claimed that IPv6, with its vastly expanded address
space, provides the scalability needed to
accommodate the billions of IoT devices expected to

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

23

come online. Additionally, IEEE 802.15.4 offers a
reliable framework for low-rate wireless personal
area networks, which are essential for IoT
connectivity as exhibited by Fuentes-Samaniego et
al. (2019). Meanwhile, 6LoWPAN enables IPv6
packets to be sent and received over IEEE 802.15.4
networks, bridging the gap between traditional IP
networks and the resource-constrained networks
typical of IoT environments. Together, these
technologies form the backbone of the IoT,
supporting a seamless and efficient network that can
handle the complexity and scale of present-day
Internet applications, as illustrated in Fig. 2.

Wireless Sensor

Networks

(Zigbee, IEEE 802.15.4)

IPv6

(IPSec, Large

Addressing

Space)

6LoWPAN

(IPv6 over low power

WPAN)

Header Compression

Security (IPSec)
Zigbee Integration

IEEE 802.15.4

(Low Rate WPAN)

Encapsulation

Internet of Things

(Scalability, Low Power,

Low Cost)

Low Power

Low Communication Cost

Optimized

 IPv6

Routing

Fig. 2: Background of IoT (Deep et al., 2022)

However, the proliferation of IoT applications is
revolutionizing industries, with enterprises
increasingly recognizing their value. IoT will
generate $14.4 trillion in value from 2013 to 2024,
primarily through increased revenues and cost
reductions. Manufacturing, retail trade, information
services, and finance and insurance sectors are the
primary beneficiaries, accounting for over half of this
value. In the U.S., the services sector is poised to
capture $4.6 trillion, while China's $1.8 trillion share
is driven by its robust manufacturing growth.

Advancements in foundational IoT technologies,
including networks, software, hardware, and data
processing, underpin this transformation (Allioui
and Mourdi, 2023). Networks are evolving towards
unobtrusive, wire-free communication, enhancing
device-to-device interactions. IoT software
development is increasingly focused on
interoperability, security, and distributed
intelligence, exemplified by Google’s $3.2 billion
acquisition of Nest (Lee and Lee, 2015). Hardware
innovations prioritize miniaturization and energy
efficiency, while data processing techniques are
becoming more context-aware and cognitive. These
advances enable real-time analysis of vast data
streams, which are crucial for applications like smart
grids, environmental monitoring, and smart
manufacturing. Optimized data processing is
essential for making timely, informed decisions,
underscoring its importance in the expanding IoT
ecosystem.

The evolution of IoT technologies across network
architecture, software, hardware, and data
processing is presented in Table 1, showing
significant milestones from before 2010 through
projections beyond 2024.

Table 1: Advancement of IoT (Lee and Lee, 2015)

 Before 2010 2010-2015 2015-2024 Beyond 2024

Network Sensor networks

Networks respond to their own needs
Accuracy in monitoring network

locations
Networks that can withstand delays

Utility and data storage networks
Connectivity methods that combine

Network context awareness
Cognition in networks

Networks that learn and fix
themselves

Software
and

algorithms

Relational database integration
IoT-oriented RDBMS
Event-based platform

Sensor middleware
Sensor network middleware

Proximity/Localized algorithms

Transparent massive software
components

Programs that can be composed
Social technology built on the IoT Next-

gen business apps built on IoT

Goal-oriented software
Distributed intelligence,

problem-solving
Things-to-Things

collaboration environments

Software tailored to users
The invisible IoT

Software that is easy to deploy
Collaboration between things

and humans
The IoT for all

Hardware

RFID tags and some sensors
Sensors are built into mobile

devices
NFC in mobile phones

Smaller and cheaper MEMs
technology

Readers that support many protocols
and standards. More sensors and

actuators
Safe, inexpensive tags (like Silent Tags)

An increase in the number of sensors
and operators

Smart sensors (biochemical)
More sensors and actuators

(tiny sensors)

Nanotechnology and novel
materials

Data
processing

Serial data processing
Parallel data processing

Quality of services

Managing information while being
mindful of energy, frequency, and

spectrum
Data processing setting adaptability

Context-aware data
processing and data

responses

Thinking things through and
making improvements

2.2. Constrained devices

Embedded devices on the IoT ecosystem must
possess both computational capabilities to perform
their designated tasks and networking abilities to
facilitate Internet integration. These devices,

designed to be cost-effective, are often equipped
with low-power embedded computational units,
typically with limited storage and memory
capacities. For instance, the RedBee EconoTAG, a
representative low-power constrained device, offers
96 KB of RAM (Sehgal et al., 2012). However, the

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

24

execution model of this device requires that the
contents of its flash memory (excluding the
bootloader) be copied to RAM before execution,
further reducing the available memory for data
storage.

Given these stringent memory constraints,
networking technologies for IoT devices must be
designed with these limitations in mind (Amadeo et
al., 2016). Therefore, identifying a minimal IP-based
protocol set that can efficiently manage IoT devices
is crucial. This protocol set must retain the essential
features that ensure protocols remain recognizable
and compatible with existing tools, thus enabling
true interoperability across diverse devices. The
challenge lies in balancing functionality with
resource efficiency, ensuring that even with
constrained memory and processing power, the

devices can still communicate effectively within the
IoT framework.

To achieve this, protocols such as 6LoWPAN and
CoAP (Constrained Application Protocol) are often
employed (Devasena, 2016). Fossati and Tschofenig
(2016) outlined TLS and DTLS profiles specifically
designed for secure communication in IoT
environments. He explained that DTLS (Datagram
Transport Layer Security) is used to provide secure
communication over UDP, maintaining a lightweight
footprint suitable for constrained devices. By
focusing on these minimal yet essential protocol sets,
IoT devices can achieve the necessary functionality
and interoperability while operating within their
limited resource environments. Table 2 provides a
summary of a few common low-power limited
devices.

Table 2: An overview of various devices with low power consumption (Sehgal et al., 2012)

Type CPU RAM Flash/ROM
Crossbow TelosB 16-Bit MSP430 10 KB 48 KB

RedBee EconoTAG 32-Bit MC13224v 96 KB 128 KB
Atmel AVR Raven 8-Bit ATMega1284P 16 KB 128 KB
Crossbow Mica2 8-Bit ATMega 128L 4 KB 128 KB

2.3. Parallel processing

In the past decade, parallel computing has
become a critical approach for optimizing
performance in resource-constrained devices within
the IoT sector. Unlike serial processing, which
handles tasks sequentially, parallel computing
divides tasks into smaller units that are processed
simultaneously across multiple processing units,
significantly reducing computation time, as
illustrated in Kan et al. (2018). As shown in Fig. 3,
Parallel computing using off-the-shelf methodologies
like multi-threading and single-instruction-multiple-
data (SIMD) has been made much easier with the
introduction of multi-core CPUs, GPUs, and cloud
computing infrastructure. An example of such a
framework is the one created by Raghavan and
Waghmare (2002) for use in manufacturing
applications; it combines a work-stealing scheduler

with a tree-structured model to dynamically manage
worker participation and integrates different,
restricted computer resources. Mourtzis et al. (2016)
presented that cloud computing improves process
planning in decentralized assembly lines through
real-time monitoring and task assignment. To
efficiently decompose services and choose the best
ones, (Tao et al., 2012), a parallel computing
technique that outperformed conventional serial
algorithms was presented. In the IoT sector, Sehgal
et al. (2012) paralleled processing was utilized to
manage resource-constrained devices while creating
a model-driven parallel processing system based on
user-defined functions to address similar challenges.
These advancements underscore the transformative
impact of parallel computing in managing and
optimizing complex tasks in constrained
environments.

Overall

computing

tasks

Sub-task #1

Sub-task #2

Sub-task #S

t N t 2 t 1

.

.

.

.

.

.

Fig. 3: Parallel computing across multiple processors (Sehgal et al., 2012)

Consequently, picking the correct system is
crucial for implementing and testing a set of
management for devices with limited resources.
Parallel processing in the context of IoT for resource-

constrained environments involves the simultaneous
execution of multiple tasks to optimize performance
and efficiency (Jeyaraj et al., 2023; Khalil et al.,
2020). IoT devices, which frequently have

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

25

constrained memory, processing, and power
resources, necessitate this strategy. By leveraging
parallel processing, tasks such as data collection,
processing, and transmission can be distributed
across multiple nodes or cores, thus reducing latency
and enhancing throughput. Efficient algorithms and
protocols are designed to manage and synchronize
these parallel tasks, ensuring the limited resources
are utilized effectively without overwhelming the
device. This not only improves the responsiveness
and reliability of IoT systems but also extends the
operational lifespan of devices by minimizing energy
consumption and optimizing resource allocation.

3. Parallel processing fundamentals and concepts

3.1. Parallel processing architecture

In parallel processing, numerous computations or
processes are executed concurrently, making use of
the processing capability of numerous processors to
resolve issues more effectively. This approach is
essential in modern computing to handle complex
tasks and large data sets efficiently. There are
several architectures within parallel processing, each
designed to optimize specific types of workloads.
The primary architectures include SIMD (Single
Instruction, Multiple Data), MIMD (Multiple
Instruction, Multiple Data), and SPMD (Single
Program, Multiple Data). Each of these architectures
has distinct characteristics and applications.

3.1.1. SIMD

SIMD is a parallel computing architecture that
excels in concurrently applying a single instruction
to numerous data points. This design is particularly
advantageous for tasks requiring uniform operations
on extensive data sets, such as image processing,
matrix multiplication, and scientific simulations.
SIMD is integrated into various hardware
implementations, including vector processors and
modern graphics processing units (GPUs) (Zhang et
al., 2022), making it highly versatile. The key
characteristics of SIMD include its ability to perform
identical operations on all elements of a data set
simultaneously, thereby achieving substantial data
parallelism. This architecture is highly efficient in
vector and matrix operations, delivering high
throughput by processing large volumes of data
swiftly. Additionally, the inclusion of SIMD units in
processors enhances hardware efficiency with
minimal overhead, significantly boosting
performance without considerable complexity
increases.

3.1.2. MIMD

MIMD architecture represents a highly flexible
and scalable approach to parallel computing,
allowing multiple processors to execute different
instructions on different data simultaneously. This

architecture excels in handling a broad spectrum of
applications, ranging from complex simulations to
running various programs concurrently on multi-
core processors. Key characteristics of MIMD include
instruction parallelism, where different processors
execute distinct instructions at the same time, and
task parallelism, which is ideal for dividing tasks into
independent subtasks, each requiring unique
processing. The advantages of MIMD are notable: its
flexibility accommodates complex, non-uniform
workloads, while its scalability permits expansion by
adding more processors, whether in a shared-
memory configuration like multi-core processors or
within a distributed system such as clusters. This
makes MIMD architecture a powerful choice for
modern computing environments demanding high
performance and versatility (Yuan et al., 2013).

3.1.3. SPMD

SPMD is a model for parallel computing in which
numerous processors run the same program on
separate data sets. Predominantly utilized in
distributed memory systems, SPMD is a subset of the
MIMD model. It allows each processor to run
identical code while operating on distinct data
segments, which facilitates significant parallelism.
This approach is particularly advantageous for large-
scale numerical simulations and similar problems
that can benefit from data partitioning. The
uniformity in program execution simplifies the
development and debugging processes compared to
the more complex MIMD model. Consequently, SPMD
offers a balance of simplicity and efficiency, making
it a practical choice for achieving effective
parallelism in various computational tasks.

3.2. Parallel processing framework

Parallel processing frameworks are essential for
handling large-scale data processing tasks efficiently
by distributing the workload across multiple
computing nodes. Three prominent frameworks in
this domain are MapReduce, Apache Spark, and
Hadoop (Farhan et al., 2018). Each framework offers
unique features and capabilities tailored to different
types of data processing requirements.

3.2.1. MapReduce

To manage and generate massive data sets across
vast clusters of computers, Google created the
sophisticated programming paradigm and
processing approach known as MapReduce. This
approach breaks down distributed data processing
into its two main components, Map and Reduce,
which makes the process much easier to understand
and implement. The input data is processed by the
Map function, which then produces a set of
intermediate key-value pairs. The final output is
generated by merging all the intermediate values
associated with the same key, which is done by the

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

26

Reduce function (Yang et al., 2007). Because of its
famed scalability and fault tolerance, the MapReduce
framework is ideal for processing data on a massive
scale. Optimizing data distribution and parallel
computation, MapReduce guarantees stability in the
face of machine failures while efficiently processing
massive amounts of data.

3.2.2. Apache Spark

Apache Spark is a powerful open-source unified
analytics engine designed for large-scale data
processing, enhancing the traditional MapReduce
model to support a broader array of computations,
including interactive queries and real-time stream
processing. One of its standout features is in-
memory computing, which significantly accelerates
data processing tasks compared to disk-based
alternatives, making it capable of executing batch-
processing jobs up to 100 times faster than Hadoop
MapReduce. Spark's ease of use is evident through
its intuitive APIs available in Java, Scala, Python, and
R, catering to a diverse group of developers.
Additionally, Spark excels in advanced analytics,
supporting complex operations such as machine
learning, graph processing, and SQL queries (Ketu et
al., 2020). This versatility and efficiency make
Apache Spark a preferred choice for contemporary
data engineering and analytics tasks, enabling
organizations to handle diverse and large-scale data
workloads with remarkable speed and simplicity.

3.2.3. Hadoop

Hadoop, developed by the Apache Software
Foundation, is an open-source framework tailored
for the distributed storage and processing of
extensive datasets. It excels in scalability, seamlessly
expanding from single servers to thousands of
machines, each contributing local computation and
storage capabilities. At its core, Hadoop comprises
key components like the Hadoop Distributed File
System (HDFS), which facilitates high-throughput
data access by distributing large files across multiple
machines (Ketu et al., 2020).

YARN (Yet Another Resource Negotiator)
efficiently manages cluster resources, ensuring
optimal allocation and scheduling of users'
applications. Additionally, Hadoop pioneered the
MapReduce model, enabling parallel processing of
massive data sets. Beyond its foundational elements,
Hadoop boasts a rich ecosystem encompassing tools
such as Hive for SQL queries, Pig for high-level data
flows, and HBase for NoSQL database functionality
(Ketu et al., 2020). This comprehensive suite makes
Hadoop a robust solution for organizations seeking
to manage, process, and derive insights from big data
on scale.

Fig. 4 shows a comparison between MapReduce
tasks in Hadoop and the CEP operator chain used in
Spark, demonstrating differences in data flow and
processing logic (Kotenko et al., 2017).

(src_ip,mac,src_port...) →

((src_ip,dst_ip,dst_port), 1)

Map 1

((src_ip,dst_ip,dst_port),(1,1,1,1))

→ ((src_ip,dst_ip,dst_port),4)

Reduce 1

((src_ip,dst_ip,dst_port),4)

→ ((src_ip,dst_ip),4)

Map 2

((src_ip,dst_ip),(4,3,1,2,4))→

((src_ip,dst_ip),5)

Reduce 2

Packets count

Ports count

(src_ip,mac,src_port...)

→ (src_ip,1)

Map 1

((src_ip,dst_ip),dst_port),(1,1,1,1))

→ ((src_ip,dst_ip,dst_port),4)

ReduceByKey1

((src_ip,dst_ip,dst_port),4) → { ((src_ip,dst_ip,dst_port),4) value < 5;

0, value>5.

Filter 1

Value (packets count)

((src_ip,dst_ip,dst_port),4)

→ ((src_ip,dst_ip),4)

Map 2

((src_ip,dst_ip),(4,3,1,2,4))→

((src_ip,dst_ip),5)

ReduceByKey2

((src_ip,dst_ip),5) → { ((src_ip,dst_ip),5), value >10;

0, value £ 10.

Filter 2

Value (ports count)

a

b

Fig. 4: (a) MapReduce tasks for Hadoop data analysis, (b) CEP operator chain for Spark data analysis

3.3. Parallel processing algorithms

3.3.1. Parallel sorting algorithms

Parallel sorting algorithms are tailored to
efficiently handle the sorting of large datasets by
leveraging concurrent processing across multiple

processors or cores. Examples of such algorithms
include Parallel Quicksort, which divides the array
into smaller sub-arrays that are sorted concurrently
and then merged to achieve the final sorted result
(Amrahov et al., 2024). Another method, Parallel
Mergesort, partitions the array into segments that
are independently sorted in parallel and

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

27

subsequently merged into a fully sorted array.
Additionally, Parallel Bitonic Sort employs a divide-
and-conquer approach, utilizing a specific sequence
of comparisons to sort elements in parallel
(Liyanage, 2017). These algorithms optimize sorting
performance by distributing the computational load,
thereby harnessing the capabilities of modern
parallel computing architectures effectively.

3.3.2. Parallel search algorithms

Parallel search algorithms leverage the power of
parallel processing to efficiently locate specific
elements within datasets or graph structures. Among
these algorithms, Parallel Binary Search stands out
for its ability to distribute the search operation
across multiple processors, employing binary search
principles to swiftly pinpoint the target element. In
contrast, Parallel Depth-First Search (DFS) harnesses
parallelism to explore multiple paths concurrently
within graph or tree structures, facilitating effective
traversal and element discovery. Similarly, Parallel
Breadth-First Search (BFS) operates by exploring
nodes or elements level by level in parallel, ensuring
comprehensive coverage of the graph or tree while
optimally utilizing the computational resources (Liu
and Huang, 2015). These algorithms exemplify the
versatility and efficiency achieved through parallel

processing techniques in the realm of search
operations, catering to diverse application scenarios
where speed and scalability are paramount.

3.3.3. Parallel machine learning algorithms

Parallel machine learning algorithms harness the
power of distributed computing to expedite model
training on extensive datasets. For instance, Parallel
Gradient Descent distributes gradient computations
across multiple processors, enabling simultaneous
optimization of model parameters (Kennedy et al.,
2019). Similarly, Parallel Random Forest trains
decision trees concurrently across multiple
processors, amalgamating their outputs to achieve
heightened accuracy. In the realm of deep learning,
Parallel Neural Networks leverage parallel
processing for batch training and inference,
significantly enhancing the efficiency of training
large-scale models (Kahira et al., 2021). These
approaches not only accelerate computation but also
facilitate handling vast amounts of data, making
them pivotal in modern machine-learning
applications where speed and scalability are
paramount. Fig. 5 presents the overall concept of
parallel processing using Hadoop and Spark,
showing how data is collected, stored, and visualized
for security analysis (Kotenko et al., 2017).

Hadoop/Spark on the platform of virtualization

Data Collection Data Storage

Data Visualization Data Normalization and Analysis Data Aggregation

Generation of security

event data
HDFS

IP_src,

port_src,

IP_dst,

port_dst)

(IP_src,IP_dst,

the number of

packages on

different ports)

(IP_src,IP_dst,

the number of

packages on

different ports

more than set)

Database

Matrix of

(IP_src,IP_dst).

The number of

packages is

displayed in

color

Streams of bit data on

security events

Security

Administrator

Fig. 5: Concept of parallel processing

3.4. Comparative evaluation of parallel
processing methods in IoT

Existing parallel processing methods for IoT
devices vary in architecture, efficiency, and
suitability for constrained environments. Among the
widely adopted paradigms are task parallelism, data
parallelism, and model parallelism. Task parallelism
divides the application into independent subtasks

that run concurrently, often yielding high flexibility
but requiring careful task scheduling to avoid load
imbalance.

Data parallelism, in contrast, is highly scalable
and suitable for sensor data processing and real-time
analytics but may incur significant communication
overhead if data distribution is not optimized. The
comparison is shown in Table 3.

Table 3: Trade-offs of parallel processing methods in IoT

Method/framework Strengths Limitations Suitability for IoT

Task parallelism Flexible; simple logic separation Load imbalance; scheduling complexity Moderate

Data parallelism
High scalability; efficient for large data

streams
Communication overhead; data partitioning

complexity
High

Model parallelism Enables large ML models in limited memory Synchronization issues; inter-device latency Moderate to High (Edge ML)
MapReduce Fault-tolerant; reliable for batch jobs High latency; disk-based processing Low (edge/real-time apps)

Apache Spark In-memory speed; rich analytics
Memory-intensive; not suitable for low-power

devices
Moderate to High

(Edge/Cloud)
GPU acceleration High throughput for parallel tasks Power hungry; hardware dependency Low to Moderate

Cloud offloading
Vast resources; offloads computation from

the device
Latency; data privacy concerns High (non-real-time IoT)

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

28

3.5. Parallel processing techniques for IoT
devices

In the realm of IoT, where devices are often
resource-constrained yet tasked with handling large
amounts of data and complex computations, parallel
processing techniques play a pivotal role in
optimizing performance and efficiency. This section
delves into several key methodologies employed in
parallel processing for IoT devices.

3.5.1. Task partitioning and offloading

Task partitioning and offloading are crucial
strategies in optimizing computational tasks across
heterogeneous IoT devices. In IoT environments,
where devices vary significantly in processing
capabilities and memory, task partitioning enables
efficient utilization of resources by breaking down
complex tasks into smaller sub-tasks. These sub-
tasks can then be executed concurrently or
sequentially across multiple devices or servers. This
approach not only enhances performance but also
balances the workload across the network,
leveraging the strengths of each device or server
involved. Offloading, on the other hand, involves
transferring computationally intensive tasks from
IoT devices to more powerful edge or cloud servers.
This strategy helps alleviate the burden on IoT
devices, reduces latency, and capitalizes on the
superior computational capacity of centralized

servers. The decision to offload tasks depends on
dynamic factors such as network conditions, real-
time requirements, and energy constraints, ensuring
optimal task execution efficiency.

The framework for task partitioning and
offloading typically includes three essential
components: a profiler, a decision engine, and an
offloading agent. The profiler plays a critical role in
assessing the hardware conditions of IoT devices,
network connectivity status, and energy
consumption metrics required for task execution.
This information forms the basis for decision-making
within the framework. The decision engine utilizes
models derived from application dependencies and
optimization goals to determine the most effective
partitioning and offloading strategy. By modeling
task dependencies and evaluating cost models based
on performance requirements, the decision engine
selects appropriate algorithms for optimal task
distribution. Subsequently, the offloading agent
facilitates the actual transfer of tasks to remote
servers, manages data exchange between devices
and servers, and ensures seamless integration of
results back into the application. Together, these
components form a cohesive framework that
enhances the efficiency, responsiveness, and
scalability of IoT applications through intelligent
task management and resource utilization. Fig. 6
shows the general framework and workflow of task
partitioning and offloading.

Application Model

Interdependent

Subtask Model

Cost Model

Task Partitioning and Offloading

Decision Engine

Profiler

Offloading Agent

App. Req.

State Information

Decision

Result

Fig. 6: Framework and workflow of task partitioning and offloading

3.5.2. Data parallelism

Data parallelism focuses on distributing extensive
datasets across multiple processing units, enabling
simultaneous computations on various data subsets.
In the realm of IoT applications, where data streams
are often immense and continuous, such as sensor
readings and video feeds, data parallelism
significantly enhances throughput and scalability.
Dividing data processing tasks among numerous
computing nodes or devices accelerates analytics
and facilitates real-time decision-making. Common
techniques for implementing data parallelism in IoT
environments include map-reduce frameworks,
distributed processing libraries like Apache Spark,
and stream processing architectures. These
methodologies allow for the concurrent execution of

the same operation on different pieces of distributed
data, resulting in substantial performance
improvements in handling large datasets.

The benefits of data parallelism are manifold.
Firstly, it dramatically speeds up computation by
processing multiple data points simultaneously,
which is crucial for the timely analysis of vast IoT
data streams. Secondly, it ensures efficient resource
utilization by leveraging the processing capabilities
of all available devices, thereby maximizing
throughput. Finally, data parallelism offers
impressive scalability; as data volumes grow, the
parallel processing capacity can be expanded to
maintain optimal performance. This scalability is
essential in IoT environments where data influx is
continuous and increasing, ensuring that processing
power can keep pace with data generation rates.

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

29

3.5.3. Model parallelism

Model parallelism provides a crucial solution for
executing large machine learning (ML) models on
resource-constrained IoT devices. Partitioning the
model across multiple computing units allows for the
parallel computation of different model segments,
such as layers in neural networks. This distribution
of tasks enables each device or server to handle a
smaller portion of the model, thereby reducing the
memory load and enhancing the speed of inference
tasks. As a result, complex analytics become feasible
at the edge of IoT networks, where individual
devices might lack the capacity to process entire
models independently (Kasarapu et al., 2023). This
approach not only makes sophisticated ML
applications accessible in resource-limited
environments but also optimizes the utilization of
available computational resources.

The primary benefits of model parallelism
include the ability to handle extremely large models
that would otherwise exceed the memory capacity of
a single device. By splitting the model into
manageable parts, each device only needs to store
and process a fraction of the overall model, leading
to significant memory efficiency. Additionally, this
distribution enhances performance by reducing
training times, as multiple devices work
concurrently on different parts of the model. This
parallel processing capability is particularly valuable
for training large-scale neural networks, where the
demands for memory and computational power are
substantial. Consequently, model parallelism not
only enables the development and deployment of
advanced ML models in memory-constrained
settings but also fosters faster and more efficient
training processes.

3.5.4. A novel framework for adaptive parallel
processing in IoT (APP-IoT)

In the present work, we have proposed a new
framework called Adaptive Parallel Processing for
IoT (APP-IoT) (Deb et al., 2022). This framework is
developed to address the limitations of traditional
static processing techniques. The method enables
context-aware, dynamic parallelism to deal with the
constraints and capabilities of IoT environments.
Unlike conventional models that rigidly apply a
single type of parallelism, APP-IoT dynamically
selects and adjusts parallel processing strategies,
such as task, data, and model parallelism, based on
real-time parameters including device memory, CPU
load, battery levels, and network latency. The core of
this framework is a lightweight context profiler that
continuously monitors the status of each device and
updates its execution profiles (Li et al., 2023). The
profiles are then used by a parallel strategy selector,
which determines the most energy-efficient and
performance-optimized approach for a given
computational task. The flowchart of APP-IoT is
shown in Fig. 7. A resource-aware scheduler within
APP-IoT maps subtasks to appropriate devices or

edge/cloud nodes, factoring in limitations like
battery life and communication overhead. Moreover,
the framework combines a feedback optimization
loop that refines task allocation strategies using
performance metrics such as processing time, energy
consumption, and latency (Mohammadabadi et al.,
2024). This loop introduces an element of adaptive
learning, allowing the system to evolve its behavior
across multiple execution cycles. As part of its
classification, APP-IoT distinguishes between static,
reactive, predictive, and collaborative parallelism
models. Static parallelism is suited for predictable
workloads with fixed topology, while reactive
parallelism responds to real-time changes such as
energy depletion or bandwidth drops. Predictive
parallelism utilizes historical data and machine
learning models to forecast optimal strategies, and
collaborative parallelism enables multiple devices to
jointly execute tasks and share partial results
(Kushwaha et al., 2023).

Start

Context Profiler

Parallel

Strategy

Selector

Resource-

Aware

Scheduler

Task Execution

(Edge/Cloud)

Feedback

Optimization

Loop

End

Strategy

Update

Monitoring &

Metrics

Fig. 7: Adaptive parallel processing in IoT

3.5.5. Energy-efficient parallel processing
strategies

Energy efficiency is a critical concern in IoT
environments where devices often operate on
constrained power sources such as batteries or
energy-harvesting modules. The detailed analysis is
shown in Table 4. When implementing parallel
processing in such devices, traditional methods may
inadvertently increase energy consumption due to
increased processor usage, memory access, and
inter-process communication. Therefore, specialized
power-aware strategies are essential to balance
performance with energy efficiency. One widely
adopted method is dynamic voltage and frequency
scaling (DVFS), which adjusts the processor’s
operating frequency and voltage based on the
computational load. The relationship is shown in Fig.
8. Another effective approach is task offloading
combined with energy profiling. Further,
heterogeneous core utilization in multicore IoT

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

30

devices, where tasks are mapped based on energy
profiles of individual cores, can minimize energy use.
For example, high-load computations are assigned to
high-performance cores, while background or less
time-sensitive parallel tasks are executed on low-
power cores. Memory access also plays a major role

in power consumption. Data locality optimization
techniques such as loop tiling or memory-aware task
partitioning reduce cache misses and DRAM
accesses, which are major contributors to static
power draw in parallel architectures (Kushwaha et
al., 2023; Yang and Luo, 2023).

Table 4: Energy-efficient parallel processing strategies

Strategy Power saving Complexity Suitability

DVFS High Low Sensor hubs
Task offloading Moderate Moderate Edge devices

Energy-aware scheduling High High Gateways
Heterogeneous core usage Moderate Moderate Multicore IoT

Memory optimization High Moderate All devices
Energy-aware compiler Moderate High Advanced systems

Parallel Processing in IOT

Task Offloading

(Edge/Fog Execusion)

Energy-aware Scheduling

Heterogeneous Core

Utilization

Memory Optimization

(Data Locality, Caching)

Energy-Efficient

Parallel Execusion

Dynamic Voltage &

Frequency Scaling (DVFS)

Energy-aware Compiler &

Runtime

Adapt

Scheduling

Modify

Offloafing

Tune

DVFS

Fig. 8: Energy-efficient strategies

4. Case studies

4.1. Big data processing

The rapid expansion of IoT networks across
various domains has underscored the necessity for
robust security monitoring systems tailored to the
unique requirements of these networks. Traditional
security solutions often fall short due to the real-
time data analysis and minimal computational
overhead demands inherent in IoT environments.
Addressing this challenge, Kotenko et al. (2017)
proposed a novel architecture leveraging Hadoop
and Spark platforms for distributed parallel
processing of big data to enhance resource-
constrained IoT network security. The architecture
encompasses key components for data collection,
storage, aggregation, normalization, analysis, and
visualization, all of which operate "on-the-fly."
Utilizing the Hadoop Distributed File System (HDFS)
ensures reliable storage and swift data request
processing, crucial for maintaining the system's
efficiency within the computational constraints
typical of IoT networks.

An extensive experimental evaluation was
conducted to assess the performance of the
proposed system. Input data streams were

synthesized from security events in a segment of an
IoT network and an external database of real
computer network traffic. Results demonstrated that
the Hadoop-based implementation of the system
achieved high-performance levels, often surpassing
existing solutions.

Furthermore, when deployed on the Spark
platform, the system's performance surged
approximately tenfold, provided adequate RAM was
available. This significant improvement highlights
the effectiveness of parallel processing in managing
and analyzing vast amounts of IoT-generated data,
offering a scalable and efficient solution for
enhancing IoT network security. Table 5 displays the
findings of the comparative evaluation conducted by
Kotenko et al. (2017).

4.2. Malware detection and resource
optimization

The widespread integration of IoT devices has
significantly enhanced connectivity and
computational capabilities, fostering seamless
communication across networks. Despite their global
deployment, IoT devices are frequently targeted for
security breaches due to inherent vulnerabilities.
Malware poses a particularly significant risk,
exacerbated by the lack of built-in security features
and limited resources, which complicate the
implementation of effective detection techniques.
Traditional methods often assume access to all
device resources, an assumption impractical for IoT
devices in critical real-world scenarios. Addressing
this challenge, a novel approach to malware
detection has been introduced by Kasarapu et al.
(2024), leveraging resource and workload
awareness inspired by model parallelism. Initially, a
lightweight regression model assesses available
resources for malware detection. Based on resource
availability, ongoing workload, and communication
costs, the detection task is dynamically allocated
either on-device or offloaded to neighboring IoT
nodes with sufficient resources. To ensure data
integrity and user privacy, the classifier is divided
and distributed across multiple nodes, integrating at
the parent node for final detection. Experimental
results demonstrate a substantial speedup of 9.8x
compared to on-device inference while maintaining
a high malware detection accuracy of 96.7%.

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

31

Table 5: Comparative evaluation of findings
Considered systems Configuration of the computing

platform
Throughput of big data processing (events/sec) Solved tasks

Vehicle traffic management system
(Zygouras et al., 2015)

Hadoop, Storm, and Esper; 3, 5, or
7 VMs in the virtual cluster

7.0×10⁴ to 9.0×10⁴ Managing the flow of
commuting public vehicles

Experimental system SASE++
(Zhang et al., 2014)

Hadoop, optimizer 3.0×10⁵ to 7.0×10⁶ Ordering sets

Medical information analysis
system (Kim and Yu, 2015)

Hadoop 1.2×10⁴ Analysis of medical records

System of Kotenko et al. (2017)
Hadoop, Spark; 3, 5, or 7 VMs in the

virtual cluster
Hadoop: 1.1×10⁵ to 2.1×10⁵; Spark: 2.7×10⁵ to

1.5×10⁶
Network safety for the IoT

Furthermore, the proposed approach combines
adaptive model parallelism with resource
optimization to enhance the performance of deep
learning-based malware detection on IoT devices
(Fig. 9).

By converting IoT device firmware into image
representations, the researchers utilize deep
learning models for malware detection, tailored to
the resource constraints of IoT devices. An adaptive
model parallelism strategy dynamically partitions

the deep learning model across multiple processing
units, optimizing the use of available computing
resources. Additionally, memory and energy
optimization techniques further improve the
system's overall performance. Comparative
experiments reveal that this innovative approach
significantly enhances the accuracy and efficiency of
malware detection on IoT devices, outperforming
traditional methods that do not leverage these
advanced techniques.

1

2

34

(c)Machine Learning Model

Regressor

Model Parameters

(b)

HPC

Data

Binary

Files

Grayscale

converter
Grayscale

images

GAN

Synthetic

data

Internet

WiFi

1 2 3 4

Resources

Model

Parallelism

Fig. 9: Model parallelism process (Kasarapu et al., 2024)

5. Challenges and limitations

The parallel processing of resource-constrained
IoT devices poses several unique challenges,
particularly in terms of scalability. As the number of
IoT devices and sensors in a network increases,
managing resource constraints becomes a critical
issue. IoT devices often have limited processing
power, memory, and energy, making it difficult to
efficiently scale the network. Moreover, the increase
in devices leads to higher data traffic, which can
overwhelm network infrastructure, resulting in
latency and potential data loss. Efficient data
management is also a significant challenge, as
handling the vast amount of data generated by
numerous devices requires robust data processing
and storage solutions. To address scalability,
optimizing resource usage, employing edge
computing strategies, and designing hierarchical

architectures to distribute the processing load are
essential (Hong and Varghese, 2019).

Communication overhead is another major
challenge in parallel processing for IoT devices.
Frequent communication between devices can
introduce network latency, especially in low-power
and lossy networks typical of IoT environments.
Communication is also the most energy-intensive
operation for IoT devices, and excessive
communication can quickly deplete the limited
battery life of these devices (Sathish Kumar et al.,
2022; Tao et al., 2016). Additionally, ensuring data
consistency and synchronization across multiple
devices can be complex and resource-intensive,
leading to potential delays and errors. To mitigate
communication overhead, it is crucial to optimize
communication protocols, reduce the frequency of
data exchanges, and employ local processing to
minimize the need for inter-device communication.

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

32

Programming complexity further complicates
parallel processing tasks for resource-constrained
IoT devices. The heterogeneity of IoT devices, which
vary widely in hardware capabilities, operating
systems, and communication protocols, makes
developing standardized and interoperable software
solutions challenging. Managing concurrent tasks
and data flows on limited hardware requires
advanced programming techniques and careful
resource management. Debugging and testing are
also more complex due to the interactions between
multiple devices and the potential for non-
deterministic behavior. To address these
complexities, developers can use middleware
platforms, standardized protocols, and development
frameworks specifically designed for IoT
environments (Razzaque et al., 2015). Additionally,
employing simulation tools can help in testing and
debugging parallel processing applications before
deployment.

6. Future directions

Edge computing offers a promising solution for
enhancing parallel processing in IoT resource-
constrained devices. By processing data closer to the
source, edge computing reduces latency, bandwidth
usage, and the need for centralized data processing.
This is particularly beneficial for IoT devices, which
often operate in environments with limited
connectivity and computational power. Integrating
edge computing allows IoT devices to perform more
complex parallel processing tasks locally, improving
real-time decision-making and overall system
efficiency (Escamilla-Ambrosio et al., 2018; Ray et
al., 2019). Furthermore, edge computing can
distribute workloads across multiple devices,
optimizing resource utilization and enabling more
robust parallel processing capabilities.

Hardware acceleration is a critical avenue for
enhancing parallel processing in IoT devices.
Utilizing specialized hardware components, such as
Graphics Processing Units (GPUs) and Field-
Programmable Gate Arrays (FPGAs), can
significantly boost the processing power of IoT
devices (Molanes et al., 2018). These components
are designed to handle parallel tasks more efficiently
than general-purpose CPUs, offering substantial
performance improvements for compute-intensive
applications (Teodoro et al., 2009). Implementing
hardware acceleration in IoT devices can enable
faster data processing, lower power consumption,
and the ability to handle more complex tasks. This
approach is particularly advantageous for resource-
constrained environments, where maximizing
efficiency and performance is crucial.

Energy efficiency is a paramount concern in IoT
devices due to their often-limited power sources.
Future advancements in parallel processing for IoT
devices must prioritize energy efficiency to extend
device lifespan and ensure sustainable operation.
Techniques such as dynamic voltage and frequency
scaling (DVFS), energy-aware scheduling, and low-

power design methodologies can be employed to
optimize energy consumption during parallel
processing tasks (Calore et al., 2017). Additionally,
leveraging energy-efficient algorithms and hardware
architectures tailored for IoT applications can
further reduce power usage. By focusing on energy-
efficient parallel processing, IoT devices can achieve
higher performance while maintaining low power
consumption, making them more viable for long-
term deployment in diverse environments.

Future research should also focus on developing
lightweight and adaptive parallel processing
frameworks specifically designed for embedded IoT
hardware. Incorporating edge AI and federated
learning can enable privacy-preserving model
execution while reducing reliance on centralized
infrastructure. Efforts should also target minimizing
communication latency through optimized
scheduling and protocol design, as well as leveraging
hardware accelerators like GPUs, TPUs, and TinyML
platforms for energy-aware execution.

7. Conclusions

The exploration of parallel processing techniques
specifically tailored for resource-constrained IoT
devices reveals significant advancements and
notable research gaps. While existing methods have
made strides in enhancing computational speed and
task distribution, there remains a critical need to
optimize energy efficiency without compromising
performance. Current literature often focuses on
theoretical models or simulations, with insufficient
emphasis on practical, scalable solutions for diverse
IoT deployments.

To address this gap, a holistic approach
integrating energy-aware parallel processing
algorithms with adaptive power management
strategies is essential. This approach should be
tailored to the limited computational and energy
resources of IoT devices. Key strategies such as task
partitioning and offloading, data parallelism, and
model parallelism offer promising avenues for
improving performance and efficiency. Task
partitioning and offload balance workloads across
heterogeneous IoT environments, leveraging the
strengths of both edge and cloud servers. Data
parallelism enhances throughput and scalability by
distributing extensive datasets across multiple
processing units, facilitating real-time analytics.
Model parallelism allows for the execution of large
machine-learning models by partitioning tasks
across multiple devices, optimizing memory load and
inference speed.

Case studies underscore the practical
applications and benefits of these techniques. For
instance, employing Hadoop and Spark platforms for
distributed parallel processing significantly
improves IoT network security, while adaptive
model parallelism enhances malware detection
efficiency and accuracy on IoT devices. Despite these
advancements, challenges such as scalability,
communication overhead, and programming

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

33

complexity persist. Addressing these issues requires
optimizing resource usage, reducing communication
frequency, and employing standardized protocols
and development frameworks.

Future research directions should focus on
integrating edge computing to process data closer to
the source, utilizing hardware acceleration for
performance boosts, and prioritizing energy-efficient
techniques to extend device lifespan. By advancing
these areas, we can develop practical, scalable
solutions that fully harness the potential of parallel
processing for resource-constrained IoT devices,
ensuring their viability for long-term deployment
across diverse environments.

List of abbreviations

6LoWPAN
IPv6 over low-power wireless personal area
networks

APP-IoT Adaptive parallel processing for IoT
BFS Breadth-first search
CEP Complex event processing
CPU Central processing unit
CoAP Constrained application protocol
DFS Depth-first search
DRAM Dynamic random-access memory
DTLS Datagram transport layer security
DVFS Dynamic voltage and frequency scaling
FPGA Field-programmable gate array
GPU Graphics processing unit
HDFS Hadoop distributed file system
IETF Internet engineering task force
IP Internet protocol
IPv6 Internet protocol version 6
IoT Internet of Things
MIMD Multiple instruction, multiple data
ML Machine learning
NFC Near-field communication
PC Personal computer
RAM Random-access memory
RFID Radio-frequency identification
ROM Read-only memory
SIMD Single instruction, multiple data
SPMD Single program, multiple data
SQL Structured query language
TLS Transport layer security
TPU Tensor processing unit
UDP User datagram protocol
VM Virtual machine
YARN Yet another resource negotiator

Acknowledgment

The authors extend their appreciation to the
Deanship of Scientific Research at Northern Border
University, Arar, KSA, for funding this research work
through the project number "NBU-FFR-2025-1260-
03."

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Ahmad T and Zhang D (2021). Using the Internet of Things in
smart energy systems and networks. Sustainable Cities and
Society, 68: 102783.
https://doi.org/10.1016/j.scs.2021.102783

Al-Kashoash HA, Kharrufa H, Al-Nidawi Y, and Kemp AH (2019).
Congestion control in wireless sensor and 6LoWPAN
networks: Toward the Internet of Things. Wireless Networks,
25(8): 4493-4522.
https://doi.org/10.1007/s11276-018-1743-y

Allioui H and Mourdi Y (2023). Exploring the full potentials of IoT
for better financial growth and stability: A comprehensive
survey. Sensors, 23(19): 8015.
https://doi.org/10.3390/s23198015
PMid:37836845 PMCid:PMC10574902

Amadeo M, Campolo C, Quevedo J, Corujo D, Molinaro A, Iera A,
Aguiar RL, and Vasilakos AV (2016). Information-centric
networking for the Internet of Things: Challenges and
opportunities. IEEE Network, 30(2): 92-100.
https://doi.org/10.1109/MNET.2016.7437030

Amrahov SE, Ar Y, Tugrul B, Akay BE, and Kartli N (2024). A new
approach to Mergesort algorithm: Divide smart and conquer.
Future Generation Computer Systems, 157: 330-343.
https://doi.org/10.1016/j.future.2024.03.049

Ashton K (2009). That ‘Internet of Things’ thing. RFID Journal,
22(7): 97-114.

Atzori L, Iera A, and Morabito G (2017). Understanding the
internet of things: definition, potentials, and societal role of a
fast evolving paradigm. Ad Hoc Networks, 56: 122-140.
https://doi.org/10.1016/j.adhoc.2016.12.004

Bibri SE (2018). The IoT for smart sustainable cities of the future:
An analytical framework for sensor-based big data
applications for environmental sustainability. Sustainable
Cities and Society, 38: 230-253.
https://doi.org/10.1007/978-3-319-73981-6

Calore E, Gabbana A, Schifano SF, and Tripiccione R (2017).
Evaluation of DVFS techniques on modern HPC processors
and accelerators for energy‐aware applications. Concurrency
and Computation: Practice and Experience, 29(12): e4143.
https://doi.org/10.1002/cpe.4143

Chander B and Kumaravelan G (2019). Internet of Things:
Foundation. In: Peng SL, Pal S, and Huang L (Eds.), Principles
of internet of things (IoT) ecosystem: Insight paradigm: 3-33.
Springer International Publishing, Cham, Switzerland.
https://doi.org/10.1007/978-3-030-33596-0_1

Deb PK, Mukherjee A, Singh D, and Misra S (2022). Loop-the-
loops: Fragmented learning over networks for constrained IoT
devices. IEEE Transactions on Parallel and Distributed
Systems, 34(1): 316-327.
https://doi.org/10.1109/TPDS.2022.3220221

Deep S, Zheng X, Jolfaei A, Yu D, Ostovari P, and Kashif Bashir A
(2022). A survey of security and privacy issues in the Internet
of Things from the layered context. Transactions on Emerging
Telecommunications Technologies, 33(6): e3935.
https://doi.org/10.1002/ett.3935

Devasena CL (2016). IPv6 low power wireless personal area
network (6LoWPAN) for networking Internet of Things (IoT)–
Analyzing its suitability for IoT. Indian Journal of Science and
Technology, 9(30): 1-6.
https://doi.org/10.17485/ijst/2016/v9i30/98730

Escamilla-Ambrosio PJ, Rodríguez-Mota A, Aguirre-Anaya E,
Acosta-Bermejo R, and Salinas-Rosales M (2018). Distributing
computing in the Internet of Things: Cloud, fog and edge
computing overview. In the NEO 2016: Results of the
Numerical and Evolutionary Optimization Workshop NEO
2016 and the NEO Cities 2016 Workshop, Springer
International Publishing, Tlalnepantla, Mexico: 87-115.
https://doi.org/10.1007/978-3-319-64063-1_4

https://doi.org/10.1016/j.scs.2021.102783
https://doi.org/10.1007/s11276-018-1743-y
https://doi.org/10.3390/s23198015
https://doi.org/10.1109/MNET.2016.7437030
https://doi.org/10.1016/j.future.2024.03.049
https://doi.org/10.1016/j.adhoc.2016.12.004
https://doi.org/10.1007/978-3-319-73981-6
https://doi.org/10.1002/cpe.4143
https://doi.org/10.1007/978-3-030-33596-0_1
https://doi.org/10.1109/TPDS.2022.3220221
https://doi.org/10.1002/ett.3935
https://doi.org/10.17485/ijst/2016/v9i30/98730
https://doi.org/10.1007/978-3-319-64063-1_4

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

34

Farhan MN, Habib MA, and Ali MA (2018). A study and
performance comparison of MapReduce and Apache Spark on
Twitter data on Hadoop cluster. International Journal of
Information Technology and Computer Science (IJITCS),
10(7): 61-70. https://doi.org/10.5815/ijitcs.2018.07.07

Fossati T and Tschofenig H (2016). Transport layer security
(TLS)/datagram transport layer security (DTLS) profiles for
the Internet of Things. IETF RFC 7925.
https://doi.org/10.17487/RFC7925

Fuentes-Samaniego RA, La VH, Cavalli AR, Nolazco-Flores JA, and
Ramirez-Velarde RV (2019). A monitoring-based approach for
WSN security using IEEE-802.15. 4/6LowPAN and DTLS
communication. International Journal of Autonomous and
Adaptive Communications Systems, 12(3): 218-243.
https://doi.org/10.1504/IJAACS.2019.10022471

Hong CH and Varghese B (2019). Resource management in
fog/edge computing: A survey on architectures,
infrastructure, and algorithms. ACM Computing Surveys
(CSUR), 52(5): 1-37. https://doi.org/10.1145/3326066

Ijemaru GK, Ang KLM, and Seng JK (2022). Wireless power
transfer and energy harvesting in distributed sensor
networks: Survey, opportunities, and challenges. International
Journal of Distributed Sensor Networks, 18(3).
https://doi.org/10.1177/15501477211067740

Jeyaraj R, Balasubramaniam A, MA AK, Guizani N, and Paul A
(2023). Resource management in cloud and cloud-influenced
technologies for Internet of Things applications. ACM
Computing Surveys, 55(12): 1-37.
https://doi.org/10.1145/3571729

Kahira AN, Nguyen TT, Gomez LB, Takano R, Badia RM, and Wahib
M (2021). An oracle for guiding large-scale model/hybrid
parallel training of convolutional neural networks. In the
Proceedings of the 30th International Symposium on High-
Performance Parallel and Distributed Computing, ACM,
Virtual Event, Sweden: 161-173.
https://doi.org/10.1145/3431379.3460644

Kan C, Yang H, and Kumara S (2018). Parallel computing and
network analytics for fast industrial Internet-of-Things (IIoT)
machine information processing and condition monitoring.
Journal of Manufacturing Systems, 46: 282-293.
https://doi.org/10.1016/j.jmsy.2018.01.010

Kasarapu S, Shukla S, and Dinakarrao SMP (2024). Enhancing IoT
malware detection through adaptive model parallelism and
resource optimization. Arxiv Preprint Arxiv:2404.08808.
https://doi.org/10.48550/arXiv.2404.08808

Kennedy RK, Khoshgoftaar TM, Villanustre F, and Humphrey T
(2019). A parallel and distributed stochastic gradient descent
implementation using commodity clusters. Journal of Big Data,
6: 16. https://doi.org/10.1186/s40537-019-0179-2

Ketu S, Mishra PK, and Agarwal S (2020). Performance analysis of
distributed computing frameworks for big data analytics:
Hadoop vs Spark. Computación y Sistemas, 24(2): 669-686.
https://doi.org/10.13053/cys-24-2-3401

Khalil K, Elgazzar K, Seliem M, and Bayoumi M (2020). Resource
discovery techniques in the Internet of Things: A review.
Internet of Things, 12: 100293.
https://doi.org/10.1016/j.iot.2020.100293

Khattak SBA, Nasralla MM, Farman H, and Choudhury N (2023).
Performance evaluation of an IEEE 802.15. 4-based thread
network for efficient Internet of Things communications in
smart cities. Applied Sciences, 13(13): 7745.
https://doi.org/10.3390/app13137745

Kim MJ and Yu YS (2015). Development of real-time big data
analysis system and a case study on the application of
information in a medical institution. International Journal of
Software Engineering and Its Applications, 9(7): 93-102.
https://doi.org/10.14257/ijseia.2015.9.7.10

Kotenko IV, Saenko I, and Kushnerevich A (2017). Parallel big data
processing system for security monitoring in Internet of

Things networks. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, 8(4):
60-74. https://doi.org/10.15622/sp.59.1

Krishnamoorthy S, Dua A, and Gupta S (2023). Role of emerging
technologies in future IoT-driven Healthcare 4.0 technologies:
A survey, current challenges and future directions. Journal of
Ambient Intelligence and Humanized Computing, 14(1): 361-
407. https://doi.org/10.1007/s12652-021-03302-w

Kushwaha D, Redhu S, Brinton CG, and Hegde RM (2023). Optimal
device selection in federated learning for resource-
constrained edge networks. IEEE Internet of Things Journal,
10(12): 10845-10856.
https://doi.org/10.1109/JIOT.2023.3243082

Lee I and Lee K (2015). The Internet of Things (IoT): Applications,
investments, and challenges for enterprises. Business
Horizons, 58(4): 431-440.
https://doi.org/10.1016/j.bushor.2015.03.008

Li Y, Ge X, Lei B, Zhang X, and Wang W (2023). Joint task
partitioning and parallel scheduling in device-assisted mobile
edge networks. IEEE Internet of Things Journal, 11(8): 14058-
14075. https://doi.org/10.1109/JIOT.2023.3341062

Liu H and Huang HH (2015). Enterprise: Breadth-first graph
traversal on GPUs. In the Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, Austin, USA: 1-12.
https://doi.org/10.1145/2807591.2807594

Liyanage NH (2017). Comprehensive comparison of parallel
sorting techniques, architectures and behaviors which
support for distributed environments. In the International
Conference on Big Data Analytics and Computational
Intelligence, IEEE, Chirala, Andhra Pradesh, India: 412-417.
https://doi.org/10.1109/ICBDACI.2017.8070874

Makhdoom I, Abolhasan M, Abbas H, and Ni W (2019).
Blockchain's adoption in IoT: The challenges, and a way
forward. Journal of Network and Computer Applications, 125:
251-279. https://doi.org/10.1016/j.jnca.2018.10.019

Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS,
Pelusi D, Ghosh U, and Nayak J (2021). Industrial internet of
things and its applications in Industry 4.0: State of the art.
Computer Communications, 166: 125-139.
https://doi.org/10.1016/j.comcom.2020.11.016

Mohammadabadi SMS, Zawad S, Yan F, and Yang L (2024). Speed
up federated learning in heterogeneous environments: A
dynamic tiering approach. IEEE Internet of Things Journal,
12(5): 5026–5035.
https://doi.org/10.1109/JIOT.2024.3487473

Molanes RF, Amarasinghe K, Rodriguez-Andina J, and Manic M
(2018). Deep learning and reconfigurable platforms in the
Internet of Things: Challenges and opportunities in algorithms
and hardware. IEEE Industrial Electronics Magazine, 12(2):
36-49. https://doi.org/10.1109/MIE.2018.2824843

Mourtzis D, Vlachou E, Milas N, and Xanthopoulos N (2016). A
cloud-based approach for maintenance of machine tools and
equipment based on shop-floor monitoring. Procedia CIRP,
41: 655-660. https://doi.org/10.1016/j.procir.2015.12.069

Nižetić S, Šolić P, Gonzalez-De DLDI, and Patrono L (2020).
Internet of Things (IoT): Opportunities, issues and challenges
towards a smart and sustainable future. Journal of Cleaner
Production, 274: 122877.
https://doi.org/10.1016/j.jclepro.2020.122877
PMid:32834567 PMCid:PMC7368922

Raghavan NS and Waghmare T (2002). DPAC: An object-oriented
distributed and parallel computing framework for
manufacturing applications. IEEE Transactions on Robotics
and Automation, 18(4): 431-443.
https://doi.org/10.1109/TRA.2002.802236

Raj M, Gupta S, Chamola V, Elhence A, Garg T, Atiquzzaman M, and
Niyato D (2021). A survey on the role of Internet of Things for
adopting and promoting Agriculture 4.0. Journal of Network

https://doi.org/10.5815/ijitcs.2018.07.07
https://doi.org/10.17487/RFC7925
https://doi.org/10.1504/IJAACS.2019.10022471
https://doi.org/10.1145/3326066
https://doi.org/10.1177/15501477211067740
https://doi.org/10.1145/3571729
https://doi.org/10.1145/3431379.3460644
https://doi.org/10.1016/j.jmsy.2018.01.010
https://doi.org/10.48550/arXiv.2404.08808
https://doi.org/10.1186/s40537-019-0179-2
https://doi.org/10.13053/cys-24-2-3401
https://doi.org/10.1016/j.iot.2020.100293
https://doi.org/10.3390/app13137745
https://doi.org/10.14257/ijseia.2015.9.7.10
https://doi.org/10.15622/sp.59.1
https://doi.org/10.1007/s12652-021-03302-w
https://doi.org/10.1109/JIOT.2023.3243082
https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/10.1109/JIOT.2023.3341062
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1109/ICBDACI.2017.8070874
https://doi.org/10.1016/j.jnca.2018.10.019
https://doi.org/10.1016/j.comcom.2020.11.016
https://doi.org/10.1109/JIOT.2024.3487473
https://doi.org/10.1109/MIE.2018.2824843
https://doi.org/10.1016/j.procir.2015.12.069
https://doi.org/10.1016/j.jclepro.2020.122877
https://doi.org/10.1109/TRA.2002.802236

Albalawi et al/International Journal of Advanced and Applied Sciences, 12(9) 2025, Pages: 21-35

35

and Computer Applications, 187: 103107.
https://doi.org/10.1016/j.jnca.2021.103107

Ray PP, Dash D, and De D (2019). Edge computing for Internet of
Things: A survey, e-healthcare case study and future direction.
Journal of Network and Computer Applications, 140: 1-22.
https://doi.org/10.1016/j.jnca.2019.05.005

Razzaque MA, Milojevic-Jevric M, Palade A, and Clarke S (2015).
Middleware for Internet of Things: A survey. IEEE Internet of
Things Journal, 3(1): 70-95.
https://doi.org/10.1109/JIOT.2015.2498900

Sanislav T, Mois GD, Zeadally S, and Folea SC (2021). Energy
harvesting techniques for Internet of Things (IoT). IEEE
Access, 9: 39530-39549.
https://doi.org/10.1109/ACCESS.2021.3064066

Sathish Kumar L, Ahmad S, Routray S, Prabu AV, Alharbi A, Alouffi
B, and Rajasoundaran S (2022). Modern energy optimization
approach for efficient data communication in IoT‐based
wireless sensor networks. Wireless Communications and
Mobile Computing, 2022: 7901587.
https://doi.org/10.1155/2022/7901587

Sehgal A, Perelman V, Kuryla S, and Schonwalder J (2012).
Management of resource constrained devices in the Internet
of Things. IEEE Communications Magazine, 50(12): 144-149.
https://doi.org/10.1109/MCOM.2012.6384464

Shuvo MMH, Islam SK, Cheng J, and Morshed BI (2022). Efficient
acceleration of deep learning inference on resource-
constrained edge devices: A review. Proceedings of the IEEE,
111(1): 42-91. https://doi.org/10.1109/JPROC.2022.3226481

Tao F, LaiLi Y, Xu L, and Zhang L (2012). FC-PACO-RM: A parallel
method for service composition optimal-selection in cloud
manufacturing system. IEEE Transactions on Industrial
Informatics, 9(4): 2023-2033.
https://doi.org/10.1109/TII.2012.2232936

Tao F, Wang Y, Zuo Y, Yang H, and Zhang M (2016). Internet of
Things in product life-cycle energy management. Journal of
Industrial Information Integration, 1: 26-39.
https://doi.org/10.1016/j.jii.2016.03.001

Teodoro G, Sachetto R, Sertel O, Gurcan MN, Meira W, Catalyurek
U, and Ferreira R (2009). Coordinating the use of GPU and

CPU for improving performance of compute intensive
applications. In the IEEE International Conference on Cluster
Computing and Workshops, IEEE. New Orleans, USA: 1-10.
https://doi.org/10.1109/CLUSTR.2009.5289193

Yang D and Luo Z (2023). A parallel processing CNN accelerator
on embedded devices based on optimized MobileNet. IEEE
Internet of Things Journal, 10(21): 18844-18852.
https://doi.org/10.1109/JIOT.2023.3277869

Yang HC, Dasdan A, Hsiao RL, and Parker DS (2007). Map-reduce-
merge: simplified relational data processing on large clusters.
In the Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, ACM, Beijing, China:
1029-1040. https://doi.org/10.1145/1247480.1247602

Yuan MM, Baker JW, and Meilander WC (2013). Comparisons of
air traffic control implementations on an associative
processor with a MIMD and consequences for parallel
computing. Journal of Parallel and Distributed Computing,
73(2): 256-272. https://doi.org/10.1016/j.jpdc.2012.05.009

Zhang H, Diao Y, and Immerman N (2014). On complexity and
optimization of expensive queries in complex event
processing. In the SIGMOD '14: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data,
Snowbird, USA: 217-228.
https://doi.org/10.1145/2588555.2593671

Zhang Y, Tsai PA, and Tseng HW (2022). SIMD2: A generalized
matrix instruction set for accelerating tensor computation
beyond GEMM. In the Proceedings of the 49th Annual
International Symposium on Computer Architecture, ACM,
New York, USA: 552-566.
https://doi.org/10.1145/3470496.3527411

Ziegler S, Kirstein P, Ladid L, Skarmeta A, and Jara A (2015). The
case for IPv6 as an enabler of the Internet of Things. IEEE
Internet of Things. Available online at:
http://iot.ieee.org/newsletter/july-2015/the-case-for-ipv6-
as-an-enabler-of-the-internet-of-things.html

Zygouras N, Zacheilas N, Kalogeraki V, Kinane D, and Gunopulos D
(2015). Insights on a scalable and dynamic traffic
management system. In the 18th International Conference on
Extending Database Technology (EDBT), Brussels, Belgium:
653-664. https://doi.org/10.5441/002/edbt.2015.65

https://doi.org/10.1016/j.jnca.2021.103107
https://doi.org/10.1016/j.jnca.2019.05.005
https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/10.1109/ACCESS.2021.3064066
https://doi.org/10.1155/2022/7901587
https://doi.org/10.1109/MCOM.2012.6384464
https://doi.org/10.1109/JPROC.2022.3226481
https://doi.org/10.1109/TII.2012.2232936
https://doi.org/10.1016/j.jii.2016.03.001
https://doi.org/10.1109/CLUSTR.2009.5289193
https://doi.org/10.1109/JIOT.2023.3277869
https://doi.org/10.1145/1247480.1247602
https://doi.org/10.1016/j.jpdc.2012.05.009
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/3470496.3527411
http://iot.ieee.org/newsletter/july-2015/the-case-for-ipv6-as-an-enabler-of-the-internet-of-things.html
http://iot.ieee.org/newsletter/july-2015/the-case-for-ipv6-as-an-enabler-of-the-internet-of-things.html
https://doi.org/10.5441/002/edbt.2015.65

	A review of parallel processing in resource-constrained Internet of Things (IoT) devices
	1. Introduction
	2. Literature review
	2.1. IoT
	2.2. Constrained devices
	2.3. Parallel processing

	3. Parallel processing fundamentals and concepts
	3.1. Parallel processing architecture
	3.1.1. SIMD
	3.1.2. MIMD
	3.1.3. SPMD

	3.2. Parallel processing framework
	3.2.1. MapReduce
	3.2.2. Apache Spark
	3.2.3. Hadoop

	3.3. Parallel processing algorithms
	3.3.1. Parallel sorting algorithms
	3.3.2. Parallel search algorithms
	3.3.3. Parallel machine learning algorithms

	3.4. Comparative evaluation of parallelprocessing methods in IoT
	3.5. Parallel processing techniques for IoTdevices
	3.5.1. Task partitioning and offloading
	3.5.2. Data parallelism
	3.5.3. Model parallelism
	3.5.4. A novel framework for adaptive parallelprocessing in IoT (APP-IoT)
	3.5.5. Energy-efficient parallel processingstrategies

	4. Case studies
	4.1. Big data processing
	4.2. Malware detection and resourceoptimization

	5. Challenges and limitations
	6. Future directions
	7. Conclusions
	List of abbreviations
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References

